STRUCTURES AND PROPERTIES OF INTEGER SEQUENCES GENERATED

FROM

PRIME AND NONPRIME NUMBERS SEEDS

June 07, 2020

Author (independant) : Claude, H. R. Dequatre
E-mail : cdprimes73@yahoo.com

Abstract

: A specific recursive algorithm and three fomulas have been used to generate integer sequences from prime and nonprime numbers seeds. After a few generations, some growing structures have been identified in these integer sequences, whereas such structures were absent when a subset of natural numbers was used as an alternative seed. The sum of the reciprocals of primes of these integer sequences, well fitted by models of the form $a^{*} \ln (\ln (n))+b$, were calculated. Their distances to that of the harmonic series summed only over the primes were estimated and compared to the Meissel-Mertens constant. Finally, the algorithm used with one of the three formulas led after a few iterations to the production of long primefree sequences containing large numbers and allowed to establish a so called primefree sequences conjecture.

Key Words: prime and nonprime numbers seeds, stepwise-algorithm and formulas, integer sequences structures, sum of the reciprocals of primes, $a^{*} \ln (\ln (\mathrm{n}))+\mathrm{b}$ models, primefree sequences conjecture.

1- IT Tools and VBA program: - PC: AMD (tm) XP 2800+
2.08 GHz . RAM: 1.00Go. - software: Windows and Excel 2010. - a VBA program has been developed for sequence calculation.

2- Recursive algorithm and formulas:

2-1 Recursive algorithm:

Note: a complete list of abbreviations is given in annex $n^{\circ} 1$.

The algorithm starts with a subset of the prime numbers set containing the first 1000 primes ($2,3,5,7,11,13,17 \ldots 7919$) used as a seed referenced $S_{0 P}$ to produce with a formula a first sequence S_{1} which is then used as a new seed to produce with the same formula the next sequence S_{2} and so one...A larger subset of the prime numbers set containing the 20000 first primes (2, 3, 5, 7, 11, 13, 17...224737) has also been used as a seed referenced $\mathrm{S}_{0 \text { PL }}$.
A subset of the first 1000 nonprime positive integers (4, 6, 8, 9, 10... 1197) and a subset of the first 1000 natural numbers (1 to 1000) have been used too as alternative seeds to the seed $\mathrm{S}_{0 \mathrm{P}}$. They are repectively named $\mathrm{S}_{0 \mathrm{NP}}$ and $S_{0 N}$. Each sequence is composed of a prime numbers subsequence containing all primes of the sequence and a nonprime numbers subsequence containing all nonprime numbers of the sequence. (e.g: the sequence S_{1} is composed of the prime numbers subsequence referenced $S_{1 p}$ and the nonprime numbers subsequence referenced $S_{1 n p}$.

2-2 Formulas:

Formula $n^{\circ} 1$

The seed $\mathrm{S}_{0 \mathrm{P}}$ or $\mathrm{S}_{0 \mathrm{NP}}$ or $\mathrm{S}_{0 \mathrm{~N}}$ has been filed in the first column of a 1000 rows and 21 columns matrix. Then, 20 sequences S_{1} to S_{20}, filed in columns 2 to 21 of the matix, were calculated with the formula:
$\mathrm{t}_{\mathrm{i}+1+\mathrm{j}, \mathrm{j}+2}=\mathrm{t}_{\mathrm{i}+1+\mathrm{j}, \mathrm{j}+1}+\mathrm{t}_{\mathrm{i}+2+\mathrm{j}, \mathrm{j}+1} \mathrm{t}_{\mathrm{i}+\mathrm{j}, \mathrm{j}+1}$ (formula $n^{\circ} 1$)
i varying from 1 to $998-2 * \mathrm{j}$ and j from 0 to 19 .
The term on the left side of the equal sign of the formula belongs to the sequence S_{1} produced from the seed $S_{0 P}$ or to one of the sequence S_{2} to S_{20} produced from the one which precedes $i t$, this last being used as a seed.

The terms on the right side belong to the seed $S_{0 P}$ or to a sequence S_{1} to S_{19} used as a seed to produce the next sequence.

Note: as formula $n^{\circ} 1$ leads to a loss of two terms between the seed and the first sequence and between a given sequence and the next one, the i and j ranges and the term indexes in the formula have to be set accordingly.

Formula $\mathrm{n}^{\circ} 2$

The same recursive algorithm was used with the seed $\mathrm{S}_{0 \mathrm{P}}$ and the formula $n^{\circ} 2$ below to produce a total of 13 sequences referenced S_{1} to S_{13}.
$\mathrm{t}_{\mathrm{i}+2+2 * \mathrm{j}, \mathrm{j}+2}=\mathrm{t}_{(\mathrm{i}+2+* 2 \mathrm{j}, \mathrm{j}+1)}+\mathrm{t}_{(\mathrm{i}+3+2 * \mathrm{j}, \mathrm{j}+1)}+\mathrm{t}_{(\mathrm{i}+4+2 *, \mathrm{j}+1)-} \mathrm{t}_{(\mathrm{i}+1+2 * \mathrm{j}, \mathrm{j}+1)-}$ $\mathrm{t}_{(\mathrm{i}+2 * \mathrm{j}, \mathrm{j}+1)} \quad$ (formula $n^{\circ} 2$)
with $\mathrm{i}=1$ to $996-4^{*} \mathrm{j}$ and $\mathrm{j}=0$ to 12
Again, the first sequence S_{1} has been produced from the seed $S_{0 P}$ and the S_{2} sequence from S_{1} and so on...

Formula $n^{\circ} 3$
The same recursive algorithm, again with the seed $\mathrm{S}_{0 \mathrm{P}}$, was used with the formula $n^{\circ} 3$ below to produce a total of 17 sequences referenced S_{1} to S_{17}.
As before, $S_{0 P}$ has been used to produce S_{1} and S_{1} to produce S_{2} and so on...
$\mathrm{t}_{(\mathrm{i}+2+2 * \mathrm{j}, \mathrm{j}+2)}=\mathrm{t}_{(\mathrm{i}+2+2 * \mathrm{j}, \mathrm{j}+1)}+\mathrm{t}_{(\mathrm{i}+3+2 * \mathrm{j}, \mathrm{j}+1)}-\mathrm{t}_{(\mathrm{i}+1+2 * \mathrm{j}, \mathrm{j}+1)-} \mathrm{t}_{(\mathrm{i}+2 * \mathrm{j}, \mathrm{j}+1)}$ (formula $n^{\circ}: 3$)
with $\mathrm{i}=1$ to $997-3 * \mathrm{j}$ and $\mathrm{j}=0$ to 16

3- Results :
3-1 Sequences produced from the prime numbers subset $S_{0 P}$ and formula $\mathrm{n}^{\circ} 1$:

3-1-1 Basic statistics:

The first 10 terms of the seed $S_{0 P}$ and those of the sequences S_{1} to S_{10} are given in table $\mathrm{n}^{\circ} 1$.

- Whereas the sequences S_{1} to S_{5} contain only positive integers, sequences S_{6} to S_{20} contain both positive and negative integers.

So, the nonprime subsequences $S_{\text {6np }}$ to $S_{20 n p}$ contain both positive and negative integers.

- Figure $\mathrm{n}^{\circ} 1$ shows the number of terms of the seed S_{OP} and those of the sequences S_{1} to S_{20}, a loss of two terms between the seed and S_{1} and between a sequence and the next one being induced by the formula.
- Figure $\mathrm{n}^{\circ} 2$ shows that the number of primes in the sequences decreases from S_{1} to S_{20}.
- Figure $\mathrm{n}^{\circ} 3$ shows that the percentage of primes in the sequences decreases from S_{1} to S_{20}.
- Figure $\mathrm{n}^{\circ} 4$ shows that the median of primes is rougthly constant from prime numbers subsequences $S_{1 p}$ to $S_{8 p}$ but increases from $\mathrm{S}_{9 \mathrm{p}}$ to $\mathrm{S}_{20 \mathrm{p}}$.
- Figure $\mathrm{n}^{\circ} 5$ shows that the minimum prime number value is roughtly constant from $S_{1 p}$ to $S_{11 p}$ but increases from $S_{12 p}$ to $S_{20 p}$. and that the maximum prime number value is roughtly constant from $S_{1 p}$ to $S_{8 p}$ but increases from $S_{9 p}$ to $S_{20 p}$.
- Figure $n^{\circ} 6$ shows that the range of prime number values is roughtly constant from $\mathrm{S}_{1 \mathrm{p}}$ to $\mathrm{S}_{8 \mathrm{p}}$ but increases from $\mathrm{S}_{9 \mathrm{p}}$ to $\mathrm{S}_{20 \mathrm{p}}$.

Note: independently of this work, it has been found that the prime subsequence $S_{I p}$ of the sequence S_{l} was filled in The On-Line Encyclopedia of Integer Sequences, published electronically at: https://oeis.org/A175873 (1). The first 20 terms of this sequence are: 13, 17, 19, 23, 37, 47, $67,89,103,107,109,113,131,151,173,193,199,233,239,269 \ldots$

3-1-2 Sequence structures:

Figures $\mathrm{n}^{\circ} 7$ to $\mathrm{n}^{\circ} 27$ show the seed $\mathrm{S}_{0 \mathrm{p}}$ and the 20 prime numbers subsequences $\mathrm{S}_{1 \mathrm{p}}$ to $\mathrm{S}_{20 \mathrm{p}}$.
Whereas figure $\mathrm{n}^{\circ} 7$ does not reveal any particular structure in the prime numbers seed $\mathrm{S}_{0 \mathrm{p}}$, a more and more visible one appears in the prime numbers subsequences $S_{1 p}$ to $S_{6 p}$ and two distinct prime number size distributions are clearly present in $\mathrm{S}_{7 \mathrm{p}}$ to $\mathrm{S}_{20 \mathrm{p}}$ prime numbers subsequences.
Then, it has been checked if these indentified patterns were specific or not of the generated prime subsequences. Figures $n^{\circ} 28$ to $n^{\circ} 35$ show
that these structures also exist in the nonprime subsequences $S_{6 n p}, S_{13 n p}$ and $\mathrm{S}_{20 \mathrm{np}}$ and in the corresponding sequences $\mathrm{S}_{6}, \mathrm{~S}_{13}$ and S_{20}.
So, the prime numbers subset ($2,3,5,7,11,13,17 \ldots 7919$) generates through formula $\mathrm{n}^{\circ} 1$ structures in integer sequences and also in both prime and nonprime subsequences of them.

3-2 Sequences produced from the nonprime numbers subset $\mathrm{S}_{0 \mathrm{NP}}$ and formula ${ }^{\circ} 1$:

3-2-1 Basic statistics :

The first 10 terms of the seed $S_{0 N P}$ and those of the sequences S_{1} to S_{10} are given in table $\mathrm{n}^{\circ} 2$.

- It can be noticed that some duplicates are produced such as 11 and 17 in sequence S_{1}.
- Whereas the sequences S_{1} to S_{5} contain only positive integers, sequences S_{6} to S_{20} contain both positive and negative integers. So, the nonprime subsequences $S_{6 n p}$ to $S_{20 n p}$ contain both positive and negative integers.
- Figure $n^{\circ} 36$ shows that the number of primes in the sequences decreases from S_{1} to S_{20}.
- Figure $n^{\circ} 37$ shows that the percentage of primes in the sequences decreases from S_{1} to S_{20}.
- Figure $\mathrm{n}^{\circ} 38$ shows that the median of primes is rougthly constant from prime numbers subsequences $S_{1 p}$ to $S_{9 p}$ but increases from $S_{10 \mathrm{p}}$ to $\mathrm{S}_{20 \mathrm{p}}$.
- Figure $\mathrm{n}^{\circ} 39$ shows that the minimum prime number value is roughtly constant from $S_{1 p}$ to $S_{11 p}$ but increases from $S_{12 p}$ to $S_{20 p}$ and that the maximum prime number value is roughtly constant from $S_{1 p}$ to $S_{8 p}$ but increases from $S_{9 p}$ to $S_{20 p}$.
- Figure $\mathrm{n}^{\circ} 40$ shows that the range of prime number values is roughtly constant from $S_{1 p}$ to $S_{8 p}$ but increases from $S_{9 p}$ to $S_{20 p}$.

Overall, these observations are very similar to those seen in the case of the seed $\mathrm{S}_{0 \mathrm{p}}$.

3-2-2: Sequence structures:

Figures $\mathrm{n}^{\circ} 41$ to $\mathrm{n}^{\circ} 61$ show the seed $\mathrm{S}_{0 \mathrm{NP}}$ and the 20 prime number subsequences $\mathrm{S}_{1 \mathrm{p}}$ to $\mathrm{S}_{20 \mathrm{p}}$.
Whereas figure $\mathrm{n}^{\circ} 41$ does not reveal any particular structure in the prime numbers seed $\mathrm{S}_{\mathrm{oNP}}$, a more and more visible one appears in the prime numbers subsequences $S_{1 p}$ to $S_{6 p}$ and two distinct prime number size distributions are clearly present in $\mathrm{S}_{\mathrm{Tp}_{\mathrm{p}}}$ to $\mathrm{S}_{20_{\mathrm{p}}}$ subsequences.
Then, it has been checked if these indentified patterns were specific or not of the generated prime subsequences. Figures n ${ }^{\circ} 62$ to figure n ${ }^{\circ} 69$ show that the structures also exist in the nonprime subsequences $\mathrm{S}_{6 n \mathrm{p}}, \mathrm{S}_{13 \mathrm{np}}$ and $\mathrm{S}_{20 \mathrm{np}}$ and in the corresponding sequences $\mathrm{S}_{6}, \mathrm{~S}_{13}$ and S_{20}. So, the nonprime numbers subset (4, 6, 8, 9, 10... 1197) similarly to the prime numbers subset ($2,3,5,7,11,13,17 \ldots 7919$) generates through formula $\mathrm{n}^{\circ} 1$ structures in integer sequences and also in both prime and nonprime subsequences of them.

3-3 Sequences produced from the natural numbers set S_{ON} and formula $\mathrm{n}^{\circ} 1$:

3-3-1 Basic statistics:

The first 10 terms of the seed $\mathrm{S}_{0 \mathrm{~N}}$ and those of the sequences S_{1} to S_{10} are given in table $\mathrm{n}^{\circ} 3$.

- To the opposite to the two previous cases for which the prime number seed S_{OP} and the nonprime number seed $\mathrm{S}_{0 \mathrm{NP}}$ were used, here none of the sequences S_{1} to S_{20} contain negative intergers.
- Figure $\mathrm{n}^{\circ} 70$ shows that the number of primes in the sequences decreases from S_{1} to S_{20}.
- Figure $\mathrm{n}^{\circ} 71$ shows that the percentage of primes in the sequences decreases from S_{1} to S_{20}.
- Figure $\mathrm{n}^{\circ} 72$ shows that the median of primes regularly increases from prime subsequence $S_{1 p}$ to $S_{20 \mathrm{p}}$ and that is a difference compared to the two previous cases where the prime number seed S_{OP} and the nonprime numbers seed S_{NP} were used.
- Figure $\mathrm{n}^{\circ} 73$ shows that the minimum prime number value regularly increases from $\mathrm{S}_{1 \mathrm{p}}$ to $\mathrm{S}_{20 \mathrm{p}}$ and that the maximum prime number value is roughtly constant from $\mathrm{S}_{1 \mathrm{p}}$ to $\mathrm{S}_{20 \mathrm{p}}$.
- Figure $n^{\circ} 74$ shows that the range of prime number values regularly decreases from S_{lp} to $\mathrm{S}_{20 \mathrm{p}}$.

Overall, these observations show that the prime numbers statistics in this case are quite different from the ones observed when the prime number seed ${ }_{\text {sop }}$ and the nonprime numbers seed $\mathrm{S}_{0 \mathrm{NP}}$ were used.

3-3-2: Sequence structures:

Figures $n^{\circ} 75$ to $\mathrm{n}^{\circ} 95$ show the seed $\mathrm{S}_{0 \mathrm{~N}}$ and the 20 prime numbers subsequences $\mathrm{S}_{1 \mathrm{p}}$ to $\mathrm{S}_{20 \mathrm{p}}$.
Figures $n^{\circ} 96$ to $n^{\circ} 103$ show the nonprime numbers subsequences $\mathrm{S}_{6 \mathrm{np},}, \mathrm{S}_{13 n \mathrm{p}}$ and $\mathrm{S}_{20 \mathrm{np}}$ and the $\mathrm{S}_{6}, \mathrm{~S}_{13}$ and S_{20} sequences.
No stuructures have been identified in either the 20 prime numbers subsequences or in the nonprime numbers subsequences $\mathrm{S}_{\text {6np }}, \mathrm{S}_{13 \text { np }}$ and $\mathrm{S}_{20 \mathrm{np}}$ as in the corresponding sequences $\mathrm{S}_{6}, \mathrm{~S}_{13}$ and S_{20}.
Therefore, this absence of pattern in the sequence and prime and nonprime numbers subsequences produced from the natural numbers seed $\mathrm{S}_{0 \mathrm{~N}}$ and formula $\mathrm{n}^{\circ} 1$ is another major difference compared to the two cases for which the prime numbers seed S_{op} and the nonprime numbers seed $\mathrm{S}_{\mathrm{oNP}}$ are used together with formula $\mathrm{n}^{\circ} 1$.

3-4 Sequences produced from formula $\mathrm{n}^{\circ} 2$:

3-4-1 Basic statistics:

Note: identifying large prime numbers requires long computation times and for that reason calculations with formula $n^{\circ} 2$ were not performed beyond sequence S_{13}. However, 13 sequences was enough to make a meaningful comparison of results given by formulas $n^{\circ} 1$ and $n^{\circ} 2$.

The first 10 terms of the seed $\mathrm{S}_{0 \mathrm{p}}$ and the sequences S_{1} to S_{10} are given in table $\mathrm{n}^{\circ} 4$.

- Whereas the sequences S_{1} to S_{3} contain only positive integers, sequences S_{4} to S_{13} contain both positive and negative integers. So, the nonprime subsequences $S_{\text {4np }}$ to $S_{13 n \mathrm{n}}$ contain both positive and negative integers.
- Figure $\mathrm{n}^{\circ} 104$ shows the number of terms of the seed $\mathrm{S}_{0 \mathrm{P}}$ and those of the sequences S_{1} to S_{13}, a loss of four terms between the seed
$\mathrm{S}_{\text {op }}$ and S_{l} and between a sequence and the next one being induced by formula $\mathrm{n}^{\circ} 2$.
- Figure $\mathrm{n}^{\circ} 105$ shows that the number of primes in the sequences decreases from S_{1} to S_{13}.
- Figure $\mathrm{n}^{\circ} 106$ shows that the percentage of primes in the sequences decreases from S_{1} to S_{13}.
- Figures $\mathrm{n}^{\circ} 107$ to $\mathrm{n}^{\circ} 110$ show the histograms of primes for the sequences $S_{1 p}, S_{2 p}, S_{3 p}$ and $S_{4 p}$ and a slight decrease of the density of primes along the sequences.
- Figure $\mathrm{n}^{\circ} 111$ shows that the median of primes is rougthly constant from $\mathrm{S}_{1 \mathrm{p}}$ to $\mathrm{S}_{5 \mathrm{p}}$ and increases from $\mathrm{S}_{6 \mathrm{p}}$ to $\mathrm{S}_{13 \mathrm{p}}$.
- Figure $\mathrm{n}^{\circ} 112$ shows that the minimum prime number value is roughtly constant from $\mathrm{S}_{1 \mathrm{p}}$ to $\mathrm{S}_{7 \mathrm{p}}$ but increases from $\mathrm{S}_{8 \mathrm{p}}$ to $\mathrm{S}_{13 \mathrm{p}}$ and that the maximum prime number value is roughtly constant from $S_{1 p}$ to $S_{2 p}$, then increasing from $S_{3 p}$ to $S_{13 p}$.
- Figure $\mathrm{n}^{\circ} 113$ shows that the range of prime number values increases from $\mathrm{S}_{1 \mathrm{p}}$ to $\mathrm{S}_{13 \mathrm{p}}$.

3-4-2 Comparison of the basic statistics on data given by formulas $\mathrm{n}^{\circ} 1$ and $\mathrm{n}^{\circ} 2$:

- Figure $\mathrm{n}^{\circ} 114$ shows that formulas $\mathrm{n}^{\circ} 1$ and $\mathrm{n}^{\circ} 2$ give a similar percentage of primes for sequences S_{1} to S_{5} but that formula $n^{\circ} 1$ leads to a significantly higher percentage of primes in sequences S_{6} to S_{13}.
- Figure $\mathrm{n}^{\circ} 115$ shows that formulas $\mathrm{n}^{\circ} 1$ and $\mathrm{n}^{\circ} 2$ give a similar median of primes for subsequences $S_{1 p}$ to $\mathrm{S}_{4 \mathrm{p}}$ but that formula $\mathrm{n}^{\circ} 2$ leads to a higher median of primes in subsequences $S_{5 p}$ to $S_{13 p}$.
- Figure $\mathrm{n}^{\circ} 116$ shows that formulas $\mathrm{n}^{\circ} 1$ and $\mathrm{n}^{\circ} 2$ give a similar range of prime number values for sequences $S_{1 p}$ to $S_{3 p}$ but that formula $\mathrm{n}^{\circ} 2$ leads to a higher range of primes in subsequences $\mathrm{S}_{6 \mathrm{p}}$ to $S_{13 p}$.

3-4-3 Sequence structures:

Figures $\mathrm{n}^{\circ} 117$ to $\mathrm{n}^{\circ} 130$ show the seed $\mathrm{S}_{0 \mathrm{p}}$ and the 13 prime numbers subsequences $S_{1 p}$ to $S_{13 p}$.
Whereas figure $\mathrm{n}^{\circ} 117$ does not reveal any particular structure in the prime numbers seed S_{op}, a more and more visible one appears in the prime numbers subsequences $\mathrm{S}_{1 \mathrm{p}}$ to $\mathrm{S}_{3 \mathrm{p}}$ and two distinct prime numbers size distributions are clearly present in $\mathrm{S}_{4 \mathrm{p}}$ to $\mathrm{S}_{13 \mathrm{p}}$ prime numbers subsequences.
Then, it has been checked if these indentified patterns were specific or not of the generated prime subsequences. Figures $n^{\circ} 131$ to figure $n^{\circ} 136$ show that the structures also exist in the nonprime numbers subsequences $\mathrm{S}_{\text {lnp }}, \mathrm{S}_{6 n \mathrm{p}}, \mathrm{S}_{13 n \mathrm{n}}$ as in the corresponding sequences $\mathrm{S}_{1}, \mathrm{~S}_{6}$ and S_{13}.
So, the prime numbers subset $(2,3,5,7,11,13,17 \ldots 7919)$ generates through formula $\mathrm{n}^{\circ} 2$ structures in sequences and also in both prime and nonprime numbers subsequences of them.

3-5 Sequences produced from formula $\mathrm{n}^{\circ} 3$:

3-5-1 Basic statistics:

Note: here and in a first step, the number of sequences has been restricted to 17 to limit the computing time for searching large prime numbers.

The first 10 terms of the seed $\mathrm{S}_{0 \mathrm{p}}$ and the sequences S_{1} to S_{17} are given in table $\mathrm{n}^{\circ} 5$.

Figures $n^{\circ} 137$ and $n^{\circ} 138$ show that formula $n^{\circ} 3$ leads unlike formulas $\mathrm{n}^{\circ} 1$ and $\mathrm{n}^{\circ} 2$ to much less prime numbers, thus lower corresponding percentages.

The occurence of primes in each sequence is given in table $\mathrm{n}^{\circ} 6$.
It can be noted that:

- there is 49 occurences of the prime number 2 on a total of 53 primes.
- Sequences S_{6} to S_{9} and s_{11} to S_{17} do not contain any prime number. On the basis of this last observation, it was worth to investigate further the absence of primes in sequences. For that purpose, a prime number seed $\mathrm{S}_{\text {opL }}$ containing 20000 terms from 2 to 224737 (the first 20000 primes)
was used and 28 sequences have been calculated. The $\mathrm{S}_{\text {opL }}$ seed was filed in the first column of a 20000 rows and 29 columns matrix and 28 sequences in the columns 2 to 29 .

Figures $n^{\circ} 139$ show the number of terms of this large seed $\mathrm{S}_{\text {opL }}$ and those of the 28 sequences with a loss of three terms between the seed $\mathrm{S}_{\text {OPL }}$ and the first sequence and between a sequence and the next one; this loss being induced by formula $n^{\circ} 3$.

Figures $n^{\circ} 140$ and $n^{\circ} 141$ respectvely show the number of primes and the percentage of them in each sequence.

Table $\mathrm{n}^{\circ} 7$ gives the occurence of primes in the 28 sequences. Compared to the set of sequences produced from formula $\mathrm{n}^{\circ} 3$ and a seed S_{OP} containing 1000 terms (the first 1000 primes) the number of primes in the sequences is now higher due to the higher length of sequences and whereas sequences S_{6}, S_{7} and S_{8} were prime free in the case of the 1000 terms $S_{\text {op }}$ prime numbers seed, they do contain 9,2 and 1 primes in the case of the 20000 terms $\mathrm{S}_{\text {0pL }}$ prime seed. S_{9} contains no prime in both cases, S_{10} still contains one prime the same as in the 1000 terms $S_{\text {OP }}$ seed (1831)).

2, 7, 19 and 1831 are the four primes found. With their repeats they count for 617 primes over the 558782 terms of the 28 sequences ($0,11 \%$) and they are concentrated in the first 10 sequences. On these 617 primes, 613 are the prime number " 2 " ($99,35 \%$). On 28 sequences 19 (Sg, and $S_{I I}$ to S_{28}) of them containing in total 378920 terms are primefree. S_{9} is the first and the longest primefree sequence (19973 terms). The first and smallest term of sequence $\mathrm{n}^{\circ} 28$ is: -429306405948700 (15 digits) and the last and largest one is: 449225647786036 (15 digits), so a range of 878532053734736.

Note: other formulas giving primefree sequences have been found and reported in the litterature (see references (2) to (6)).

3-5-2 A prime free conjecture (Ref: conjecture CD-3):
Considering that:

- the number of primes decreases from S_{1} to S_{28}.
- the number of prime decreases along a sequence.
- Sequences S_{9} and S_{11} to S_{28} containing a total of 378920 numbers are primefree sequences.

The following conjecture (Ref: conjecture CD3 can be established:
Conjecture CD-3:
The formula below:
$\mathrm{t}_{(\mathrm{i}+2+2 * \mathrm{j}, \mathrm{j}+2)}=\mathrm{t}_{(\mathrm{i}+2+2 * \mathrm{j}, \mathrm{j}+1)}+\mathrm{t}_{(\mathrm{i}+3+2 * \mathrm{j}, \mathrm{j}+1)}-\mathrm{t}_{(\mathrm{i}+1+2 * \mathrm{j}, \mathrm{j}+1)}-\mathrm{t}_{\left(\mathrm{i}+2 *{ }_{\mathrm{j}}, \mathrm{j}+1\right)}$
applied to the prime numbers set $(2,3,5,7,11,13,17,19 \ldots)$ used as a seed, generates a sequence which is then used as a new seed to produce the next sequence and so one. When the number of terms of the prime number set tends to $+\infty$ and after a certain number of iterations, this recursive process leads to an infinite number of long primefree sequences containing increasingly large composite numbers.

3-6 Sum of the reciprocals of primes:
Figure $\mathrm{n}^{\circ} 142$ shows the continuous deacease of the reciprocals of primes.

Figure $\mathrm{n}^{\circ} 143$ shows the asymptotic increase of the sum of the reciprocals of primes.

Figure n° 144: shows the sum of the reciprocals of primes and the function $\mathrm{LN}(\mathrm{LN}(\mathrm{n})$)
The Meissel-Mertens constant often reffered to as the Mertens constant is defined as the limiting difference between the sum of the reciprocals of primes $\mathrm{p} \leq \mathrm{n}$ and the function $\mathrm{LN}(\mathrm{LN}(\mathrm{n})$) named Model-1.

Figure $\mathrm{n}^{\circ} 145$ shows, with the $\mathrm{S}_{\text {ON }}$ natural or $\mathrm{S}_{\text {ONP }}$ nonprime numbers seeds and formula $n^{\circ} 1$, the sum of the reciprocal of prime numbers of the subsequence S_{ip} as a function of p and the Model-2 predicted values.

Figure $\mathrm{n}^{\circ} 146$ shows with the $\mathrm{S}_{\text {op }}$ prime numbers seed and formula $\mathrm{n}^{\circ} 1$ the sum of the reciprocals of the $\mathrm{S}_{1 \mathrm{p}}$ subsequence prime numbers as a function of prime numbers and the Model-3 predicted values.

Figure $\mathrm{n}^{\circ} 147$ shows with the S_{OP} prime numbers seed and formula $\mathrm{n}^{\circ} 2$ the sum of the of the reciprocals of the $\mathrm{S}_{1 \mathrm{p}}$ subsequence prime numbers as a function of prime numbers and the Model-4 predicted values.

These last three figures show the quite good fit of Model-2, Model-3 and Model-4. The three models are of the form $\mathrm{a}^{*} \operatorname{LN}(\operatorname{LN}(p))+b$, so the same form as the $\operatorname{LN}(\operatorname{LN}(\mathrm{n}))$ with the "a" coefficient different from 1 and the " b " coefficient different from 0 . The" a " and " b " coefficients of
the three models are given in table $\mathrm{n}^{\circ} 8-\mathrm{a}$. The correlation and determination coefficients are also given in this table and the absolute and relative errors reported in table $\mathrm{n}^{\circ} 8$-b confim the good quality of the three models.

Table $\mathrm{n}^{\circ} 8$-b also give the D distances (see definition in the legend of table 8-b or in annex $n^{\circ} 1$).

Finally, figures $\mathrm{n}^{\circ} 148$ and $\mathrm{n}^{\circ} 149$ respectively give the sum ($1 / \mathrm{p}$) curves calculated from the $\mathrm{s}_{1 \mathrm{p}}$ subsequence and the sum ($1 / \mathrm{p}$) predicted by the models, the sum of the reciprocals of primes and the $\mathrm{LN}(\mathrm{LN}(\mathrm{n})$ function being shown as reference.

4- Conclusions:

- When the number of iterations of the recursive algorithm increases the number of primes in a sequence decreases and the size of its terms (number of digits) increases. 15 digits terms are found in the $28^{\text {th }}$ sequence produced when the $\mathrm{S}_{\text {opL }}$ seed is used.
- The number of primes slightly decreases along sequences.
- When the algorithm is used with a prime or nonprime numbers seed some structures are already visible in the first sequences and their prime and nonprime numbers subsequences and their development in the next subsequences leads to two distinct number size distributions. Such patterns do not exist when the natural numbers subset is used as seed.
- When the algorithm is used with the prime numbers subset and formula $n^{\circ} 3$, only four primes are procuced in the first sequences and rapidely long primefree sequences containing large size numbers are produced. This led to establish a conjecture stating that an infinite number of primefree sequences can be produced using the standard prime numbers set and formula $\mathrm{n}^{\circ} 3$.
- Acurate models all of the form of sums $(1 / p)=a^{*} \operatorname{LN}(\operatorname{LN}(p))+b$ have been developed for the various type of seed/formula combinations.
Finally, D distances equivalent to the Meissel-Mertens constant have been calculated for the different models.

Refrences:
(1) Claudia Meller, Sequence A175873 in The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org/A175873
(2) Graham, R. L. "A Fibonacci-Like Sequence of Composite Numbers." Math. Mag. 37, 322-324, 1964.
(3) Knuth, D. E. "A Fibonacci-Like Sequence of Composite Numbers." Math. Mag. 63, 21-25, 1990
(4) Wilf, H. S. Letters to the Editor. Math. Mag. 63, 284, 1990.
(5) Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdös and the Search for Mathematical Truth. New York: Hyperion, 1998.
(6) Nicol, J. W. "A Fibonacci-Like Sequence of Composite Numbers." Elec. J. Combin. 6, R44, 1-6, 1999.

Annex $\mathrm{n}^{\circ}: 1$ definitions and abbreviations (specific to this paper):

- a sequence : list of positive or negative, prime or composite integers. A sequence " j " is produced from an seed or the " $\mathrm{j}-1$ " sequence and a formula. Sequences are noted: $\mathrm{S}_{\mathrm{j}},(j=1,2,3,4 \ldots$.$) .$
- a prime numbers subsequence: part of a S_{j} sequence composed of all prime numbers of this sequence. Prime numbers subsequences are noted $\mathrm{S}_{\mathrm{jp}},(j=1,2,3,4 \ldots)$.
- a nonprime numbers subsequence: part of a S_{j} sequence composed of all numbers of this sequence except the primes ones. nonprimes subsequences are noted $\mathrm{S}_{\mathrm{jnp}},(j=1,2,3,4 \ldots)$.
- a term ($\mathrm{t}_{\text {index-1, index-2 }}$): an element of a sequence or a subsequence. Terms are indexed to indicate the sequence to which they belong (index-1) and their position in the sequence (index-2).
- The prime numbers seed $S_{0 P}$: a subset of the standard set of prime numbers (2, 3, 5, 7, 11, 13, 17, 19, 23...7919) used as seed in the algorithm.
- The nonprime numbers seed $\mathrm{S}_{0 \mathrm{~Np}}$: a subset of the standard set of nonprime positive numbers ($2,4,6,8,9,10 \ldots 1197$) used in the algorithm.
- The natural numbers seed $\mathrm{S}_{\text {on }}$: a subset of the standard set of natural numbers ($1,2,3,4,5 \ldots 1000$) used as seed in the algorithm.
- the recursive algorithm : starts from the seed ($S_{O P}$ or $S_{O N}$ or $S_{O N P)}$, to produce with a formula a first sequence S_{1} which is then used as a new seed to produce with the same formula the next sequence S_{2} and so one, each sequence S_{j+1} being produced from the previous one sj .
- a formula : it is the equation used to produce a sequence from an seed or the previous sequence.
- p: prime number.
- prime (n): the $\mathrm{n}^{\text {th }}$ prime number (e.g: 97 is the $25^{\text {th }}$ prime number)
- $\operatorname{sum}(1 / \mathrm{p}), \mathrm{p} \leq \mathrm{n}=$ sum of the reciprocals of prime numbers at n.
- Meissel-Mertens constant : is defined as the difference between the sum of the reciprocals of prime numbers $\leq n$ and the series of general term $\operatorname{Ln}(\operatorname{Ln}(\mathrm{n}))$ when n tends to $+\infty$. Approximate value : 0,261497.
- Distance D: is defined as the difference between the sum of the reciprocals of prime numbers $\leq \mathrm{n}$ and the sum of the reciprocal of primes numbers $\leq n$ of a sequence generated by the algorithm and one formula as described in this paper. The "distance D " can be seen as the equivalent of the Meissel-Mertens constant.
- Absolute error : the difference, at a given (n), between the sum of the reciprocals of primes $p \leq n$ of a sequence and the corresponding model predicted value.
- Relative error : relative difference at a given (n) between the sum of the reciprocals of primes $p \leq n$ of a sequence and the corresponding model predicted value.
- R : coefficient of correlation between the sum of the reciprocals of primes of a sequence and the corresponding sum calculated from a model.
- $\quad R^{2}$: coefficent of determination between the sum of the reciprocals of primes of a sequence and the corresponding sum calculated from a model.

Annex n° 2: tables

Term n $^{\circ}$	$\mathrm{S}_{0 \mathrm{P}}$	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{9}$	$\mathrm{~S}_{10}$
1	2	6	16	28	30	72	64	8	218	154	-196
2	3	9	21	27	43	81	13	143	39	555	-2041
3	5	13	23	31	59	55	59	83	333	-597	951
4	7	17	25	39	65	39	97	99	261	-889	3251
5	11	19	29	51	49	75	45	317	-525	1243	-1065
6	13	23	35	53	55	61	151	43	-103	1119	-2165
7	17	25	45	47	69	59	211	-251	821	-941	2015
8	19	33	43	61	47	153	-17	191	195	-105	1099
9	23	37	49	55	81	117	-23	379	-315	1179	-2253
10	29	39	55	53	119	19	197	7	405	-185	-579

Note: prime numbers are in red.
Table $\mathrm{n}^{\circ} 1$: first 10 terms of the prime numbers seed S_{OP} (1000 terms) and those of sequences S_{1} to S_{10}, formula $n^{\circ} 1$.

Term n $^{\circ}$	$\mathrm{S}_{0 \mathrm{P}}$	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{9}$	$\mathrm{~S}_{10}$
1	4	10	12	19	26	8	90	-104	275	-283	270
2	6	11	13	25	12	49	11	15	180	-422	1310
3	8	11	18	20	22	49	-25	156	-188	409	-163
4	9	13	20	17	39	11	51	39	-54	479	-1071
5	10	16	18	25	32	13	80	-71	275	-233	-94
6	12	17	19	31	18	49	10	56	150	-359	706
7	14	17	24	26	27	44	-1	148	-108	32	653
8	15	19	26	23	40	15	67	58	-101	315	55
9	16	22	24	30	31	28	80	-18	25	370	-686
10	18	23	25	33	24	54	45	-25	189	0	-343

Note: prime numbers are in red.

Table n° 2: first 10 terms of the nonprime numbers seed $\mathrm{S}_{0 \mathrm{NP}}$ (1000 terms) and those of sequences S_{1} to S_{10}, formula $n^{\circ} 1$.

Term n $^{\circ}$	$\mathrm{S}_{0 \mathrm{P}}$	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{9}$	$\mathrm{~S}_{10}$
1	1	4	7	10	13	16	19	22	25	28	31
2	2	5	8	11	14	17	20	23	26	29	32
3	3	6	9	12	15	18	21	24	27	30	33
4	4	7	10	13	16	19	22	25	28	31	34
5	5	8	11	14	17	20	23	26	29	32	35
6	6	9	12	15	18	21	24	27	30	33	36
7	7	10	13	16	19	22	25	28	31	34	37
8	8	11	14	17	20	23	26	29	32	35	38
9	9	12	15	18	21	24	27	30	33	36	39
10	10	13	16	19	22	25	28	31	34	37	40

Note: prime numbers are in red.
Table n° 3: first 10 terms of the natural numbers seed $\mathrm{S}_{0 \mathrm{~N}}$ (1000 terms) and those of sequences S_{1} to S_{10}, formula $n^{\circ} 1$.

Term n°	$\mathrm{S}_{0 \mathrm{P}}$	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{9}$	$\mathrm{~S}_{10}$
1	2	18	54	114	20	652	-1872	9202	-37558	161484	-666012
2	3	23	55	127	17	615	-1429	6985	-30623	155727	-753875
3	5	29	63	107	127	151	615	-1215	1259	33455	-289393
4	7	31	77	81	259	-351	2567	-9199	37869	-138959	480339
5	11	35	83	73	303	-405	2719	-10957	54175	-243297	999517
6	13	41	85	97	197	93	885	-4697	34319	-182437	804527
7	17	47	79	145	37	727	-1637	6499	-15911	30837	-32559
8	19	55	77	171	-23	991	-3161	15911	-65323	249683	-869459
9	23	57	85	157	81	689	-2555	16111	-73569	293263	-1014897
10	29	61	99	111	269	25	267	4099	-25137	109981	-365913

Note : primes numbers are in red.
Table n° 4: first 10 terms of the prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ (1000 terms) and those of sequences S_{1} to S_{10}, formula $n^{\circ} 2$.

Term n $^{\circ}$	$\mathrm{S}_{0 \mathrm{P}}$	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{9}$	$\mathrm{~S}_{10}$
1	2	7	7	-5	-3	19	93	-777	2469	-4159	1831
2	3	10	2	12	-48	106	-266	1160	-4814	14540	-28928
3	5	12	0	12	-32	128	-628	2326	-6266	12318	-14154
4	7	12	4	-8	0	90	-322	526	-238	-106	-6160
5	11	12	10	-16	26	-122	588	-1854	3698	-1964	-23154
6	13	12	6	-12	70	-288	788	-1560	2116	22	-15836
7	17	16	0	-12	46	-66	4	-6	1238	-8252	34752
8	19	18	0	10	-72	244	-482	290	2612	-16844	72518
9	23	16	-6	36	-100	190	-286	260	764	-7222	39902
10	29	18	-6	8	8	-8	-198	1262	-5166	16878	-49908

Note : primes are in red.
Table n° 5: first 10 terms of the prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ (1000 terms) and those of sequences S_{1} to S_{10}, formula $n^{\circ} 3$.

Sequence	Prime numbers	Occurence
S_{1}	7	1
$\mathrm{~S}_{2}$	2	32
$\mathrm{~S}_{3}$	7	1
$\mathrm{~S}_{4}$	2	10
$\mathrm{~S}_{5}$	2	3
$\mathrm{~S}_{6}$	2	4
$\mathrm{~S}_{7}$	19	1
$\mathrm{~S}_{8}$	----	no prime
S_{9}	---	no prime
S_{10}	---	no prime
S_{11} to S_{28}	---	no prime

Table $\mathrm{n}^{\circ} 6$: occurrence of primes in sequences, prime numbers seed $S_{0 P}$ (1000 terms) and formula $n^{\circ} 3$.

Sequence	Prime numbers	Occurence
S_{1}	7	1
$\mathrm{~S}_{2}$	2	411
$\mathrm{~S}_{3}$	7	1
$\mathrm{~S}_{4}$	2	119
$\mathrm{~S}_{5}$	2	48
$\mathrm{~S}_{6}$	2	23
$\mathrm{~S}_{7}$	19	1
$\mathrm{~S}_{8}$	2	9
$\mathrm{~S}_{9}$	2	2
$\mathrm{~S}_{10}$	2	1
$\mathrm{~S}_{11}$ to S_{28}	----	no prime

Table $\mathrm{n}^{\circ} 7$: occurrence of primes in the sequences, prime numbers seed $S_{0 P}$ (2×10^{4} terms) and formula $n^{\circ} 3$.

Model inputs	Model	Correlation coefficient (R)	Determination coefficient (R^{2})
Prime numbers	$\begin{aligned} & \text { Model-1: } \\ & \text { Sum }(1 / \mathrm{p})=\operatorname{LN}(\operatorname{LN}(\mathrm{n}) \end{aligned}$	0,999	0,997
```Natural or nonprime numbers seed \(\mathrm{S}_{\text {ON }}\) or \(\mathrm{S}_{\text {ONP }}\) Prime numbers subsequence \(\mathrm{S}_{1 \mathrm{p}}\) formula \(n^{\circ} 1\)```	Model-2 :   Sum ( $1 / \mathrm{p}$ ) $=0,985 * \operatorname{LN}(\operatorname{LN}(\mathrm{P})-0,535$	0,999	0,998
Prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$   Prime numbers   subsequence $\mathrm{S}_{\mathrm{lp}}$,   formula $n^{\circ} 1$	$\begin{aligned} & \text { Model-3 : } \\ & \text { Sum }(1 / \mathrm{p})=0,233 * \operatorname{LN}(\operatorname{LN}(\mathrm{P})+0,038 \end{aligned}$	0,978	0,957
Prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$   Prime numbers   subsequence $\mathrm{S}_{1 \mathrm{p}}$   formula $\mathrm{n}^{\circ} 2$	$\begin{aligned} & \text { Model-4 : } \\ & \operatorname{Sum}(1 / \mathrm{p})=0,229 * \operatorname{LN}(\operatorname{LN}(\mathrm{P})-0,114 \end{aligned}$	0,997	0,994

Table $n^{\circ} 8-a$ : models of sums of the reciprocals of prime numbers.

Model	Model inputs	Absolute   error	Relative   error	Distance   $\mathrm{D} *$
Model-1	Prime numbers	not   appropriate	not   appropriate	0,26
Model-2	Natural or nonprime   numbers seed $\mathrm{S}_{0 \mathrm{~N}}$ or $\mathrm{S}_{0 \mathrm{NP}}$   prime subsequence $\mathrm{S}_{\mathrm{lp}}$   formula ${ }^{\circ} 1$	0,00115	0,06	0,83
Model-3	Prime numbers $\mathrm{S}_{\mathrm{0p}}$   subsequence $\mathrm{S}_{\mathrm{lp}}$,   formula $\mathrm{n}^{\circ} 1$	$-0,0053$	0,86	2,16
Model-4	Prime numbers seed $\mathrm{S}_{\mathrm{OP}}$   Prime numbers   subsequence $\mathrm{S}_{\mathrm{lp}}$   formula $\mathrm{n}^{\circ}$ 2	$-0,0037$	0,80	2,32

Table $\mathrm{n}^{\circ} 8-\mathrm{b}$ : absolute and relative errors of the models and distance $D$, (at the prime number 224729 of the subsequence $S_{\text {Ip }}$ for models $n^{\circ} 1$, $n^{\circ} 2, n^{\circ} 3$ and at the prime number 224611 of the subsequence $S_{I_{p}}$ for model $n^{\circ} 4$; the closest prime number from the prime number 224729.)

* Distance D : difference between the sum of the reciprocals of prime numbers and the sum of the reciprocals of prime numbers of the $S_{l p}$ subsequence.


## Annex n 3 : figures

Figures from the prime numbers seed $\mathrm{S}_{\mathrm{OP}}$ and formula $\mathrm{n}^{\circ} 1$

Figure $n^{\circ} 1$ : numbers of terms in the seed $S_{0 P}$ and the sequences prime numbers seeds and formula $\mathrm{n}^{\circ} 1$


Sequence



Figure $\mathrm{n}^{\circ}$ 4: median of primes in $\mathrm{S}_{0 \mathrm{P}}$ and each prime numbers subsequence


Figure $\mathrm{n}^{\circ}$ 5: prime number minimum and maximum values in $\mathrm{S}_{0 \mathrm{P}}$ and each prime numbers subsequence

$\mathrm{S}_{0 \mathrm{P}}$ and prime numbers subsequence

Figure $n^{\circ}$ 6: prime number range values for $S_{0 P}$ and each prime numbers subsequence.
prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ and formula $\mathrm{n}^{\circ} 1$












Figure $n^{\circ}$ 19: prime numbers subsequence $S_{12 p}$


Figure $n^{\circ}$ 21: prime numbers subsequence $S_{14 p}$ prime numbers seed $S_{0 P}$ and formula $n^{\circ} 1$

$\begin{array}{r}5 \\ 4 \\ 4 \\ \text { © } \\ \hline\end{array}$
5.E+05
4.E+05
4.E+05
§ $3 . \mathrm{E}+05$
2.E
2.E+
5.E+04
0.E+00


$$
0 . \mathrm{E}+00
$$

0	10	20	30	40	50	60	70	80	90	100




Figure $n^{\circ} 25$ : prime numbers subsequence $S_{18 p}$


Figure $n^{\circ}$ 26: prime numbers subsequence $S_{19 p}$


Figure $n^{\circ}$ 27: prime numbers subsequence $S_{20}$




Figure $n^{\circ}$ 32: nonprime numbers subsequence $S_{13 n p}$




Figure $n^{\circ} 35$ : sequence $S_{20}$ prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ and formula $\mathrm{n}^{\circ} 1$


Figures from the nonprime numbers seed $\mathrm{S}_{0 \mathrm{NP}}$ and formula $\mathrm{n}^{\circ}: 1$


Figure $n^{\circ} 37$ : percentage of of prime numbers in each sequence, nonprime numbers seed $\mathrm{S}_{0 \mathrm{NP}}$ and formula $\mathrm{n}^{\circ} 1$


Sequence


Figure $n^{\circ} 39$ : prime number minimum and maximum values in each prime numbers subsequence,
nonprime numbers seed $\mathrm{S}_{0 \mathrm{NP}}$ and formula $\mathrm{n}^{\circ} 1$


Figure $\mathrm{n}^{\circ} 40$ : prime number range values for each prime numbers subsequence nonprime numbers seed $\mathrm{S}_{0 \mathrm{NP}}$ and formula $\mathrm{n}^{\circ} 1$


Subsequence









Figure $n^{\circ}$ 52: prime numbers sequence $S_{11 p}$,



Figure $n^{\circ}$ 54: prime numbers subsequence $S_{13 p}$,




Figure $n^{\circ}$ 57: prime numbers subsequence $S_{16 p}$,


Figure $n^{\circ} 58$ : prime numbers subsequence $S_{17 p}$,


Figure $n^{\circ} 59$ : prime numbers subsequence $S_{18 p}$,


Figure $n^{\circ} 60$ : prime numbers subsequence $S_{19 p}$,







Figure $\mathrm{n}^{\circ}$ 66: nonprime numbers subsequence $\mathrm{S}_{13 \mathrm{np}}$,


Figure $n^{\circ}$ 67: Sequence $S_{13}$,
nonprime numbers seed $\mathrm{S}_{0 \mathrm{NP}}$ and formula $\mathrm{n}^{\circ} 1$


Figure $n^{\circ}$ 68: nonprime numbers subsequence $S_{20 n p}$,


Figure $n^{\circ}$ 69: Sequence $S_{20}$,


Figures from the natural numbers seed and formula $\mathrm{n}^{\circ} 1$
Figure $\mathrm{n}^{\circ} 70$ : number of primes in the seed $\mathrm{S}_{0 \mathrm{~N}}$ and in each sequence, natural numbers sedd $\mathrm{S}_{0 \mathrm{~N}}$ and formula $\mathrm{n}^{\circ} 1$


Natural numbers seed $\mathrm{S}_{0 \mathrm{~N}}$ and sequences

Figure $\mathrm{n}^{\circ} 71$ : percentage of primes in each sequence natural numbers seed $\mathrm{S}_{0 \mathrm{~N}}$ and formula $\mathrm{n}^{\circ} 1$


Natural numbers seed $\mathrm{S}_{0 \mathrm{~N}}$ and sequences

Figure $n^{\circ} 72$ : median of primes in the seed $\mathrm{S}_{0 \mathrm{~N}}$ and in each prime numbers subsequence
natural numbers seed $\mathrm{S}_{0 \mathrm{~N}}$ and formula $\mathrm{n}^{\circ} 1$


Natural numbers seed $\mathrm{S}_{0 \mathrm{~N}}$ and subequences

Figure $\mathrm{n}^{\circ} 73$ : prime number minimum and maximum values in each prime numbers subsequence
natural numbers seed $\mathrm{S}_{0 \mathrm{~N}}$ and formula $\mathrm{n}^{\circ} 1$


Natural numbers seed $\mathrm{S}_{0 \mathrm{~N}}$ and subsequences

Figure $n^{\circ} 74$ : prime number range values for the natural numbers seed $S_{0 N}$ and each prime numbers subsequence,
natural numbers seed $\mathrm{S}_{0 \mathrm{~N}}$ and formula $\mathrm{n}^{\circ} 1$


Natural number seed $\mathrm{S}_{0 \mathrm{~N}}$ and subsequences




















Figures from the prime numbers seed $\mathrm{S}_{\mathrm{OP}}$ and formula $\mathrm{n}^{\circ} 2$
Figure $\mathrm{n}^{\circ}$ 104: number of terms in the seed $\mathrm{S}_{0 \mathrm{P}}$ and sequences


Prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ and sequences


Prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ and sequences


Figure $\mathrm{n}^{\circ}$ 107: histogram of prime numbers in the $\mathrm{S}_{1 \mathrm{p}}$ subsequence, prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ and formula $\mathrm{n}^{\circ} 2$


Figure $\mathrm{n}^{\circ}$ 108: histogram of prime numbers in the $\mathrm{S}_{2 \mathrm{p}}$ subsequence, prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ and formula $\mathrm{n}^{\circ} 2$


Class of term values

Figure $n^{\circ} 109$ : histogram of prime numbers in the $S_{3 p}$ subsequence, prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ and formula $\mathrm{n}^{\circ} 2$


Class of term values

Figure $n^{\circ}$ 110: histogram of prime numbers in the $S_{4 p}$ subsequence, prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ and formula $\mathrm{n}^{\circ} 2$


Figure $\mathrm{n}^{\circ}$ 111: median of prime numbers in $\mathrm{S}_{0 \mathrm{p}}$ and each prime numbers subsequence,


Prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ and prime numbers subsequences

Figure $n^{\circ}$ 112: prime number minimum and maximum values in $S_{0 p}$ and each prime numbers subsequence,
 prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ and formula $\mathrm{n}^{\circ} 2$


Prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ and rime numbers subsequences


Prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ and prime numbers subsequences










Figure $n^{\circ}$ 124: prime numbers subsequence $S_{7 p}$, prime numbers seed $S_{0 P}$ and formula $n^{\circ} 2$ :


Figure $n^{\circ}$ 125: prime numbers subsequence $S_{8 p}$,


Figure $n^{\circ} 126$ : prime numbers subsequence $\mathrm{S}_{9 \mathrm{p}}$,



Figure $n^{\circ}$ 128: prime numbers subsequence $S_{11 p}$,






Figure $n^{\circ}$ 135: nonprime numbers subsequence $S_{13 n p}$, prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ and formula $\mathrm{n}^{\circ} 2$


Figure $n^{\circ}$ 136: sequence $S_{13}$,


Figures from the prime numbers seeds $\mathrm{S}_{0 \mathrm{P}}$ and $\mathrm{S}_{\text {0PL }}$ and formula $\mathrm{n}^{\circ} 3$

Figure $n^{\circ}$ 137: number of pime numbers in each sequence, prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ (1000 terms) and formula $\mathrm{n}^{\circ} 3$


Figure $\mathrm{n}^{\circ}$ 138: percentage of prime numbers in each sequence
prime numbers seed $\mathrm{S}_{0 \mathrm{P}}$ ( 1000 terms) and formula $\mathrm{n}^{\circ} 3$


Sequences

Figure $\mathrm{n}^{\circ}$ 139: number of terms of each sequence prime numbers seed $\mathrm{S}_{0 \text { PL }}\left(2 \times 10^{4}\right.$ terms), formula $\mathrm{n}^{\circ} 3$


[^0]Figure $n^{\circ}$ 140: number of primes in each sequence,
Prime number seed $\mathrm{S}_{0 \mathrm{PL}}\left(2 \times 10^{4}\right.$ terms), formula $\mathrm{n}^{\circ} 3$



Figures of the sums of the reciprocals of prime numbers :

Figure $n^{\circ}$ 142: subsequence $S_{1 p 1,}$ reciprocals of primes $(1 / p)=f(p)$, prime numbers seed $\mathrm{S}_{0 \mathrm{OL}}$, formula $\mathrm{n}^{\circ} 1$


Primes

Figure $\mathrm{n}^{\circ} 143$ : subsequence $\mathrm{S}_{1 \mathrm{p}}$, sum of the reciprocals of primes; sum of $(1 / p)=f(p)$, prime numbers seed $S_{0 P L}$, formula $n^{\circ} 1$ First 50 terms.



Figure $n^{\circ} 145$ : sum of the reciprocals of prime numbers of the subsequence $S_{1} p$







[^0]:    Sequence

