
version 1.0 Skolem 1

Skolem Revisited
Thoralf's Achilles heel

Hannes Hutzelmeyer

Summary

The author has developed an approach to logics that comprises, but also goes beyond predicate logic.

The FUME method contains two tiers of precise languages: object-language Funcish and metalanguage

Mencish. It allows for a very wide application in mathematics from geometry, number theory, recursion

theory and axiomatic set theory with first-order logic, to higher-order logic theory of real numbers and

a precise analysis of foundation of mathematics in general, including theory of types.

A famous paper by Thoralf Skolem of 1934 is usually put at the beginning of publications on non-

standard arithmetic. A critical investigation shows that it has serious, if not even insurmountable

problems. Firstly one notices that it is based on second-order logic, it has unary and binary function-

variables, and binary operator-constants (that map two functions to a function). It seems strange that one

makes a fundamental statement about first-order logic systems using second order.

In proving Satz 1 on the asymptotic behavior of arithmetic functions Skolem has some inaccuracies and

formal errors. These minor problems can be solved by diligent work. But even if one has replaced his

metalingual use of his relation symbols Bi by an ontologically correct method there remains secondly

the problem of transitivity of the minority relation of functions that is neglected by Skolem.

Thirdly, in constructing the strictly ascending function g of Satz 1 use is made of recursion by a dot-

dot-dot notation. This is not an admissible procedure in object-language, although there may be a correct

way to solve the problem in metalanguage.

Therefore one does not only need second-order logic in combination with a precise object-language (in

order to avoid ontology problems) but also a precise use of metalanguage (in order to avoid dot-dot-dot)

for justifying Skolem's Satz 1 after one has eventually solved the transitivity problem; Skolem's Satz 2

would then be valid. However, as long as Satz 1 is not confirmed it does not pay to treat Satz 3 and Satz

4, leaving open the existence of non-standard models of arithmetic on the basis of Skolem's work.

Warning

The author has taken the liberty of changing the usual meaning of some expressions and to coin some new expressions.

He has tried to mark these appearances properly; if he has failed to do so in some places he asks for your understanding.

Your comments are welcome.

Copyright

All rights reserved. No reproduction of this publication may be made without written permission.

Any person who does any unauthorized act in relation to this publication may be liable to

criminal prosecution and civil claims for damages.

Contact: Hutzelmeyer@pai.de

https://www.pai.de

mailto:Hutzelmeyer@pai.de
https://pai.de/

version 1.0 Skolem 2

1. FUME-method object-language and metalanguage

It all started in the year of 1879 when Gottlieb Frege put forward his revolutionary 'Begriffsschrift'. Until

then the syllogism logic of Aristotle had been considered to be sufficient as the basis of logical reasoning

and therefore also of mathematics. Besides the usual logical characters quantors

and variables like e.g.1 or 13 were introduced together with the rules for omnition 1 ...and

entition 2 ... as well as relation-constant and function-constant strings that allowed for expressing

logic-sentences in a proper fashion. Freges notation differs from this modern form, but that is irrelevant.

The author has put forward a precise system of object-language and metalanguage that overcomes

certain difficulties of predicate logic and that can be extended to a full theory of types . In order to

describe an object-language one also needs a metalanguage. According to the author's principle

metalanguage has to be absolutely precise as well, normal English will not do. The FUME-method

contains at least three tiers of language:

Funcish object-language formalized precise

Mencish metalanguage formalized precise

English supralanguage common, mostly not precise

'Calcule' is the name given to a mathematical system with the precise language-metalanguage method

Funcish-Mencish . 'Calcule' is an expression coined by the author in order to avoid confusion. The word

'calculus' is conventionally used for real number mathematics and various logical systems. As a German

translation 'Kalkul' is proposed for 'calcule' versus conventional 'Kalkül' that usually is translated as

'calculus'.

A concrete calcule talks about a codex of concrete individuals (given as strings of characters) and

concrete functions and relations that can be realized by 'machines' (called calculators). An abstract

calcule talks about nothing. It only says: if some entities exist with such and such properties they also

have certain other properties. Essentially there are only 'if-then' statements. E.g. 'if there are entities that

obey the Euclid axioms the following sentence is true for these entities' .

Calcules with first-order logic FOL are called haplo-calcules , calcules with higher-order logic HOL for

a theory of types are called hypso-calcules. An abstract calcule is based on a finite count or on

enumerably many axioms as opposed to a concrete calcule whose foundation can be put into practice

by a machine. Axiom strings are certain sentence strings, they can also be provided with a metalingual

Axiom mater (rather than the usual 'scheme' or 'schema', as the expression scheme has a different

meaning in Mencish), that produce enumerably many Axiom strings.

In supralanguage English calcules are given names based on the Greek sort names. They are constructed

from the sort strings that appear in it, using the Latin names of the Greek letters of object language

Funcish. Concrete calcule sort strings have all-capital-letter or all-capital-letter-onset words, abstract

calcules have small-letter words. The first letter of the first sort name classifies a calcule according to

some convention rules.The sort string names are separated by blank and completely underlined. Higher-

order logic calcules are characterized by a final letter python1) separated by a blank. Python is also the

final character in relevant sort strings. Examples:

abstract calcules

. alpha with sort

concrete calcule

- ALPHA with sort

- ALPHApython with sort

1) Distinguish the Greek characters: capital pi , small pi and python (pronounce as in 'Monty Python') .

version 1.0 Skolem 3

The fonts-method allows to distinguish between object-language (Arial and Symbol, normal, e.g.

1), metalanguage (Arial and Symbol, boldface italics e.g.1 or Axiom) and supralanguage English

(Times New Roman).

For quoting Skolem and sometimes for better understanding mathematical expressions are written

conventionally in supralanguage English using italics (heuristically, not fully precise) e.g. :

- numbers 0 1 2 … constants a b … variables i j m n t x y … symbols + - / (,) = < > multiplication xy

- a series of unary functions f0 f1 f2 … with values at x denoted as f0(x) f1(x) f2(x) …

- the value of binary function f with values at x,y denoted as f(x,y)

- a binary operator B with value at unary functions f and g denoted as B(f,g)

 and its value at x denoted as B(f,g)(x) , composition of f and g denoted as (f g)(x)=f(g(x))

- the appearance of a variable e.g. t in an expression means 'for all t ' .

In supralanguage English metacalcules are given names that correspond uniquely to their object-

calcules: the Times New Roman fonts are chosen as boldface italic, otherwise they are the same.

Figure 1 Hierarchy of languages and codices for two example calcules

Metalanguage Mencish is chosen with perfect exactness, just as object-language Funcish. They both

have to meet the calculation criterion of truth: every step of reasoning must be such that it can be

checked by a calculating machine. Funcish and Mencish sentences and metasentences resp.are

understandable without context: 'wherefore by their words ye shall know them' (vs. Mathew 7.20).

On first sight Funcish and Mencish look familiar to what one knows from predicate-logic. However,

they are especially adapted to a degree of precision so that they can be used universally for all kind of

mathematics. And they lend themselves immediately to a treatment by computers, as they have perfect

syntax and semantics. It is not the place to go into details. Both Funcish and Mencish have essentially

the same syntax. Notice that Funcish has a context-independent notation, which implies that one can

determine the category of every object uniquely from its syntax. The reader may be puzzled by some

expressions that are either newly coined by the author or used slightly different from convention. This

is done in good faith; the reason for the so-called Bavarian notation is to avoid ambiguities.

The essential parts of a language are its sentences. A sentence is a string of characters of a given

alphabet that fulfills certain syntactical and semantical rules. This means that metalanguage talks about

the strings of the object-language. The essential parts of the metalanguage are the metasentences (that

are strings of characters as well, just in boldface italics). In supralanguage one talks about the

metasentences, just as metalanguage talks about object-language. Here it is not discussed in general what

an object-language talks about .

English

abstract calcule alpha

metacalcule alpha

concrete calcule ALPHA

metacalcule ALPHA

codex ALPHA

supra

meta

object

infra

Mencish

Funcish

talks about

nothing

version 1.0 Skolem 4

2. Concrete hypso-calcule ALPHApython of Monty-arithmetic with second-order logic

In 1934 Thoralf Skolem put forward his famous paper1) that shows how to construct non-standard models

of arithmetic. Skolem's shortcoming is his use of second-order logic. In the world of denumerability

second-order logic has no rightful place! Can one remove this bond ? The language system of the FUME-

method is a theory of types and therefore capable of expressing higher-order logic precisely. So the first

thing to do is to to express Skolem's theorems Satz 1 , Satz 2 , Satz 3 and Satz 4 in proper language.

For further discussion one has to take refuge to examples . Although Skolem uses second-order logic,

he only regards entities that are at most denumerable. It will be investigated to what extent this justifies

Skolem's reasoning. Here we do not use the full machinery of Mencish by whose application everything

can be done with absolute preciseness. We just write down the Basiom strings in the Appendix , that are

basic true sentence strings (that are obtained by observing the defining aponom strings - not treated

here) and correspond to Axiom strings of abstract calcules.

The concrete calcule ALPHA of arithmetic of naturals can be set up properly, here just its ontological

basis is sketched. It is a haplo-calcule as it has first-order logic.

sort ::

individual :: natural :: 0 ¦ 1 ¦ 2 … nullum, unus, duo, …

individual-constant :: n ¦ u ¦ b …

basis-function-constant :: ¦ ¦ addition, multiplication

 trunctraction (truncated subtraction)

basis-relation-constant :: minority

extra-function-constant :: ¦ succession, predecssion

extra-relation-constant :: equal-minority

Starting from haplo-calcule ALPHA of arithmetic of naturals the concrete hypso-calcule

ALPHApython2) of Monty-arithmetic of naturals is introduced. It will be the system for a reconstruction

of Skolem's ideas in a precise fashion.

ontological basis is

sort ::

sort-array :: ¦ ; ¦ ;; … unary, binary, ternary, …

type :: ¦ … property, binary relation, …

 ¦ ¦ unary function, binary function, …

 binary unary-function-predicate

basis-function-constant :: ¦ ¦ addition, multiplication

 trunctraction

basis-relation-constant :: minority

extra-function-constant :: ¦ succession, predecession

extra-relation-constant :: equal-minority

There are two ways to look at unary arithmetic functions. With second-order logic a unary function is

anything formally introduced such that it produces a unique output value for an input value (one can say

'for all functions' and 'there exist a function' . With first-order logic the best one can do is to have a binary

function-constant and treat the first argument as a parameter so that one can say 'for all functions of a

series' .

1) Skolem, Thoralf "Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler

 Aussagen mit ausschliesslich Zahlenvariablen" Fundamenta Mathematicae T. XXIII (1934) p. 150-161
2) pronounce as in Monty Python

version 1.0 Skolem 5

3. Skolem's Satz 1 in precise language

Skolem's Satz 1 is translated as follows: For a binary arithmetic function1) f(x,y) (Skolem calls it a series2)

f0(t) , f1(t) , f2(t) …) there is a strictly ascending function1) g(y) and a binary arithmetic function1) t(x,y)

such that for any pair of first arguments x=a for x=b it holds that the two unary functions of y i.e. f(a,g(y))

and f(b,g(y)) are either equal or minor or major to each other for all y greater than t(a,b) .

Observation 1: Skolem does not specify what he considers to be an arithmetic function. It is trivial that

the three possibilities are mutually exclusive. It is not stated that there is only one functions g , different

functions g may lead to different ordering of functions of the series. For a chosen unary function g there

is one binary t that gives the lowest limit, all binary s with greater values t(x,y)< s(x,y)would do as well.

It reads as sentence in ALPHApython , with series written as 10 , 11 , 12 …

S-Skolem111

12121112212

3212311131213

3212311131213

3212312131113

What kind of animals are 1 so that one can call one of them G? Can it be contained in

1 by a special g ? What kind of animals are 2 so that one can call the

smallest T? Can it be constructed from 1 . Skolem starts with auxiliary sentence :

4. Auxiliary sentence for function pair comparison

For two unary arithmetic functions a and b there is a strictly ascending function g such that along g(t)

the composed functions (aog) and (bog) with values a(g(t)) and b(g(t)) are equal B:=, minor B:< or

major B: > to each other: a(g(t)) B b(g(t)) 3) ; the binary operator composition is written as

a(g(t))=(aog)(t) . Actually it is meant that there is a binary operator G that maps two functions a and b

to function g , i.e. g=G(a,b) and thus g(t)=G(a,b)(t) . Notice that B is a strange metalingual animal that

has yet to be translated into a proper form so that one can use it in proper language.

S-Skolem1a12

312123132

11312311131231

1231131

Observation 2: What kind of animal is 3 and how do you construct it ? Three cases can be

defined by three binary unary-function-predicates (that include unlimited enticles 2). The infinity

condition in connection with 2 cannot be answered in general without having further information

on 1and 2, a problem not considered by Skolem.

12EQG12

 12121222

12MIG12

 12121222

12MAG12

 12122212

1) usual sloppy conventional notation, the name of the function is f and its values at x and y are f(x,y)
2) Skolem starts with index 1

3) in conventional notation the appearance of a variable t in an expression means 'for all t ' (in proper notation with)

version 1.0 Skolem 6

Skolem then has added the auxiliary sentence S-Skolem1a , but is it really a THEOREM ?

Observation 3: The three cases can be mutually exclusive but they are are not always mutually

exclusive as the example in classical notation shows where e(x) denotes the entirition function for

rounding-down

take for 1 function x-3e(x/3) 0 1 2 0 1 2 …

and for 2 function 2-(x-3e(x/3)) 2 1 0 2 1 0 …

Three choices of strictly ascending 3 allow for all of the three possibilities:

MIG 3x 0 3 6 9 12 15 … minority-infinition

EQG 3x+1 1 4 7 10 13 16 … equality-infinition

MAG 3x+2 2 5 8 11 14 17 … majority-infinition

Determine 3 recursively as 0 for any of the three choices, say equality-infinity. It is

always defined as it is put to 0 if the predicate is not met.

120EQG121010

EQG1211121

2122212001

120121222

3013132323012

Minority-infinity MIGand

majority-infinity MAGare defined accordingly.

Observation 4: This is a formulo with input 1 and 2 for output 0. But how do

you prove that it is a UNEX-binary-formulo that gives rise to an operator adjection

EQG ? Similarily for adjections MIG and

MAG . Notice that the adjections produce the zero-function if the conditions

are not fulfilled and therefor not ascending. The simple test is e.g. EQG1210

Observation 5: One needs an algorithm for the unique definition of 3. Firstly define a simple

ternary relation comparity CB as a mere junctive abbreviation

CB123

301231121321

Comparing adjection B1210 or 1 or 2

Secondly define operator adjections comparison-selection G (Skolem's

g(t)) and comparison-codification B (for Skolem's B) that also take care of

the case that there can be more than one possibility of equality, minority and majority. A first choice

would be: prefer firstly equality and secondly minority:

121

EQG1210

G121EQG121

B1210

EQG1210MIG1210

G121MIG121

B1211

EQG1210MIG1210

G121MAG121

B1212

version 1.0 Skolem 7

5. Problems for the auxilary function

Now there is a uniquely defined function, but there might result problems furtherdown, if one uses this

algorithm.

Observation 6: On the way to an ordering of functions that are supposed to constitue non-standard

arithmetics it is aimed for some kind of equality and minority of two functions. It is based on a

comparison-selection and usual equality and minority of the two functions along this line. With the

above method it is not guaranteed that the choice of comparison-code is such that the relation is

antisymmetric. One can circumnavigate the problem if one defines minority or majority only with

respect to i and j where i<j and adds the reflected case by negation.

i\j 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 0 1 3 6 10 15 21 28 … 0 1 1 0 4 3 2 2 6 …

1 2 4 7 11 16 22 29 … 2 0 1 2 1 1 5 2 1 …

2 5 8 12 17 23 30 … 2 2 0 1 6 5 4 3 2 …

3 9 13 18 24 31 … 0 1 2 0 2 1 2 2 6 …

4 14 19 25 32 … 3 2 6 1 0 6 0 5 5 …

5 20 26 33 … 4 2 5 2 6 0 2 1 3 …

6 27 34 … 1 5 3 1 0 1 0 0 6 …

7 35 … 1 1 4 1 5 2 0 0 5 …

8 … 6 2 1 6 5 4 6 5 0 …

 … … … … … … … … … … … … … … … … … … … …
succession of pairs ij , example 3,7

reflect for antisymmetry to to to

distribution of code possibilities

0 for 1 for 2 for 3 for 4 for 5 for 6 for

 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 … 0 1 1 0 2 1 2 2 1 …

1 … 0 1 2 1 1 1 2 1 …

2 … 0 1 1 1 0 2 1 …

3 … 0 2 1 2 2 1 …

4 … 2 0 0 0 1 2 …

5 … 0 2 1 0 …

6 … 0 0 1 …

7 … 1 2 0 2 …

8 … 0 …

 … … … … … … … … … … … … … … … … … … … …
distribution of cases

however: 14 and 47 but 17

 comparison-codification b(i,j)

0 for 1 for 2 for

Observation 7: Furthermore: with the above method it is not yet proven that the choice of comparison-

code is such that the relation is transitive. One has yet to show that there is an algorithm for choosing

the code for ambiguous cases so that transitivity is guaranteed!

One can rewrite S-Skolem1a with G12 for the desired 3 as

S-Skolem1aa 121212

G121G122

3CB 1G123 B123

 2G123

where G123 is Skolem's G(a,b)(t) depending on two functions a and b with

values a(t) and b(t) resp. and a chosen B according to preference algorithm, that is now properly

expressed by B123

version 1.0 Skolem 8

6. Auxiliary theorem of pair ordering

Skolem then adds another sentence that is actually a THEOREM , but still one has to improve his choice.

The pairs (i,j) of numbers can be arranged as a series by antidiagonal pair-coding

adpair(i,j)=i+((i+j)(i+j+1))/2 . The reverse functions adrow and adcol are expressed with auxiliary-

root function aux(n)=e(((e(2rt(8n+1)-1)/2) by means of adrow(n)=e(n-(aux(n)(aux(n)+1))/2) and

adcol(n)=e(((aux(n)+1)(aux(n)+2))/2-(n+1)) using entirition e(x) .

S-Skolem1b12000111212

determines antidiagonal-pair functionPAI or Cantor pairing function and the inverses for

row and column ADROW and ADCOL resp. using AUX

1081400400 AUX

40040081

10281422422 for ADROW

42242281002211

10281422422 for ADCOL

4224228122201

Actually it would be better to denumerate only the pairs (i,j) of numbers with i<=j , as the denumeration

of pairs will only be applied to pairs where the diagonal-symmetric pairs are either equal or anti-

symmetric with pair coding dspair(i,j)=i+(j/(j+1))/2 and the reverses with

j=dscol(n)=aux(n) and i=dsrow(n)=n-((aux(n)(aux(n)+1))/2)

S-Skolem1c1021000021

DSCOLDSAUX

1102120DSAUX1DSAUX1 for DSROW

Skolem does not treat the problem if the above formulo strings are UNEX- which is necessary for

introducing the corresponding functions by implicit definition.

1UNEX-unary-norm-formulo1

unary-norm-formulo12variable212

TRUTH101210220

Implicit definition is justified in second-order logic by second-order Axiom

1UNEX-unary-norm-formulo1

TRUTH1101110

210121011121

Observation 8: This means that one has to make sure that ALPHApython is strong enough to prove that

the three formulo strings are UNEX . This should be the least problem, Skolem just has not realized that

there might be a problem.

version 1.0 Skolem 9

7. Ontological problem and metalingual detours

Returning to Skolem's proof for S-Skolem1 one has to apply S-Skolem1aa to 10 ,

11 , 12 , … as Skolem's f0(t) , f1(t) , f2(t) …

a(g(t)) B b(g(t)) hence a(G(a ,b)(t)) B(a,b) b(G(a,b)(t))

f0(G(f0, f1)(t)) B(f0, f1) f1(G(f0, f1)(t)) hence (f0
oG(f0, f1))(t) B0,1 (f1

oG(f0, f1))(t)

If one translates from conventional language into Funcish using the FUME -method one has a the first

step for g=G(f0, f1)

G10G1011111G10111

One gets a series of series of sentence strings. For better understanding it is done in conventional

language.

Observation 9: However, notice that the animals Bi,j (one of the characters = < >) are not properly

expressible in object-language! Notice furthermore that dot-dot-dot is not proper object-language

either! Be it first-order or higher-order logic.

The first problem cannot be avoided in conventional language. Only with proper FUME and using

ternary comparity CB and comparison-codification B one can

express it properly. The second problem necessitates a detour to metalanguage, as one has no recursion

in calcule ALPHApython but only in metacalcule ALPHApython .

8. Conventional reconstruction of Skolem's construction

On page 152 and 153 of Skolem's paper there are inaccuracies and even misleading uses of the same

expressions for different entities. This is corrected for in the following four tables. The problem dot-dot-

dot like in (c0
oc1

oc2
o … cn-1

ocn is ignored - recursion of composition is not admissible in object-

language. The Bi,j problem as described in the preceding section is not resolved either.

g0,0=G(f0,f1)

g0,1=G((f0
og0,0),(f1

og0,0))=G((f0
oG(f0,f1)),(f1

oG(f0,f1)))

g0,2=G((f0
og0,1),(f2

og0,1))=G((f0
oG((f0

oG(f0,f1)),(f1
oG(f0,f1))))),(f2

oG((f0
oG(f0,f1)),(f1

oG(f0,f1))))))

…

g0,j=G((f0
og0,j-1),(fj

og0,j-1))

g0,j+1=G((f0
og0,j),(fj+1

og0,j))

…

 (f0
og0,0)(t) B0,0 (f1

og0,0)(t)

 (f0
o(g0,0

og0,1))(t) B0,1 (f1
o(g0,0

og0,1))(t)

 (f0
o(g0,0

o(g0,1
og0,2)))(t) B0,2 (f2

o(g0,0
o(g0,1

og0,2)))(t)

…

 (f0
o(g0,0

o(g0,1
o(g0,2 … og0,j) …)))(t) B0,j (fj

o(g0,0
o(g0,1

o(g0,2 … og0,j) …)))(t)

g1,1=G(f1,f2)

g1,2=G((f1
og1,1),(f2

og1,1))=G((f1
oG(f1,f2)),(f2

oG(f1,f2)))

g1,3=G((f1
og1,2),(f3

og1,2))=G((f1
oG((f1

oG(f1,f2)),(f2
oG(f1,f2))))),(f3

oG((f1
oG(f1,f2)),(f2

oG(f1,f2))))))

…

g1,j=G((f1
og1,j-1),(fj

og1,j-1)) 1<n

g1,j+1=G((f0
og1,j),(fj+1

og1,j))

…

version 1.0 Skolem 10

 (f1
og1,1)(t) B1,1 (f1

og1,1)(t)

 (f1
o(g1,1

og1,2))(t) B1,2 (f2
o(g1,1

og1,2))(t)

 (f1
o(g1,1

o(g1,2
og1,3)))(t) B1,3 (f3

o(g1,1
o(g1,2

og1,3)))(t)

…

 (f1
o(g1,1

o(g1,2
o(g1,3 … og1,j) …)))(t) B1,j (fj

o(g1,1
o(g1,2

o(g1,3 … og1,j) …)))(t)

gi,i=G(fi,fi+1)

gi,i+1=G((fi
ogi,i),(fi+1

ogi,i))=G((fi
oG(fi,fi+1)),(fi+1

oG(fi,fi+1)))

gi,i+2=G((fi
ogi,i+1),(fi+2

ogi,i+1))=G((fi
o G((fi

oG(fi,fi+1)),(fi+1
oG(fi,fi+1)))),(fi+2

o G((fi
o

… G(fi,fi+1)),(fi+1
oG(fi,fi+1)))))

gi,j=G((f1
ogi,j-1),(fj

ogi,j-1)) m<n

gi,j+1=G((f0
ogi,j),(fj+1

ogi,j))

…

 (fi
ogi,i)(t) Bi,i (fi

ogi,i)(t)

 (fi
o(gi,i

ogi,i+1))(t) Bi,i+1 (fi+1
o(gi,i

ogi,i+1)) (t)

 (fi
o(gi,i

o(gi,i+1
o(gi,i+2)))(t) B i,i+2 (fi+2

o(gi,i
o(gi,i+1

ogi,i+2)))(t)

…

 (fi
o(gi,i

o(gi,i+1
o(gi,i+2 … ogi,j) …)))(t) Bi,j ((fj+1

o(gi,i
o(gi,i+1

o(gi,i+2 … ogi,j) …)))(t)

Put all together from g0,1 to gi,j in diagonal-symmetric ordering succession:

g(i,j)=(g0,1
o(g0,2

o(g1,2
o(g0,3

o(g1,3
o(g2,3

o…

(g0,j-1
o(g1,j-1

o(g2,j-1 … o(gj-2,j-1
o(g0,j

o(g1,j
o(g2,j … ogi,j) …))) …)))) …))))))

Observation 10: One can include recursion in calcules but this necessitates special prerequisites, it cannot

just be added to a given calcule. Notice that simple synaptic recursion, however, is an essential part of

metalanguage.

i\j 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0
g(0) g(1) g(3) g(6) g(10) g(15) g(21) g(28) … g(0,1) g(0,2) g(0,3) g(0,4) g(0,5) g(0,6) g(0,7) g(0,8) …

1
g(2) g(4) g(7) g(11) g(16) g(22) g(29) … g(1,2) g(1,3) g(1,4) g(1,5) g(1,6) g(1,7) g(1,8) …

2
g(5) g(8) g(12) g(17) g(23) g(30) … g(2,3) g(2,4) g(2,5) g(2,6) g(2,7) g(2,8) …

3
g(9) g(13) g(18) g(24) g(31) … g(3,4) g(3,5) g(3,6) g(3,7) g(3,8) …

4
g(14) g(19) g(25) g(32) … g(4,5) g(4,6) g(4,7) g(4,8) …

5
g(20) g(26) g(33) … g(5,6) g(5,7) g(5,8) …

6
g(27) g(34) … g(6,7) g(6,8) …

7
g(35) … g(7,8) …

8 … …

 … … … … … … … … … … … … … … … … … … … …
g(n) g(i,j)

n=((j(j+1))/2+i)=t(i,j)

j=dscol(n)=aux(n)

i=dsrow(n)=n-((aux(n)(aux(n)+1))/2)

g(n)=g(dsrow(n),dscol(n))

g(n,t)=g(n)(t)

g(t)=g(t)(t)

(fi
og(i,j)(t) Bi,j ((fj+1

og(i,j)(t)

version 1.0 Skolem 11

9. Skolem's Satz 1 ?

There is still the problem that Bi,j cannot be expressed in object-language so that one can apply

fi(g(t))fj(g(t)) or fi(g(t))fj(g(t)) or fj(g(t))fi(g(t)) for t(i,j)<t

t(i,j)<t implying fi(g(t))= fj(g(t))or fi(g(t))< fj(g(t)) or fj(g(t))< fi(g(t))

Using FUME-method one can write it down properly as sentence in ALPHApython as variant of

sentence S-Skolem1 :

 fi(t) g(t) B i j t(i,j) t

112123

33111212 434CB

11141214B111124

 fi(g(t)) fj(g(t)) coding Bi,j

where the relation-constant CB is just a handy abbreviation.

Observation 11: The adjection B with values 0 for equality, 1 for minority

and 2 majority carries the blemish of unsure antisymmetry. Furthermore the construction of 1

(Skolem's unary function g) involves metalingual recursion within second-order logic and thus is not

free of doubts either. Therefor Satz 1 properly expressed by S-Skolem1 cannot be considered to be

proven.

10. Existence of non-standard models of arithmetic ?

Observation 12: Suppose that Skolem's Satz 1 can be proven, then Satz 2 actually becomes a THEOREM

. It can be translated as follows: The arithmetic functions that appear in the set M of true statements

(which include multinomials) form set M . The functions that are constructed by application of Satz 1

form set N* , they are ordered by an equivalence and a minority relation. They contain the set N of

constant functions as a so-called initial part that corresponds one-to-one to the natural numbers. If one

assumes that set M only contains omnications 'for all … ') of junctive formulae (i.e. only disjunction,

conjunction and negation of equalities, no quantors) the true statements of set M become true statements

for the functions of N* .

It will be a different story with Satz 3 and Satz 4 that extend Satz 2 to the complete set of M allowing for

all kind of sentence strings. Besides Kleene's normal form it makes ample use of dot-dot-dot . The author

has not looked into this any further and has not investigated if there is a way to justify Skolem's arguing

in these sentence strings. It only pays if one knows that Skolem's Satz 1 is valid. Therefor Satz 4 cannot

yet be considered to be proven.

Non-standard models of arithmetic are in limbo as far as Skolem's work is concerned.

However, there is a positive aspect of Skolem's paper. For certain examples of series f0(t) , f1(t) , f2(t) …

one can actually construct the strictly ascending unary function g and the binary function t in such a way

that Satz 1 is a THEOREM . The shortcoming is that one can add further true statements to the set of M

with more functions such that they are not true for the examples. The author will put forward that in both

cases the functions g and t can be constructed effectively.

- Concrete calcule ALPHATHETA of Tho-arithmetics that fulfills Basiom strings B1 to B17 of

 the Appendix but not Basiom B18 . In this case g is the identity function and t gives the start for

 function-equality and function-minority

- Concrete calcule ALPHASIGMA of Sko-arithmetics that fulfills Basiom strings B1 to B18 of

 the Appendix but not Basiom B19 . In this case g and t are based on a prime-number technique.

version 1.0 Skolem 12

Appendix Basiom strings of concrete calcule ALPHA of arithmetic

B1 1101 additivity right nullum

B2 121221 commutativity of addition

B3 123123123 associativity of addition

B4 121221 trunctractivity addition

B5 1100 multiplicativity right nullum

B6 121221 commutativity of multiplication

B7 123123123 associativity of multiplication

B8 1231231323 distributivity right addition, multiplication

B9 1231020121323 bi-injectivity multiplicat.

B10 111 non-self-reflectivity of minority

B11 121221 antisymmetry of minority

B12 123122313 transitivity of minority

B13 1011 minority nullum

B14 123121323 monotony addition minority

B15 123121323 monotony multiplication minority

B16 12122112 discrety minority

B17 121212021 additivity trunctraction minority

 2121 (implying bi-injectivity of addition)

B18 120200020 divity1)

 2011202

B19 1000110 biradicality2)

extra-relation-constant :: ¦ ¦ ¦ to be expanded

112131121121213 primity, limited by (prime number)

112131213 primality (0 or 1 or prime)

1211011112 divisibility, limited by

12231332 prime-potency (power of prime)

B20 1010114414 prima-predecessity3)

5455150461611

44145455156460

B21 1010114144 prima-successity4)

0455415561611

41446455415560

B22 10110111414 prime-limity5)

040444044100

B23 1201221201 prime-maximality6)

10021023133213230

1) divity means that one can decompose every positive natural number into a multiple of a nonvanishing divisor and a division

 remainder that is less than the divisor; via bi-injectivity of addition and multiplication the decomposition is unique
2) biradicality means that there is an entire square-root such that the square of its successor is larger than the radicand
3) prima-predecessity means that every positive number is either a prima number or there exists uniquely a predecessive

 prima number

4) prima-successity means that every number is either a prima number or there exists uniquely a successive prima number
5) prime-limity means that for every number greater 1 there exists the product of all smaller or equal prime numbers,

 for numbers 0 and 1 take 1 as product
6) prime-maximality means that for prime divisors of a number exists a maximum power that divides the number; it is an

 antecessor of the so-called 'fundamental theorem of arithmetic', but it lacks the multiple product.

