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Summary 

 

The author has developed an approach to logics that comprises, but also goes beyond predicate logic. 

The FUME method contains two tiers of precise languages: object-language Funcish and metalanguage 

Mencish. It allows for a very wide application in mathematics from geometry, number theory, recursion 

theory and axiomatic set theory with first-order logic, to higher-order logic theory of real numbers and 

a precise analysis of foundation of mathematics in general, including theory of types.  
 

A famous paper by Thoralf Skolem of 1934 is usually put at the beginning of publications on non-

standard arithmetic. A critical investigation shows that it has serious, if not even insurmountable 

problems. Firstly one notices that it is based on second-order logic, it has unary and binary function-

variables, and binary operator-constants (that map two functions to a function). It seems strange that one 

makes a fundamental statement about first-order logic systems using second order. 

 

In proving Satz 1 on the asymptotic behavior of arithmetic functions Skolem has some inaccuracies and 

formal errors. These minor problems can be solved by diligent work. But even if one has replaced his 

metalingual use of his relation symbols Bi by an ontologically correct method there remains secondly 

the problem of transitivity of the minority relation of functions that is neglected by Skolem.   

 

Thirdly, in constructing the strictly ascending function g of Satz 1 use is made of recursion by a dot-

dot-dot notation. This is not an admissible procedure in object-language, although there may be a correct 

way to solve the problem in metalanguage.  
 

Therefore one does not only need second-order logic in combination with a precise object-language (in 

order to avoid ontology problems) but also a precise use of metalanguage (in order to avoid dot-dot-dot) 

for justifying Skolem's Satz 1 after one has eventually solved the  transitivity problem; Skolem's Satz 2 

would then be valid. However, as long as Satz 1 is not confirmed it does not pay to treat Satz 3 and Satz 

4, leaving open the existence of non-standard models of arithmetic on the basis of Skolem's work. 
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1.  FUME-method object-language and metalanguage 
 

It all started in the year of 1879 when Gottlieb Frege put forward his revolutionary 'Begriffsschrift'. Until 

then the syllogism logic of Aristotle had been considered to be sufficient as the basis of logical reasoning 

and therefore also of mathematics. Besides the usual logical characters           quantors   

and variables like e.g.1 or 13 were introduced together with the rules for omnition 1 ...and 

entition 2 ... as well as relation-constant and function-constant strings that allowed for expressing 

logic-sentences in a proper fashion. Freges notation differs from this modern form, but that is irrelevant. 
 

The author has put forward a precise system of object-language and metalanguage that overcomes 

certain difficulties of predicate logic and that can be extended to a full theory of types . In order to 

describe an object-language one also needs a metalanguage. According to the author's principle 

metalanguage has to be absolutely precise as well, normal English will not do. The FUME-method 

contains at least three tiers of language: 
 

Funcish object-language formalized precise 

Mencish metalanguage  formalized precise 

English supralanguage  common, mostly not precise 
 

'Calcule' is the name given to a mathematical system with the precise language-metalanguage method 

Funcish-Mencish . 'Calcule' is an expression coined by the author in order to avoid confusion. The word 

'calculus' is conventionally used for real number mathematics and various logical systems. As a German 

translation 'Kalkul' is proposed for 'calcule' versus conventional 'Kalkül' that usually is translated as 

'calculus'. 
 

A concrete calcule talks about a codex of concrete individuals (given as strings of characters) and 

concrete functions and relations that can be realized by 'machines' (called calculators). An abstract 

calcule talks about nothing. It only says: if some entities exist with such and such properties they also 

have certain other properties. Essentially there are only 'if-then' statements. E.g. 'if there are entities that 

obey the Euclid axioms the following sentence is true for these entities' . 
 

Calcules with first-order logic FOL are called haplo-calcules , calcules with higher-order logic HOL for 

a theory of types are called hypso-calcules. An abstract calcule is based on a finite count or on 

enumerably many axioms as opposed to a concrete calcule whose foundation can be put into practice 

by a machine. Axiom strings are certain sentence strings, they can also be provided with a metalingual 

Axiom mater (rather than the usual 'scheme' or 'schema', as the expression scheme has a different 

meaning in Mencish), that produce enumerably many Axiom strings. 
 

In supralanguage English calcules are given names based on the Greek sort names. They are constructed 

from the sort strings that appear in it, using the Latin names of the Greek letters of object language 

Funcish. Concrete calcule sort strings have all-capital-letter or all-capital-letter-onset words, abstract 

calcules have small-letter words. The first letter of the first sort name classifies a calcule according to 

some convention rules.The sort string names are separated by blank and completely underlined. Higher-

order logic calcules are characterized by a final letter python1)  separated by a blank. Python is also the 

final character in relevant sort strings. Examples: 
 

abstract calcules 

.  alpha with sort  
 

concrete calcule 

- ALPHA with sort  

- ALPHApython with sort 
 

 

 

 

1)  Distinguish the Greek characters: capital pi  ,  small pi  and python  (pronounce as in 'Monty Python') .   
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The fonts-method allows to distinguish between object-language (Arial and Symbol, normal, e.g. 

1), metalanguage (Arial and Symbol, boldface italics e.g.1  or  Axiom) and supralanguage English 

(Times New Roman). 
 

For quoting Skolem and sometimes for better understanding mathematical expressions are written 

conventionally in supralanguage English using italics (heuristically, not fully precise) e.g. : 

- numbers 0 1 2 …  constants a b …  variables i j m n t x y …  symbols + - /  ( , ) = < > multiplication xy 

- a series of unary functions f0  f1  f2 … with values at x denoted as f0(x) f1(x) f2(x) … 

- the value of binary function f with values at x,y denoted as  f(x,y) 

- a binary operator B with value at unary functions f and g denoted as B(f,g) 

 and its value at x denoted as B(f,g)(x) , composition of f and g denoted as (f g)(x)=f(g(x)) 

- the appearance of a variable e.g. t in an expression means 'for all t ' . 
 

In supralanguage English metacalcules are given names that correspond uniquely to their object-

calcules: the Times New Roman fonts are chosen as boldface italic, otherwise they are the same.  

 

  
 

Figure 1  Hierarchy of languages and codices for two example calcules 

 

Metalanguage Mencish is chosen with perfect exactness, just as object-language Funcish. They both 

have to meet the calculation criterion of truth: every step of reasoning must be such that it can be 

checked by a calculating machine. Funcish and Mencish sentences and metasentences resp.are 

understandable without context: 'wherefore by their words ye shall know them' (vs. Mathew 7.20).  
 

On first sight Funcish and Mencish look familiar to what one knows from predicate-logic. However, 

they are especially adapted to a degree of precision so that they can be used universally for all kind of 

mathematics. And they lend themselves immediately to a treatment by computers, as they have perfect 

syntax and semantics. It is not the place to go into details. Both Funcish and Mencish have essentially 

the same syntax. Notice that Funcish has a context-independent notation, which implies that one can 

determine the category of every object uniquely from its syntax. The reader may be puzzled by some 

expressions that are either newly coined by the author or used slightly different from convention. This 

is done in good faith; the reason for the so-called Bavarian notation is to avoid ambiguities.  
 

The essential parts of a language are its sentences. A sentence is a string of characters of a given 

alphabet that fulfills certain syntactical and semantical rules. This means that metalanguage talks about 

the strings of the object-language. The essential parts of the metalanguage are the metasentences  (that  

are strings of characters as well, just in boldface italics). In supralanguage one talks about the 

metasentences, just as metalanguage talks about object-language. Here it is not discussed in general what 

an object-language talks about .  

English 

abstract calcule alpha 

metacalcule alpha 

concrete calcule ALPHA 

metacalcule ALPHA 

codex ALPHA 

supra 

meta 

object 

infra 

Mencish 

Funcish 

talks about 

nothing 
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2.  Concrete hypso-calcule ALPHApython of Monty-arithmetic with second-order logic 
 

In 1934 Thoralf Skolem put forward his famous paper1) that shows how to construct non-standard models 

of arithmetic. Skolem's shortcoming is his use of second-order logic. In the world of denumerability 

second-order logic has no rightful place! Can one remove this bond ? The language system of the FUME-

method is a theory of types and therefore capable of expressing higher-order logic precisely. So the first 

thing to do is to to express Skolem's theorems Satz 1 , Satz 2 , Satz 3 and Satz 4 in proper language. 
 

For further discussion one has to take refuge to examples . Although Skolem uses second-order logic, 

he only regards entities that are at most denumerable. It will be investigated to what extent this justifies 

Skolem's reasoning. Here we do not use the full machinery of Mencish by whose application everything 

can be done with absolute preciseness. We just write down the Basiom strings in the Appendix , that are 

basic true sentence strings (that are obtained by observing the defining aponom strings - not treated 

here) and correspond to Axiom strings of abstract calcules. 
 

The concrete calcule ALPHA of arithmetic of naturals can be set up properly, here just its ontological 

basis is sketched. It is a haplo-calcule as it has first-order logic. 
 

sort ::     

individual ::  natural :: 0  ¦  1  ¦  2 …    nullum, unus, duo, … 

individual-constant ::  n  ¦  u  ¦  b … 

 

basis-function-constant ::   ¦    ¦     addition, multiplication 

         trunctraction (truncated subtraction) 

basis-relation-constant ::      minority 
 

extra-function-constant ::   ¦      succession, predecssion 

extra-relation-constant ::      equal-minority 
 

Starting from haplo-calcule ALPHA of arithmetic of naturals the concrete hypso-calcule 

ALPHApython2)  of Monty-arithmetic of naturals is introduced. It will be the system for a reconstruction 

of Skolem's ideas in a precise fashion. 
 

ontological basis is 
 

sort ::     

sort-array ::     ¦  ;  ¦  ;;  … unary, binary, ternary, … 

type ::      ¦    …   property, binary relation, … 
 

      ¦    ¦  unary function, binary function, … 

       binary unary-function-predicate 
 

basis-function-constant ::   ¦    ¦   addition, multiplication 

        trunctraction 
 

basis-relation-constant ::     minority 
 

extra-function-constant ::   ¦      succession, predecession 

extra-relation-constant ::     equal-minority 
 

There are two ways to look at unary arithmetic functions. With second-order logic a unary function is 

anything formally introduced such that it produces a unique output value for an input value (one can say 

'for all functions' and 'there exist a function' . With first-order logic the best one can do is to have a binary 

function-constant and treat the first argument as a parameter so that one can say 'for all functions of a 

series' . 
 

1)  Skolem, Thoralf  "Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler  

    Aussagen mit  ausschliesslich Zahlenvariablen"  Fundamenta Mathematicae T. XXIII (1934) p. 150-161 
2)  pronounce as in Monty Python  
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3.  Skolem's Satz 1 in precise language 
 

Skolem's Satz 1 is translated as follows: For a binary arithmetic function1) f(x,y) (Skolem calls it a series2) 

f0(t) , f1(t) , f2(t) … ) there is a strictly ascending function1) g(y) and a binary arithmetic function1) t(x,y) 

such that for any pair of first arguments x=a for x=b it holds that the two unary functions of y i.e. f(a,g(y)) 

and f(b,g(y)) are either equal or minor or major to each other for all y greater than t(a,b) . 
 

Observation 1: Skolem does not specify what he considers to be an arithmetic function. It is trivial that 

the three possibilities are mutually exclusive. It is not stated that there is only one functions g , different 

functions g may lead to different ordering of functions of the series. For a chosen unary function g there 

is one binary t that gives the lowest limit, all binary s with greater values t(x,y)< s(x,y)would do as well. 
 

It reads as sentence in ALPHApython , with series written as 10 , 11 , 12 …  
 

S-Skolem111

12121112212

3212311131213 

3212311131213 

3212312131113
 

What kind of animals are 1 so that one can call one of them G? Can it be contained in 

1 by a special g ? What kind of animals are 2 so that one can call the 

smallest T? Can it be constructed from 1 . Skolem starts with auxiliary sentence : 
 

 

 

4.  Auxiliary sentence for function pair comparison 
 

For two unary arithmetic functions a and b there is a strictly ascending function g such that along g(t) 

the composed functions (aog) and (bog) with values  a(g(t)) and b(g(t)) are equal B:=, minor B:< or 

major B: > to each other: a(g(t)) B b(g(t)) 3) ; the binary operator composition is written as 

a(g(t))=(aog)(t) . Actually it is meant that there is a binary operator G that maps two functions a and b 

to function g , i.e. g=G(a,b) and thus g(t)=G(a,b)(t) . Notice that B is a strange metalingual animal that 

has yet to be translated into a proper form so that one can use it in proper language. 
 

S-Skolem1a12    

312123132

11312311131231 

1231131 
 

Observation 2: What kind of animal is 3 and how do you construct it ? Three cases can be 

defined by three binary unary-function-predicates (that include unlimited enticles 2). The infinity 

condition in connection with 2 cannot be answered in general without having further information 

on 1and 2, a problem not considered by Skolem. 
 

12EQG12

     12121222 

12MIG12 

     12121222 

12MAG12 

     12122212 
 
1)  usual sloppy conventional notation, the name of the function is f and its values at x and y are f(x,y) 
2)  Skolem starts with index 1 

3)  in conventional notation the appearance of a variable t in an expression means 'for all t ' (in proper notation with )  
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Skolem then has added the auxiliary sentence S-Skolem1a , but is it really a THEOREM ? 
 

Observation 3: The three cases can be mutually exclusive but they are are not always mutually 

exclusive as the example in classical notation shows where e(x) denotes the entirition function for 

rounding-down 
 

take for  1 function x-3e(x/3)  0  1  2  0  1  2  … 

and for  2 function 2-(x-3e(x/3))  2  1  0  2  1  0  … 
 

Three choices of strictly ascending 3 allow for all of the three possibilities: 

MIG 3x   0  3  6   9   12  15  …  minority-infinition 

EQG 3x+1   1  4  7  10  13  16  …  equality-infinition 

MAG 3x+2   2  5  8  11  14  17  …  majority-infinition 

Determine 3 recursively as 0 for any of the three choices, say equality-infinity. It is 

always defined as it is put to 0 if the predicate is not met.  


120EQG121010

EQG1211121

2122212001 

120121222

3013132323012 

 

Minority-infinity MIGand  

majority-infinity MAGare defined accordingly.  

 

Observation 4: This is a formulo with input 1 and 2 for output 0. But how do 

you prove that it is a UNEX-binary-formulo that gives rise to an operator adjection 

EQG ? Similarily for adjections MIG and 

MAG . Notice that the adjections produce the zero-function if the conditions 

are not fulfilled and therefor not ascending. The simple test is e.g. EQG1210 
 

Observation 5: One needs an algorithm for the unique definition of 3. Firstly define a simple 

ternary relation comparity CB as a mere junctive abbreviation 
 

CB123

301231121321 
 

Comparing adjection B1210 or 1 or 2 
 

Secondly define operator adjections comparison-selection G (Skolem's 

g(t)) and comparison-codification B (for Skolem's B) that also take care of 

the case that there can be more than one possibility of equality, minority and majority. A first choice 

would be: prefer firstly equality and secondly minority: 
 

121

EQG1210

G121EQG121

B1210 

EQG1210MIG1210

G121MIG121

B1211 

EQG1210MIG1210

G121MAG121

B1212
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5.  Problems for the auxilary function 
 

Now there is a uniquely defined function, but there might result problems furtherdown, if one uses this 

algorithm. 

 

Observation 6: On the way to an ordering of functions that are supposed to constitue non-standard 

arithmetics it is aimed for some kind of equality and minority of two functions. It is based on a 

comparison-selection and usual equality and minority of the two functions along this line. With the 

above method it is not guaranteed that the choice of comparison-code is such that the relation is 

antisymmetric. One can circumnavigate the problem if one defines minority or majority only with 

respect to i and j where i<j and adds the reflected case by negation.  

 

i\j 0 1 2 3 4 5 6 7 8   0 1 2 3 4 5 6 7 8  

0  0 1 3 6 10 15 21 28 …  0 1 1 0 4 3 2 2 6 … 

1   2 4 7 11 16 22 29 …  2 0 1 2 1 1 5 2 1 … 

2    5 8 12 17 23 30 …  2 2 0 1 6 5 4 3 2 … 

3     9 13 18 24 31 …  0 1 2 0 2 1 2 2 6 … 

4      14 19 25 32 …  3 2 6 1 0 6 0 5 5 … 

5       20 26 33 …  4 2 5 2 6 0 2 1 3 … 

6        27 34 …  1 5 3 1 0 1 0 0 6 … 

7         35 …  1 1 4 1 5 2 0 0 5 … 

8          …  6 2 1 6 5 4 6 5 0 … 

 … … … … … … … … … …  … … … … … … … … … … 
succession of pairs ij , example 3,7 

reflect for antisymmetry     to       to      to  

distribution of code possibilities 

0 for  1 for  2 for  3 for  4 for  5 for  6 for
 

 0 1 2 3 4 5 6 7 8   0 1 2 3 4 5 6 7 8  

0          …  0 1 1 0 2 1 2 2 1 … 

1          …   0 1 2 1 1 1 2 1 … 

2          …    0 1 1 1 0 2 1 … 

3          …     0 2 1 2 2 1 … 

4          …   2   0 0 0 1 2 … 

5          …       0 2 1 0 … 

6          …        0 0 1 … 

7          …   1   2   0 2 … 

8          …          0 … 

 … … … … … … … … … …  … … … … … … … … … … 
distribution of cases

however: 14 and 47 but 17 

 comparison-codification  b(i,j) 

0 for     1 for     2 for 
 

Observation 7: Furthermore: with the above method it is not yet proven that the choice of comparison-

code is such that the relation is transitive. One has yet to show that there is an algorithm for choosing 

the code for ambiguous cases so that transitivity is guaranteed! 
 

 

One can rewrite S-Skolem1a with G12 for the desired 3 as 
 

S-Skolem1aa 121212

G121G122

3CB 1G123 B123

  2G123
 

where G123 is Skolem's G(a,b)(t) depending on two functions a and b with 

values a(t) and b(t) resp. and a chosen B according to preference algorithm, that is now properly 

expressed by B123  
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6.  Auxiliary theorem of pair ordering 
 

Skolem then adds another sentence that is actually a THEOREM , but still one has to improve his choice. 
 

The pairs (i,j) of numbers can be arranged as a series by antidiagonal pair-coding 

adpair(i,j)=i+((i+j)(i+j+1))/2 . The reverse functions adrow and adcol are expressed with auxiliary-

root function aux(n)=e(((e(2rt(8n+1)-1)/2) by means of  adrow(n)=e(n-(aux(n)(aux(n)+1))/2)  and  

adcol(n)=e(((aux(n)+1)(aux(n)+2))/2-(n+1)) using entirition e(x) . 
 

S-Skolem1b12000111212

determines antidiagonal-pair functionPAI or Cantor pairing function and the inverses for 

row and column  ADROW and ADCOL resp. using AUX
 

1081400400   AUX

40040081 

 

10281422422  for ADROW 

42242281002211 
 

10281422422  for ADCOL 

4224228122201 
 

Actually it would be better to denumerate only the pairs (i,j) of numbers with i<=j , as the denumeration 

of pairs will only be applied to pairs where the diagonal-symmetric pairs are either equal or anti-

symmetric with pair coding dspair(i,j)=i+(j/(j+1))/2 and the reverses with  

j=dscol(n)=aux(n) and i=dsrow(n)=n-((aux(n)(aux(n)+1))/2) 
 

S-Skolem1c1021000021 
 

DSCOLDSAUX
 

1102120DSAUX1DSAUX1 for DSROW
 

 

Skolem does not treat the problem if the above formulo strings are UNEX- which is necessary for 

introducing the corresponding functions by implicit definition. 

 

1UNEX-unary-norm-formulo1 

unary-norm-formulo12variable212 

TRUTH101210220 
 

Implicit definition is justified in second-order logic by second-order Axiom 
 

1UNEX-unary-norm-formulo1 

TRUTH1101110 

210121011121 
 

Observation 8: This means that one has to make sure that ALPHApython is strong enough to prove that 

the three formulo strings are UNEX . This should be the least problem, Skolem just has not realized that 

there might be a problem. 
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7.  Ontological problem and metalingual detours 
 

Returning to Skolem's proof for S-Skolem1 one has to apply S-Skolem1aa to 10 , 

11 , 12 , … as Skolem's f0(t) , f1(t) , f2(t) … 
 

a(g(t)) B b(g(t))    hence  a(G(a ,b)(t)) B(a,b) b(G(a,b)(t)) 

f0(G(f0, f1)(t)) B(f0, f1) f1(G(f0, f1)(t))  hence  (f0
oG(f0, f1))(t) B0,1 (f1

oG(f0, f1))(t) 

 

If one translates from conventional language into Funcish using the FUME -method one has a the first 

step for g=G(f0, f1) 
 

G10G1011111G10111 
 

One gets a series of series of sentence strings. For better understanding it is done in conventional 

language. 
 

Observation 9: However, notice that the animals Bi,j (one of  the characters =  <  > ) are not properly 

expressible in object-language! Notice furthermore that dot-dot-dot is not proper object-language 

either! Be it first-order or higher-order logic. 
 

The first problem cannot be avoided in conventional language. Only with proper FUME and using 

ternary comparity CB and comparison-codification B one can 

express it properly. The second problem necessitates a detour to metalanguage, as one has no recursion 

in calcule ALPHApython but only in metacalcule ALPHApython . 
 

 

 

8.  Conventional reconstruction of Skolem's construction 
 

On page 152 and 153 of Skolem's paper there are inaccuracies and even misleading uses of the same 

expressions for different entities. This is corrected for in the following four tables. The problem dot-dot-

dot like in (c0
oc1

oc2
o … cn-1

ocn is ignored - recursion of composition is not admissible in object-

language. The Bi,j problem as described in the preceding section is not resolved either. 
 

g0,0=G(f0,f1) 

g0,1=G((f0
og0,0),(f1

og0,0))=G((f0
oG(f0,f1)),(f1

oG(f0,f1))) 

g0,2=G((f0
og0,1),(f2

og0,1))=G((f0
oG((f0

oG(f0,f1)),(f1
oG(f0,f1))))),(f2

oG((f0
oG(f0,f1)),(f1

oG(f0,f1)))))) 

…  

g0,j=G((f0
og0,j-1),(fj

og0,j-1)) 

g0,j+1=G((f0
og0,j),(fj+1

og0,j)) 

…  
 

 (f0
og0,0)(t) B0,0 (f1

og0,0)(t) 

 (f0
o(g0,0

og0,1))(t) B0,1 (f1
o(g0,0

og0,1))(t)

 (f0
o(g0,0

o(g0,1
og0,2)))(t) B0,2 (f2

o(g0,0
o(g0,1

og0,2)))(t)

…  

 (f0
o(g0,0

o(g0,1
o(g0,2 … og0,j) … )))(t) B0,j (fj

o(g0,0
o(g0,1

o(g0,2 … og0,j) … )))(t)
 

g1,1=G(f1,f2) 

g1,2=G((f1
og1,1),(f2

og1,1))=G((f1
oG(f1,f2)),(f2

oG(f1,f2))) 

g1,3=G((f1
og1,2),(f3

og1,2))=G((f1
oG((f1

oG(f1,f2)),(f2
oG(f1,f2))))),(f3

oG((f1
oG(f1,f2)),(f2

oG(f1,f2)))))) 

…  

g1,j=G((f1
og1,j-1),(fj

og1,j-1))  1<n 

g1,j+1=G((f0
og1,j),(fj+1

og1,j)) 

…   
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 (f1
og1,1)(t) B1,1 (f1

og1,1)(t) 

 (f1
o(g1,1

og1,2))(t) B1,2 (f2
o( g1,1

og1,2))(t)

 (f1
o(g1,1

o(g1,2
og1,3)))(t) B1,3 (f3

o(g1,1
o(g1,2

og1,3)))(t)

…  

 (f1
o(g1,1

o(g1,2
o(g1,3 … og1,j) … )))(t) B1,j (fj

o(g1,1
o(g1,2

o(g1,3 … og1,j) … )))(t) 

 

gi,i=G(fi,fi+1) 

gi,i+1=G((fi
ogi,i),(fi+1

ogi,i))=G((fi
oG(fi,fi+1)),(fi+1

oG(fi,fi+1))) 

gi,i+2=G((fi
ogi,i+1),(fi+2

ogi,i+1))=G((fi
o G((fi

oG(fi,fi+1)),(fi+1
oG(fi,fi+1)))),(fi+2

o G((fi
o 

…         G(fi,fi+1)),(fi+1
oG(fi,fi+1))))) 

gi,j=G((f1
ogi,j-1),(fj

ogi,j-1))  m<n 

gi,j+1=G((f0
ogi,j),(fj+1

ogi,j)) 

…  
 

 (fi
ogi,i)(t) Bi,i (fi

ogi,i)(t) 

 (fi
o(gi,i

ogi,i+1))(t) Bi,i+1 (fi+1
o(gi,i

ogi,i+1)) (t)

 (fi
o(gi,i

o(gi,i+1
o(gi,i+2)))(t) B i,i+2 (fi+2

o(gi,i
o(gi,i+1

ogi,i+2)))(t)

…  

 (fi
o(gi,i

o(gi,i+1
o(gi,i+2 … ogi,j) … )))(t) Bi,j ((fj+1

o(gi,i
o(gi,i+1

o(gi,i+2 … ogi,j) … )))(t) 
 

Put all together from g0,1 to gi,j in diagonal-symmetric ordering succession: 
 

g(i,j)=(g0,1
o(g0,2

o(g1,2
o(g0,3

o(g1,3
o(g2,3

o… 

(g0,j-1
o(g1,j-1

o(g2,j-1 … o(gj-2,j-1
o(g0,j

o(g1,j
o(g2,j … ogi,j) …))) …)))) … ))))))  

 

Observation 10: One can include recursion in calcules but this necessitates special prerequisites, it cannot 

just be added to a given calcule. Notice that simple synaptic recursion, however, is an essential part of 

metalanguage. 
 

i\j 0 1 2 3 4 5 6 7 8   0 1 2 3 4 5 6 7 8  

0  
g(0) g(1) g(3) g(6) g(10) g(15) g(21) g(28) …   g(0,1) g(0,2) g(0,3) g(0,4) g(0,5) g(0,6) g(0,7) g(0,8) … 

1   
g(2) g(4) g(7) g(11) g(16) g(22) g(29) …    g(1,2) g(1,3) g(1,4) g(1,5) g(1,6) g(1,7) g(1,8) … 

2    
g(5) g(8) g(12) g(17) g(23) g(30) …     g(2,3) g(2,4) g(2,5) g(2,6) g(2,7) g(2,8) … 

3     
g(9) g(13) g(18) g(24) g(31) …      g(3,4) g(3,5) g(3,6) g(3,7) g(3,8) … 

4      
g(14) g(19) g(25) g(32) …       g(4,5) g(4,6) g(4,7) g(4,8) … 

5       
g(20) g(26) g(33) …        g(5,6) g(5,7) g(5,8) … 

6        
g(27) g(34) …         g(6,7) g(6,8) … 

7         
g(35) …          g(7,8) … 

8          …           … 

 … … … … … … … … … …  … … … … … … … … … … 
g(n) g(i,j) 

 

n=((j(j+1))/2+i)=t(i,j) 

j=dscol(n)=aux(n) 

i=dsrow(n)=n-((aux(n)(aux(n)+1))/2) 

g(n)=g(dsrow(n),dscol(n))
 

g(n,t)=g(n)(t) 

g(t)=g(t)(t) 
 

(fi
og(i,j)(t) Bi,j ((fj+1

og(i,j)(t) 
  



version 1.0 Skolem 11 

9.  Skolem's Satz 1 ? 
 

There is still the problem that Bi,j cannot be expressed in object-language so that one can apply 

fi(g(t))fj(g(t)) or fi(g(t))fj(g(t)) or fj(g(t))fi(g(t)) for t(i,j)<t
 

t(i,j)<t  implying   fi(g(t))= fj(g(t))or fi(g(t))< fj(g(t)) or fj(g(t))< fi(g(t)) 
 

Using FUME-method one can write it down properly as sentence in ALPHApython as variant of 

sentence S-Skolem1 : 
 

    fi(t)        g(t)  B          i      j    t(i,j)          t 

112123

33111212  434CB

11141214B111124

    fi(g(t))     fj(g(t)) coding Bi,j
 

where the relation-constant CB is just a handy abbreviation. 
 

Observation 11: The adjection B with values 0 for equality, 1 for minority 

and 2 majority carries the blemish of unsure antisymmetry. Furthermore the construction of 1 

(Skolem's unary function g ) involves metalingual recursion within second-order logic and thus is not 

free of doubts either. Therefor Satz 1 properly expressed by S-Skolem1  cannot be considered to be 

proven. 
 

 

 

10.  Existence of non-standard models of arithmetic ? 
 

Observation 12: Suppose that Skolem's Satz 1 can be proven, then Satz 2 actually becomes a THEOREM 

. It can be translated as follows: The arithmetic functions that appear in the set M of true statements 

(which include multinomials) form set M . The functions that are constructed by application of Satz 1 

form set N* , they are ordered by an equivalence and a minority relation. They contain the set N of 

constant functions as a so-called initial part that corresponds one-to-one to the natural  numbers. If one 

assumes that set M only contains omnications 'for all … ') of junctive formulae (i.e. only disjunction, 

conjunction and negation of equalities, no quantors) the true statements of set M become true statements 

for the functions of N* . 
 

It will be a different story with Satz 3 and Satz 4 that extend Satz 2 to the complete set of M allowing for 

all kind of sentence strings. Besides Kleene's normal form it makes ample use of dot-dot-dot . The author 

has not looked into this any further and has not investigated if there is a way to justify Skolem's arguing 

in these sentence strings. It only pays if one knows that Skolem's Satz 1 is valid. Therefor Satz 4 cannot 

yet be considered to be proven.  
 

Non-standard models of arithmetic are in limbo as far as Skolem's work is concerned. 
 

However, there is a positive aspect of Skolem's paper. For certain examples of series f0(t) , f1(t) , f2(t) … 

one can actually construct the strictly ascending unary function g and the binary function t in such a way 

that Satz 1 is a THEOREM . The shortcoming is that one can add further true statements to the set of M 

with more functions such that they are not true for the examples. The author will put forward that in both 

cases the functions g and t can be constructed effectively. 
 

- Concrete calcule ALPHATHETA of Tho-arithmetics that fulfills Basiom strings B1 to B17 of 

 the Appendix but not Basiom B18 . In this case g is the identity function and t gives the start for 

 function-equality  and function-minority   
 

- Concrete calcule ALPHASIGMA of Sko-arithmetics that fulfills Basiom strings B1 to B18 of 

 the Appendix but not Basiom B19 . In this case g and t are based on a prime-number technique. 



version 1.0 Skolem 12 

Appendix  Basiom strings of concrete calcule ALPHA of arithmetic 
 

B1 1101      additivity right nullum

B2 121221    commutativity of addition

B3 123123123  associativity of addition

B4 121221    trunctractivity addition 

B5 1100      multiplicativity right nullum

B6 121221    commutativity of multiplication

B7 123123123  associativity of multiplication

B8 1231231323   distributivity right addition, multiplication 

B9 1231020121323 bi-injectivity multiplicat.

B10 111      non-self-reflectivity of minority

B11 121221    antisymmetry of minority 

B12 123122313  transitivity of minority 

B13 1011      minority nullum

B14 123121323  monotony addition minority

B15 123121323  monotony multiplication minority 

B16 12122112  discrety minority 

B17 121212021  additivity trunctraction minority

 2121     (implying bi-injectivity of addition)

B18 120200020    divity1)

 2011202

B19 1000110   biradicality2)
 

extra-relation-constant ::   ¦    ¦    ¦    to be expanded 

112131121121213 primity, limited by (prime number) 

112131213    primality (0 or 1 or prime)

1211011112    divisibility, limited by  

12231332    prime-potency (power of prime) 

 

B20 1010114414  prima-predecessity3)

5455150461611

44145455156460
 

B21 1010114144 prima-successity4)

0455415561611

41446455415560
 

B22 10110111414 prime-limity5)

040444044100
 

B23 1201221201  prime-maximality6)

10021023133213230
 

1)  divity means that one can decompose every positive natural number into a multiple of a nonvanishing divisor and a division 

     remainder that is less than the divisor; via bi-injectivity of addition and multiplication the decomposition is unique 
2)  biradicality means that there is an entire square-root such that the square of its successor is larger than the radicand 
3)  prima-predecessity means that every positive number is either a prima number or there exists uniquely a predecessive 

     prima number 

4)  prima-successity means that every number is either a prima number or there exists uniquely a successive prima number 
5)  prime-limity means that for every number greater 1 there exists the product of all smaller or equal prime numbers, 

     for numbers 0 and 1 take 1 as product 
6)  prime-maximality means that for prime divisors of a number exists a maximum power that divides the number; it is an 

     antecessor of the so-called 'fundamental theorem of arithmetic', but it lacks the multiple product. 


