On the Existence of Triangles

VOLKER W. THÜREY
Bremen, Germany *

June 4, 2020

We formulate criterions about the existence of triangles depending on its sidelengths.

Keywords and phrases: Triangle
MSC 2010 subject classification: 51P99
It is well-known that a triangle with sides of lengths a, b and c exists if and only if three inequalities are fulfilled. They are called the 'triangle inequalities'.
Proposition 1. A triangle with sidelenghts a, b and c exists if and only if three inequalities hold.

$$
\begin{align*}
& a+b>c \tag{1}\\
& a+c>b \tag{2}\\
& b+c>a \tag{3}
\end{align*}
$$

These inequalities can be combined by the inequality

$$
\begin{equation*}
\text { Minimum }\{a+b-c, a+c-b, b+c-a\}>0 \tag{4}
\end{equation*}
$$

We show that this inequality can be replaced by another inequality with a product of three factors.
Proposition 2. A triangle with sidelengths a, b and c exists if and only if the following inequality holds.

$$
\begin{equation*}
(a+b-c) \cdot(a+c-b) \cdot(b+c-a)>0 \tag{5}
\end{equation*}
$$

Proof. We show that out of the three factors, two cannot simultaneously be negative. Assume three real numbers x, y, z such that both $x+y-z$ and $z+x-y$ are negative. This means $x+y<z$ and $z+x<y$. This means $z+x<y<z-x$, hence $x<-x$. This is only possible with a negative x. This proves the proposition, since a, b and c are positive.

Proposition 3. Let a and b are line segments which meet only once in a single point called C at the end. The endpoints of a are B and C, while the endpoints of b are A and C. The generated angle is $\angle(A C B)$. ($\angle(X Y Z)$ means the angle made by three points X, Y, Z such that Y is the apex.)
A triangle with sidelengths a, b and c exists if and only if the following equality holds.

$$
\begin{equation*}
c=a \cdot \cos \angle(A B C)+b \cdot \cos \angle(B A C)=\sqrt{a^{2}+b^{2}-2 \cdot a \cdot b \cdot \cos \angle(A C B)} \tag{6}
\end{equation*}
$$

A and B have the distance c.

[^0]Proof. The proposition is well-known. It is true due to the law of cosines.
We show that there are two further inequalities which are equivalent to the triangle inequalities of Proposition 1 .
Let a, b, c be positive real numbers such that $b, c \leq a$.
Proposition 4. A triangle with sidelengths a, b and c exists if and only if one of the following inequalities holds.

$$
\begin{gather*}
a-b<c<a+b \tag{7}\\
(a-c)^{2}<b^{2} \tag{8}
\end{gather*}
$$

Proof. From (1) and (3) follow (7), and from (7) follows (1), (3), and since $b \leq a$ also (2).
Similarly, with $c \leq a$, (3) is equivalent to (8), and since $0<b, c \leq a$ it holds (1) and (2).
Remark 1. Note that we get equivalent inequalities if we exchange the variables b and c in (7) and (8).

Furthermore we ask by given positive real numbers v and w for t such that v, w and t are sidelengths of a triangle.
Let v and w be line segments which meet only once at the end. The generated angle is called τ. Let $\tau<180^{\circ}$.
Proposition 5. A triangle with sidelengths v, w and t exists if and only if it holds

$$
\begin{equation*}
t=\sqrt{v^{2}+w^{2}-2 \cdot v \cdot w \cdot \cos \tau} \tag{9}
\end{equation*}
$$

Proof. The proposition is true due to the law of cosines.
Acknowledgements: We thank Kshitija Jog for a careful reading.

References

[1] Recent Advances in Geometric Inequalities D.S. Mitrinović, J.E. Pečarić, V. Volenec, Kluwer (1989)

[^0]: *49 (0)421 591777, volker@thuerey.de

