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Abstract. The preparation of phase-pure nano-sized BiFeO3 by a combustion-like method 

using starch as complexing agent is described herein. Phase evolution and development of the 

crystallite size during the synthesis were monitored depending on the heat treatment and the 

composition of the (BiFe)-gels. Phase-pure BiFeO3 was obtained at a low heating rate and 

calcination temperatures between 500 and 600 °C. Above 600 °C the BiFeO3 gradually 

decomposed to Bi25FeO40 and Bi2Fe4O9. The investigations showed that the appearance of 

secondary phases depends on the heating rate, calcination temperature, and the fuel to 

oxidizer ratio in the (BiFe)-gel. The use of HNO3 instead of acetic acid in the preparation of 
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the (BiFe)-gel promotes the formation of secondary phases. To study the phase stability the 

phase-pure BiFeO3 powder (1c) obtained after calcining at 550 °C (dcryst = 37 nm) was 

sintered to ceramic bodies up to 800 °C. During sintering the BiFeO3 phase decomposed to 

Bi25FeO40 and Bi2Fe4O9 gradually. The activation energy for the decomposition process 

during sintering was calculated to 337±19 kJ/mol using the Johnson–Mehl–Avrami–

Kolmogorov (JMAK) model. Magnetic measurements on phase-pure BiFeO3 powders show 

maximal magnetization of about 0.7 emu/g at 90 kOe and coercivities between 5−7 kOe at 

300 K. Investigations at 10 K reveal a loop shift (exchange-bias) up to 2.9 kOe in the negative 

direction. The optical band gaps of the phase-pure BiFeO3 powders were determined as 

2.28(4) eV. 
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1. Introduction 

The perovskite-related bismuth orthoferrite (BiFeO3) is of interest because of its high 

potential for advanced technologies. BiFeO3 has been investigated for application as 

capacitors, nonvolatile memory, and magnetoelectric devices [1−4]. Photocatalytic activities 

of BiFeO3 have also been reported [5,6]. Alexe and Hesse [7] described an abnormal 

photovoltaic effect in bulk BiFeO3. Bismuth orthoferrite as photoelectrode material for water 

splitting was tested by Chen et al. [8]. Moreover, BiFeO3 can act as a heterogeneous catalyst 

in both Fenton-like reactions during the wet peroxide oxidation of hydrocarbons [9] and in 

acetylation processes of amines, phenols and alcohols [10]. 

Bulk BiFeO3 is G-type antiferromagnetic material with a spiral spin structure (period length 

of 62 nm) [11]. BiFeO3 crystallizes in a rhombohedrally distorted perovskite structure (space 

group R3c), has a ferroelectric Curie temperature of Tc ≈ 830 °C and an antiferromagnetic 
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Néel temperature of TN ≈ 370 °C [12]. Arnold et al. [13] found out that at the Curie 

temperature BiFeO3 undergoes a ferroelectric first order transition to the orthorhombic space 

group Pbnm. 

Apart from the classical mixed-oxide method some wet-chemical syntheses have been 

developed to obtain nano-sized or fine-grained BiFeO3 powders [5,6,14−24]. Closer 

inspection shows that many synthesis routes lead to BiFeO3 powders with small amounts of 

secondary phases, such as Bi25FeO40, Bi2Fe4O9 and Bi2O3 [9,10,17,23,25−37]. The Bi25FeO40 

phase is also written as Bi25FeO39 [38,39]. Such impurities can be removed by treatment with 

dilute HNO3 [31−36]. However, due to the formation of these Bi- or Fe-rich phases and their 

leaching out with HNO3 the remaining BiFeO3 phase can possess Bi or Fe vacancies [23]. 

BiFeO3 is described as a metastable compound which partial decomposes to Bi25FeO40 and 

Bi2Fe4O9 [40−42]. The beginning of the decomposition process varies between 500 and 930 

°C and depends on several parameters such as preparation method, heat treatment, and 

particle sizes [43−45].  

As described earlier, nano-sized particles can be obtained in a combustion-like process 

[46,47].  

The aim of this paper is to describe a new, simple, and fast synthesis route to obtain phase-

pure and nano-sized BiFeO3 powders in which starch acts as a complexation agent and 

gellant, because starch is an eco-friendly and cheap abundant biopolymer. The phase 

evolution during the calcination process was monitored by XRD and thermal analysis. The 

appearance of secondary phases was studied with respect to the thermal treatment and the 

compositions of the starting (BiFe)-gels. The phase stability and kinetics of decomposition of 

the obtained nanocrystalline BiFeO3 powders during sintering were investigated using the 

Johnson–Mehl–Avrami–Kolmogorov (JMAK) model. Additionally, the magnetic behaviour 

and the optical band gap were studied. 
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2. Experimental 

2.1. Material preparation 

Synthesis I: Bi(NO3)3⋅5H2O (0.006 mol, Merck) was dissolved in 2 g acetic acid (≥99.8 % 

Sigma-Aldrich) and 5 ml deionized water. Fe(NO3)3⋅9H2O (0.006 mol, Merck) was added 

together with further 5 ml deionized water. After addition of 6.0 g soluble starch (Sigma-

Aldrich) the resulting turbid solution was continuously stirred (if applicable heating to about 

35 °C) until it became a high viscous gel, abbreviated as (BiFe)-gel-I in the following. 

Syntheses IA refers to a modified synthesis route using 1.2 g soluble starch resulting in 

(BiFe)-gel-IA.  

Syntheses II and IIA are analogous to synthesis I, however Bi(NO3)3⋅5H2O was dissolved in 

1 g HNO3 (65 %) and 5 ml deionized water. In synthesis II 6.0 g starch and in synthesis IIA 

9.9 g starch were used. The resulting gels are abbreviated as (BiFe)-gel-II and (BiFe)-gel-IIA. 

All (BiFe)-gels were calcined in static air in an Al2O3 crucible at various temperatures up to 

750 °C yielding different BiFeO3 powders. 

To produce ceramic bodies the (BiFe)-gel-I was calcined at 550 °C for 1 h with a heating rate 

of 1 K/min yielding powder 1c. That powder was pressed into pellets (green density: 3.5 

g/cm
3
) without using any pressing aid. The pellets were placed on a ZrO2 fibre mat and 

sintered to ceramic bodies. 

 

 

2.2. Characterization 

X-ray powder diffraction data were collected at room temperature on a Bruker D8-Advanced 

diffractometer, equipped with a one-dimensional silicon strip detector (LynxEye) and 

operating with Cu-Kα radiation. Powder patterns were refined both with the Rietveld program 

FullProf [48] and the profile fitting software PowderCell [49]. Crystallite sizes were 
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determined from the XRD line broadening using the Scherrer equation and the integral peak 

breadth (software suite WinXPOW [50]). The Wilson-equation was used to determine the 

strain parameter [50,51]. Specific surface areas (BET) were determined using nitrogen three-

point gas physisorption (Nova 1000, Quantachrome Corporation). The equivalent BET 

particle diameters were calculated assuming a spherical or cubic particle shape. Transmission 

electron microscopy (TEM) samples were prepared by dispersing the powder in alcohol under 

ultrasonic agitation and collecting it onto a copper TEM grid covered with a carbon 

membrane. Scanning electron microscope (SEM) images were recorded with a Philips XL30 

ESEM (Environmental Scanning Electron Microscope). Diffuse reflectance spectra were 

obtained at room temperature in the range 380−1000 nm using a Perkin Elmer UV−VIS 

spectrometer Lambda 19 using BaSO4 as a white standard. Magnetic measurements were 

carried out with a PPMS 9 from Quantum Design. Hysteresis loops were taken at 300 K and 

10 K with magnetic field cycling between −90 and +90 kOe.  

 

3. Results and discussion 

3.1. Powder characterization, TG-DTA and XRD  

Heating of the (BiFe)-gel-I at 200 °C in air for 0.5 h resulted in a black-brown powder. 

Simultaneous TG/DTA investigations in flowing air with various heating rates were carried 

out on this powder. Fig. 1a represents the TG/DTA measurement with a heating rate of 10 

K/min. As seen the sample shows a slight weight loss of about 3.0 % up to about 180 °C. 

Higher temperatures lead to a fast two-step decomposition process. The first step ranges to 

345 °C and the following second step is finished up to 535 °C. The DTA curve reveals that 

the first reaction step is exothermic with an onset temperature of 191 °C and the second 

reaction step starts at about 315 °C and results in a broad exothermic signal. The exothermic 

character suggests a combustion-like reaction in which the organic molecules (starch and 
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acetic acid) act as fuel and the nitrate ions as oxidizing agent. The total weight loss until 535 

°C is 70.7 % and up to 750 °C no further significant weight loss can be observed.  

TG/DTA measurements with a heating rate of 1 K/min (Fig. 1b) show a weight loss of 4.9 % 

until 190 °C. Further heating results in a decomposition with a strong weight loss. A first 

weight loss is finished at 290 °C and the second step caused a total weight loss of 68.3 % up 

to 390 °C. Two exothermic signals with onset temperatures of 164 and 295 °C can be 

observed. Until 450 °C there is no significant weight loss. Above 450 °C a last small weight 

loss to 470 °C can be detected and is probably caused by the decomposition of Bi2O2CO3. The 

total weight loss until 470 °C is 70.6 %. 

Fig. 2 shows the phase evolution during the thermal decomposition of the yellow (BiFe)-gel-I 

heated in a muffle furnace in static air at various temperatures with a heating rate of 1 K/min. 

The starting (BiFe)-gel-I (Graph 2a) as well as the calcination product at 300 °C (not shown) 

are X-ray amorphous. Calcination at 400 °C for 1 h lead to an orange-ochre powder revealing 

reflections of rhombohedral BiFeO3, Bi24Fe2O39, Bi2O2CO3, and Fe2O3 [52] (Graph 2b). After 

heat treatment at 500 °C for 1 h (powder 1a) reflections of BiFeO3, Bi24Fe2O39, and Bi25FeO40 

[52] appear (Graph 2c), whereas rising the calcination time to 5 h phase-pure BiFeO3 (powder 

1b) can be obtained (Graph 2d). Calcinations at 550 and 600 °C for 1 h (heating rate 1 K/min) 

result in orange-ochre phase-pure rhombohedral BiFeO3 powders 1c and 1f, respectively 

(Graph 2e,f). The XRD pattern of 1c was refined on the basis of a rhombohedral unit cell 

(space group: R3c, No. 161) according to ref. [53]. The hexagonal cell metric was calculated 

as a = b = 558.19(1) pm, c = 1386.04(2) pm, and V = 374.00(1)⋅10
6
 pm

3
 in good agreement 

with reported data [27,53]. The BiFeO3 powder 1c (550 °C, 1 h) has a specific surface area of 

9.3 m
2
/g. The volume-weighted average crystallite size (Scherrer equation) was calculated as 

37 nm. The root-mean-square-strain parameter was obtained according to the Wilson-equation 

[51] and was found to be 0.002. TEM investigations reveal particles mostly in the range 

30−50 nm, with maximum sizes up to 70 nm (Fig. 3). As shown in Tab. 1 the crystallite size 
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of the BiFeO3 phase rises with increasing calcination temperature up to 243 nm at 750 °C. 

Higher calcination temperatures of 650 and 750 °C (soaking time 1 h) leads to a partial 

decomposition of BiFeO3 and the colour of these powders (1g, 1h) progressively turns to 

brown. Besides BiFeO3 the XRD patterns show Bi25FeO40, Bi2Fe4O9, traces of monoclinic 

Bi2O3, and Bi24Fe2O39 as secondary phases [52] (Graph 2g,h). Quantitative phase analyses 

shows that after calcination at 650 °C the amount of secondary phases is about 5 wt.% and at 

750 °C the amount rises to 38 wt.%. Table 1 summarizes the phase composition of selected 

powders. Recently, Liu et al. [43] reported on a phase-pure nano-sized BiFeO3, prepared by a 

co-precipitation method, which decomposed even above 500° C. Thus the powders reported 

here have a significant higher stability. 

Fig. 4 represents the influence of both the heating rate and the annealing time at a calcination 

temperature of 550 °C for the (BiFe)-gel-I. The XRD pattern after calcination at 550 °C for 4 

h (heating rate 1 K/min) shows only reflections of BiFeO3 (Graph 4a). Whereas an annealing 

time of at least 5 h leads to secondary phases (8 wt.%) such as Bi25FeO40 and Bi2Fe4O9 

(powder 1d) as shown in graph 4b and Tab. 1. Carvalho and Tavares [54] and Morozov et al. 

[55] also found a decomposition of BiFeO3 after prolonged annealing time. Decomposition of 

the (BiFe)-gel-I at 550 °C for 1 h with a heating rate of 10 K/min results in the formation of 

BiFeO3 and small amounts (13 wt.%) of Bi2Fe4O9, Bi25FeO40 and Bi24Fe2O39 (powder 1e, 

Graph 4c) in contrast to the calcination process with 1 K/min (see Tab. 1). Analogous results 

were obtained for a calcination temperature of 600 °C. Hardy et al. [24] also reported that 

high heating rates lead to the formation of secondary phases.  

The formation of secondary phases is additionally influenced by the composition of the 

starting (BiFe)-gel. As mentioned above, during the calcination of the (BiFe)-gel-I starch and 

acetic acid act as fuel and the nitrate ions as oxidizer. As reported by Deraz [56] the fuel to 

oxidizer ratio influences the formation of secondary phases during combustion-like processes. 

During the oxidation of the organic molecules (starch and acetic acid) only the element 
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carbon changes its oxidation number. Therefore, in the following consideration the carbon to 

nitrate ratio (C/N) will be used. (BiFe)-gel-I has a C/N ratio of 8.0 and lead to the formation 

of phase-pure BiFeO3 at 550 °C (powder 1c). In contrast a C/N ratio of 1.25 in (BiFe)-gel-IA 

leads to the formation of BiFeO3 and traces of secondary phases (2 wt.%) after calcination at 

550 °C for 1 h (heating rate 1 K/min) (powder 2, Fig. 5a). Additionally, a reduction of the 

C/N ratio causes slightly increasing crystallite sizes of the BiFeO3 phase (Tab. 1). Preparing 

of the (BiFe)-gel-II (C/N = 4.8) using HNO3 instead of acetic acid and following calcination 

at 550 °C for 1 h (heating rate 1 K/min) results in the appearance of both Bi2Fe4O9 and 

Bi25FeO40 besides BiFeO3 (powder 3, Graph 5b). The amount of secondary phases was 

calculated as 16 wt.% (Tab. 1). As pointed out by Hwang and Wu [57] and Deshpande et al. 

[58] the maximum combustion temperature (T max

c ) is correlated with the fuel/oxidizer ratio. 

Increasing fuel/oxidizer (C/N) ratios from fuel lean to stoichiometric amounts leads to raising 

T max

c  values. However, very high C/N ratios (fuel rich) causes a decrease of T max

c , because of 

the high amount of gases released which dissipates heat [59]. Therefore, (BiFe)-gels with 

lower C/N ratios may lead to higher T max

c , which promotes secondary phases as mentioned 

above. The slightly larger crystallite sizes for samples with lower C/N ratios indicate higher 

T max

c  values, as seen in Tab. 1.  

Moreover, the appearance of secondary phases when HNO3 is used is not only caused by a 

lower C/N ratio, because a C/N ratio of 8.0 ((BiFe)-gel-IIA) leads to the formation of Bi- and 

Fe-rich phases (powder 4, Graph 5c). However, the amount of these phases in powder 4 is 

slightly smaller (11 wt.%) than in powder 3 (Tab. 1). The reason for that finding might be that 

the dissolving of Bi(NO)3 in an aqueous acetic acid solution leads to a more stable 

complexation between the acetic anion and the metal cation than in an aqueous HNO3 

solution. It can be supposed that the more stable complexation with the acetic anion inhibit 
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the selective precipitation of Bi- and Fe-species during the calcination process, resulting in a 

homogeneous bismuth−iron distribution. 

As a result the formation of phase-pure BiFeO3 depends not only on the calcination 

parameters, but also on the fuel/oxidizer ratio and on the conditions for preparing a stable 

bismuth nitrate solution and thus a stable (BiFe)-gel. 

  

3.2. Phase stability and densification during sintering 

To obtain ceramic bodies of BiFeO3 or materials based on BiFeO3 the conventional 

(isothermal) sintering process is widely-used [27,60,61]. Because of the low stability of nano 

BiFeO3 at elevated temperatures, both the kinetics of the decomposition process and the 

densification during sintering were investigated. Fig. 6a shows the final densities of powder 

compacts from the nano-sized powder 1c after isothermal sintering in static air. The bulk 

densities of the sintered bodies were calculated from their weight and geometric dimensions. 

The relative densities were related to the crystallographic density of 8.31 g/cm
3
 for 

rhombohedral BiFeO3 [62]. Conventional sintering (heating up with a rate of 10 K/min, 

soaking for 1 h and cooling down with 20 K/min) at temperatures between 550 and 800 °C 

resulted in ceramic bodies with relative densities up to 78 % (6.50 g/cm
3
). As seen in Fig. 6b 

conventional sintering of phase-pure powder compacts of 1c results in a partial decomposition 

of BiFeO3 to Bi2Fe4O9 and Bi25FeO40 with raising temperature. To describe the kinetics of the 

decomposition process of BiFeO3 compacts during conventional sintering up to 800 °C the 

widely-used Johnson–Mehl–Avrami–Kolmogorov (JMAK) model was used (Eq. 1) [63,64]: 

 

tnkn lnln]1ln(ln[ +⋅=−− α   (1) 

 

where α is the fraction of the decomposed BiFeO3, n the Avrami exponent, k the rate 

parameter and t the annealing time. k and n can be calculated from a plot of ln[−ln(1−α)] 
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versus lnt. The Arrhenius equation combined the rate constant k with the activation energy 

(Eq. 2): 

 

RT

E
Ak A

−= lnln   (2) 

 

where A is a pre-exponential factor, EA the activation energy, R the universal gas constant and 

T the absolute temperature. EA can be determined from the slope of lnk versus 1/T (Fig. 7). 

The activation energy for the decomposition of BiFeO3 during conventional sintering was 

calculated as EA = 337(19) kJ/mol. 

To reduce the decomposition of nano-BiFeO3 lower sintering temperatures are required. Both 

lower sintering temperatures and an improvement of the densification can be achieved 

applying a 2-step sintering process [65] as shown in the inset of Fig. 6a. For that purpose, 

powder compacts of 1c were fast heated (30 K/min) to a higher temperature (T1), then cooled 

(30 K/min) and held at a lower temperature (T2). The first sample was sintered with T1 = 770 

°C, T2 = 650 °C and a soaking time of 1 h. The ceramic has a relative density of 69 % (5.71 

g/cm
3
) and the fraction of secondary phases accounts to 19 wt.%. A second sample sintered at 

T1 = 800 °C, T2 = 550 °C and a soaking time of 3 h achieved a relative density of 80 % (6.63 

g/cm
3
) and the secondary phases increased to 31 wt.%. (Fig. 6). Compared to the conventional 

sintering the 2-step sintering process leads to ceramic bodies with higher density and to a 

lower decomposition of BiFeO3. As seen in Fig. 6 conventional sintering to a relative density 

of 69 and 80 % results in a strong decomposition of BiFeO3 with fractions of secondary 

phases of > 60 wt.% and 97 wt.%, respectively. Wang et al. [66] reported on a rapid reaction 

sintering process between Bi2O3 and Fe2O3 (liquid phase sintering) with enormous heating 

rates up to 100 K/s to prevent the formation of secondary phases. 
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3.3. Magnet measurements 

The evolution of the magnetization (M) depending on the applied field (H) at 300 K is 

demonstrated in Fig. 8a for powders 1b, 1c, and 1f, calcined at 500 °C for 5 h, 550 °C for 1 h, 

and 600 °C for 1 h, respectively. These phase-pure nano-sized BiFeO3 powders reveal large 

coercivity values (Hc) ranging from 5 to 7 kOe, whereas the remanences (Mr) are about 0.07 

emu/g. The maximal magnetization (Mmax) at 90 kOe varied between 0.61 and 0.72 emu/g. As 

mentioned above calcining temperatures above 600 °C lead to samples with increasing 

amounts of secondary phases and larger crystallite sizes. The broadness of the resulting 

hysteresis loops show a significant reduction in such away that powder 1h posses values of Hc 

= 0.24 kOe, Mr = 0.004 emu/g and Mmax = 0.50 emu/g. 

Magnetic measurements at 10 K (Fig. 8b) show Hc values between 7.3 and 10.9 kOe, 

remanences of about 0.11 emu/g, and Mmax between 0.84 and 0.67 emu/g. The hysteresis 

loops at 10 K reveal different coercivity values for decreasing (Hc(df)) and increasing field 

(Hc(if)) as demonstrated for powder 1c in the inset in Fig. 8b. This exchange bias-like 

behaviour results in a significant shift of the M−H loops (∆Hc) in the negative direction with 

respect to the origin (H = 0). The coercivity shift is defined as ∆Hc = 0.5(Hc(df) + Hc(if)) and 

shows values of 1.90 kOe (powder 1b), 1.94 kOe (powder 1c) and 2.89 kOe (powder 1f), 

respectively. ∆Hc decreases for powders 1g and 1h (calcined above 600 °C) to 1.25 and 0.063 

kOe, respectively, because of the larger crystallite.  

Measurements both at 300 K and 10 K show that the magnetization almost linearly increases 

with the applied field (H) indicating mainly an antiferromagnetic ordering of the spins [67]. 

Moreover, the formation of hysteresis loops is typical for a weak ferromagnetic characteristic 

(also called parasitic ferromagnetism [68]) as a result of the canted anti-ferromagnetic spin 

order of BiFeO3 (G-type) [69]. Additionally, as mentioned above, samples with small 

crystallite sizes (1b, 1c, 1f) show pronounced hysteresis loops than samples with larger 

crystallite sizes (1g, 1h). Since the spins at the surface have a reduced coordination, the anti-
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ferromagnetic order is disturbed at the surface. Consequently the spins at the surface are not 

fully compensated resulting in a weak ferromagnetism. The effect increases with decreasing 

crystallite sizes (increasing surface-volume ratio). On the other hand, the observed weak 

ferromagnetism is also caused by the suppression of the spiral spin structure in particles lower 

than 62 nm [70,71]. The observed exchange bias effect at 10 K is caused by the exchange 

coupling between the ferromagnetic surface and the anti-ferromagnetic core [71]. 

  

 

3.3. Diffuse reflectance measurements 

Fig. 9 shows the diffuse reflectance spectra of the BiFeO3 powders 1b, 1c and 1f, 

respectively. The Kubelka−Munk function (4) [72] was used for analysis of the spectra.  

 

F(R) = 
s

α
= 

R

R

2

)1( 2
−

  (4) 

 

where F(R) is the Kubelka−Munk function, R the reflectance, α the absorption coefficient and 

s is the scattering factor. Since the scattering factor is wavelength independent, F(R) is 

proportional α [73]. The absorption coefficient α is connected with the band gap energy 

according to equation 5 [74].  

 

n

gEhkh
/1)( −= ννα   (5) 

 

  

where k is an energy-independent constant, Eg the optical band gap. The exponent n is 

determined by the type of transition (n = 2 direct allowed, n = 2/3 direct forbidden, n = 1/2 

indirect allowed, n = 1/3 indirect forbidden). The McLean analysis [75,76] of the absorption 
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edge was applied to find the type of transition. As mentioned above F(R) is proportional to α  

and the exponent n can be determined by plotting nhRF ))(( ν⋅  vs. νh . The best fit to a 

straight line near the absorption edge was found assuming a direct allowed transition (n = 2) 

in accordance with reports by Li et al. [77], Basu et al. [78] and Catalan and Scott [79]. From 

a plot of 2))(( νhRF ⋅  vs. νh  (inset in Fig. 9) the optical band gap can be obtained by 

extrapolating the slope to F(R) → 0. 

The band gap energies for the phase-pure BiFeO3 powders were determined as 2.29(4) eV 

(powder 1b), 2.28(4) eV (powder1c), and 2.27(6) eV (powder 1f). The energies of the optical 

band gaps do not significantly differ from each other because of the narrow crystallite sizes of 

36−41 nm of the powders. The values of the band gaps are comparable with previous 

literature data [31,77,79]. 

 

 

Conclusion 

BiFeO3 powders were synthesized by a combustion-like method using metal-nitrates, acetic 

acid, and starch as complexing reagent and gellant. Calcination of the resulting (BiFe)-gel 

with a heating of 1K/min between 500 to 600 °C leads to phase-pure nano-sized BiFeO3 

powders. Calcination at 550 °C for 1 h leads to powder 1c with SBET = 9.3 m
2
/g and a 

crystallite size of about 37 nm. TEM images show particles mainly in the range of 30−50 nm. 

Prolonged heat treatment as well as calcination above 600 °C leads to the formation of 

secondary phases. The evolution of secondary phases also depends on the fuel/oxidizer ratio 

as well as on the heating rate. Additionally, phase-pure samples were only obtained using 

acetic acid (instead of HNO3) for preparing a stable bismuth iron gel. The decomposition of 

nano BiFeO3 to Bi2Fe4O9 and Bi25FeO40 was investigated during sintering of compacts from 

powder 1c. The kinetics of the decomposition process reveals an activation energy of 337(19) 
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kJ/mol using the JMAK model. Magnetic measurements of the phase-pure BiFeO3 powders 

show a behaviour typical for a canted antiferromagnetic material. At 300 K maximal 

magnetizations at 90 kOe of about 0.7 emu/g were found. The observed hysteresis loops (Hc = 

5−7 kOe) indicating a weak ferromagnetic characteristic. Measurements at 10 K reveals an 

exchange-bias-like behaviour of the hysteresis curves resulting in a shift of the coercivities of 

∆Hc = 1.9−2.9 kOe towards negative field. The optical band gap (direct allow transition) of 

the nanocrystalline phase-pure BiFeO3 powders was determined as 2.28(4) eV. 
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Tab. 1: Preparation conditions, phase compositions and crystallite sizes for selected 

BiFeO3 samples 

Powder Synthese (gel) C/N
1) 

Calcination procedure Composition
2)

 dcryst 

(nm)
3)

 

1a (BiFe)-gel-I 8.0 
4)

  1 K/min, 500 °C, 1 h BF + SP (9 wt.%) − 

1b (BiFe)-gel-I 8.0 
4)

 1 K/min, 500 °C, 5 h BF 36 

1c (BiFe)-gel-I 8.0 
4)

 1 K/min, 550 °C, 1 h BF 37 

1d (BiFe)-gel-I 8.0 
4)

 1 K/min, 550 °C, 5 h BF + SP (8 wt.%) − 

1e (BiFe)-gel-I 8.0 
4)

 10 K/min, 550 °C, 1 h BF + SP (13 wt.%) − 

1f (BiFe)-gel-I 8.0 
4)

 1 K/min, 600 °C, 1 h BF  41 

1g (BiFe)-gel-I 8.0 
4)

 1 K/min, 650 °C, 1 h BF + SP (5 wt.%) 70 

1h (BiFe)-gel-I 8.0 
4)

 1 K/min, 750 °C, 1 h BF + SP (38 wt.%) 243 

      

2 (BiFe)-gel-IA 1.25 
4)

 1 K/min, 550 °C, 1 h BF + SP (2 wt.%) 48 

3 (BiFe)-gel-II 4.8 
5)

 1 K/min, 550 °C, 1 h BF + SP (16 wt.%) 50 

4 (BiFe)-gel-IIA 8.0 
5)

 1 K/min, 550 °C, 1 h BF + SP (11 wt.%) 36 

1) C/N = carbon/nitrate ratio 

2) BF = BiFeO3; SP = secondary phases (weight proportion) 

3) volume-weight-crystallite size of the BiFeO3 phase 

4) using acetic acid 

5) using nitric acid 
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