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Abstract. Using the method of compression we improve on the current lower

bound of Heilbronn’s triangle problem. In particular, by letting ∆(s) denotes
the minimal area of the triangle induced by s points in a unit disc. Then we

have the lower bound

∆(s)�
log s

s
√
s
.

1. Introduction

Let D denotes any convex shape in the plane and ∆(S) denotes the minimal area
of the triangle induced by a set of s points in D so that ∆(s) denotes the supremum
of all the ∆(S). Then Heilbronn conjectured what is now known as Heilbronn’s
triangle problem, which states

Conjecture 1.1. The minimal area of the triangle induced by s points in D satisfies

∆(s) = O

(
1

s2

)
.

Indeed Erdős had shown earlier to the effect of Heilbronn’s conjecture the lower
bound

∆(s)� 1

s2
.

This lower bound would have vindicated Heilbronn’s conjectured upper bound as
the sharpest if it had been proven to be true. Heilbronn’s triangle problem had
long remained open and it was indeed a breakthrough in 1982 when the first chunk
of this problem was solved by Komlos, Pintz and Szemeredi [1]. In particular, they
constructed a set of points in D whose minimal area of their induced triangles,
denoted ∆(s), satisfies the lower bound (see [1])

∆(s)� log s

s2
.

What remains apparently open now is the asymptotic growth rate of the minimal
area of the triangle determined by a finite set of points in D. To that effect the quest
for improved lower and upper bounds are of worthy pursuit. The first non-trivial
upper bound was obtained by Roth [4] of the form

∆(s)� 1

s
√

log log s
.
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A slight refinement of a method in [3] eventually yields the best currently known
upper bound (see [2])

∆(s)� ec
√
log s

s
8
7

.

Using a completely new idea which is very fundamental, we obtain an improved
lower bound for the minimal area of the triangle induced by s points in a unit disc,
by considering a particular type of configuration:

Theorem 1.1. Let ∆(s) denotes the minimal area of the triangle formed by s points
in the unit disc. Then we have the lower bound

∆(s)� log s

s
√
s
.

2. Preliminaries and background

Definition 2.1. By the compression of scale 1 ≥ m > 0 (m ∈ R) fixed on Rn, we
mean the map V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= xj for i 6= j and xi 6= 0 for all i = 1, . . . , n.

Remark 2.2. The notion of compression is in some way the process of rescaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression roughly
speaking pushes points very close to the origin away from the origin by certain scale
and similarly draws points away from the origin close to the origin. Intuitively,
compression induces some kind of motion on points in the Euclidean space Rn for
n ≥ 2.

Proposition 2.1. A compression of scale 1 ≥ m > 0 with Vm : Rn −→ Rn is a
bijective map.

Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition of
the map. Thus the map is bijective. �

2.1. The mass of compression. In this section we recall the notion of the mass
of compression on points in space and study the associated statistics.

Definition 2.3. By the mass of a compression of scale 1 ≥ m > 0 (m ∈ R) fixed,
we mean the map M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.
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It is important to notice that the condition xi 6= xj for (x1, x2, . . . , xn) ∈ Rn is
not only a quantifier but a requirement; otherwise, the statement for the mass of
compression will be flawed completely. To wit, suppose we take x1 = x2 = · · · = xn,
then it will follows that Inf(xj) = Sup(xj), in which case the mass of compression
of scale m satisfies

m

n−1∑
k=0

1

Inf(xj)− k
≤M(Vm[(x1, x2, . . . , xn)]) ≤ m

n−1∑
k=0

1

Inf(xj) + k

and it is easy to notice that this inequality is absurd. By extension one could
also try to equalize the sub-sequence on the bases of assigning the supremum and
the infimum and obtain an estimate but that would also contradict the mass of
compression inequality after a slight reassignment of the sub-sequence. Thus it
is important for the estimate to make any good sense to ensure that any tuple
(x1, x2, . . . , xn) ∈ Rn must satisfy xi 6= xj for all 1 ≤ i, j ≤ n. Hence in this paper
this condition will be highly extolled. In situations where it is not mentioned,
it will be assumed that the tuple (x1, x2, . . . , xn) ∈ Rn is such that xi 6= xj for
1 ≤ i, j ≤ n.

Lemma 2.4. We have ∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
where γ = 0.5772 · · · .

Remark 2.5. Next we prove upper and lower bounding the mass of the compression
of scale 1 ≥ m > 0.

Proposition 2.2. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for each 1 ≤ i ≤ n and
xi 6= xj for i 6= j, then we have

m log

(
1− n− 1

sup(xj)

)−1
�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum. The lower estimate
also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�
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Definition 2.6. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m > 0, denoted G ◦ Vm[(x1, x2, . . . , xn)], we
mean the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 − m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
3. The ball induced by compression

In this section we introduce the notion of the ball induced by a point (x1, x2, . . . , xn) ∈
Rn under compression of a given scale. We launch more formally the following lan-
guage.

Definition 3.1. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= xj for all 1 ≤ i < j ≤ n and
xi 6= 0 for all 1 ≤ i ≤ n. Then by the ball induced by (x1, x2, . . . , xn) ∈ Rn under
compression of scale 1 ≥ m > 0, denoted B 1

2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] we

mean the inequality∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, x2 +

m

x2
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ < 1

2
G ◦ Vm[(x1, x2, . . . , xn)].

A point ~z = (z1, z2, . . . , zn) ∈ B 1
2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] if it satisfies the

inequality.

Remark 3.2. Next we prove that smaller balls induced by points should essentially
be covered by the bigger balls in which they are embedded. We state and prove
this statement in the following result.

In the geometry of balls induced under compression of scale m > 0, we assume
implicitly that

0 < m ≤ 1.

For simplicity we will on occasion choose to write the ball induced by the point
~x = (x1, x2, . . . , xn) under compression as

B 1
2G◦Vm[~x][~x].

We adopt this notation to save enough work space in many circumstances. We first
prove a preparatory result in the following sequel. We find the following estimates
for the compression gap useful.

Proposition 3.1. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0 for j = 1, . . . , n,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
+m2M◦ V1[(x21, . . . , x

2
n)]− 2mn.

In particular, if m = m(n) = o(1) as n −→∞, then we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
− 2mn+O

(
m2M◦ V1[(x21, . . . , x

2
n)]

)
for ~x ∈ Rn with xi ≥ 1 for each 1 ≤ i ≤ n.

Proposition 3.1 offers us an extremely useful identity. It allows us to pass from
the gap of compression on points to the relative distance to the origin. It tells us
that points under compression with a large gap must be far away from the origin
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than points with a relatively smaller gap under compression. That is to say, the
inequality

G ◦ Vm[~x] < G ◦ Vm[~y]

with m := m(n) = o(1) as n −→ ∞ if and only if ||~x|| . ||~y|| for ~x, ~y ∈ Rn with
xi ≥ 1 for all 1 ≤ i ≤ n. This important transference principle will be mostly put
to use in obtaining our results. In particular, we note that in the latter case, we
can write the asymptotic

G ◦ Vm[(x1, x2, . . . , xn)]2 ∼M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
= ||~x||2.

Lemma 3.3 (Compression estimate). Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with
xi ≥ 1 for all 1 ≤ i ≤ n with xi 6= xj (i 6= j). If m := m(n) = o(1) as n −→ ∞,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2j ) +m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn

and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2j ) +m2 log

(
1− n− 1

sup(x2j )

)−1
− 2mn.

Theorem 3.4. Let ~z = (z1, z2, . . . , zn) ∈ Rn with zi 6= zj for all 1 ≤ i < j ≤ n with
zi ≥ 1 for all 1 ≤ i ≤ n and m := m(n) = o(1) as n −→∞. Then ~z ∈ B 1

2G◦Vm[~y][~y]

with ||~z|| < ||~y|| if and only if

G ◦ Vm[~z] ≤ G ◦ Vm[~y]

with ||~y − ~z|| < ε for some ε > 0.

Proof. Let ~z ∈ B 1
2G◦Vm[~y][~y] for ~z = (z1, z2, . . . , zn) ∈ Rn with zi 6= zj for all

1 ≤ i < j ≤ n and zi ≥ 1 for all 1 ≤ i ≤ n such that ||~y|| > ||~z||. Suppose on the
contrary that

G ◦ Vm[~z] > G ◦ Vm[~y],

then it follows that ||~y|| . ||~z||, which is absurd. In this case, we can take ε :=
1
2G ◦ Vm[~y]. Conversely, suppose

G ◦ Vm[~z] ≤ G ◦ Vm[~y]

then it follows from Proposition 3.1 that ||~z|| . ||~y||. Under the requirement ||~y −
~z|| < ε for some ε > 0, we obtain the inequality∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣~y − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣+ ε

=
1

2
G ◦ Vm[~y] + ε

with m = m(n) = o(1) as n −→∞. By choosing ε > 0 sufficiently small, we deduce
that ~z ∈ B 1

2G◦Vm[~y][~y] and the proof of the theorem is complete. �

In the geometry of balls under compression, we will assume that n is sufficiently
large for Rn. In this regime, we will always take the scale of compression m :=
m(n) = o(1) as n −→∞.
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Theorem 3.5. Let ~x = (x1, x2, . . . , xn) ∈ Rn with xi 6= xj for all 1 ≤ i < j ≤ n
with xi ≥ 1 for each 1 ≤ i ≤ n. If ~y ∈ B 1

2G◦Vm[~x][~x] with ||~y|| < ||~x|| for ||~y−~x|| < δ

for δ > 0 sufficiently small, then

B 1
2G◦Vm[~y][~y] ⊆ B 1

2G◦Vm[~x][~x]

for m := m(n) = o(1) as n −→∞.

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] with ||~y|| < ||~x|| for ||~y − ~x|| < δ, then it follows

from Theorem 3.4 that G ◦Vm[~x] & G ◦Vm[~y] with ||~y−~x|| < δ for δ > 0 sufficiently
small. Suppose for the sake of contradiction that

B 1
2G◦Vm[~y][~y] 6⊆ B 1

2G◦Vm[~x][~x].

Then there must exist some ~z ∈ B 1
2G◦Vm[~y][~y] with ||~z|| < ||~y|| such that ~z /∈

B 1
2G◦Vm[~x][~x] with ||~z − ~y|| < ε for ε > 0 sufficiently small. It is not very difficult to

see that this point does exist. Notice that

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[Vm[~y]][Vm[~y]]

so that under the regime where the two balls overlap then either ~y /∈ B 1
2G◦Vm[~x][~x]

or Vm[~y] /∈ B 1
2G◦Vm[~x][~x] since these points are symmetric to the center of ball.

However in the latter case, we choose the point ~z such that to ||Vm[~y]|| < ||~z||. We
can assume without loss of generality that ~y /∈ B 1

2G◦Vm[~x][~x] so that we choose the

point ~z ∈ B 1
2G◦Vm[~y][~y] with ||~z|| < ||~y|| such that ||~z − ~y|| < ε for ε > 0 sufficiently

small, then ~z 6∈ B 1
2G◦Vm[~x][~x]. It follows from Theorem 3.4 that

G ◦ Vm[~z] & G ◦ Vm[~x]

with ||~z − ~x|| < ε + δ. It follows from Theorem 3.4 that ~z ∈ B 1
2G◦Vm[~x][~x] since

ε, δ are taken to be sufficiently small. This is inconsistent with ~z 6∈ B 1
2G◦Vm[~x][~x].

The case where the balls do not overlap is easier and can be treated in the same
manner. This completes the proof. �

Remark 3.6. Theorem 3.5 tells us that points confined in certain balls induced
under compression should by necessity have their induced ball under compression
covered by these balls in which they are contained.

3.1. Interior points and the limit points of balls induced under compres-
sion. In this section we launch the notion of an interior and the limit point of
balls induced under compression. We study this notion in depth and explore some
connections.

Definition 3.7. Let ~y = (y1, y2, . . . , yn) ∈ Rn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then a point ~z ∈ B 1

2G◦Vm[~y][~y] is an interior point if

B 1
2G◦Vm[~z][~z] ⊆ B 1

2G◦Vm[~x][~x]

for most ~x ∈ B 1
2G◦Vm[~y][~y]. An interior point ~z is then said to be a limit point if

B 1
2G◦Vm[~z][~z] ⊆ B 1

2G◦Vm[~x][~x]

for all ~x ∈ B 1
2G◦Vm[~y][~y]

Remark 3.8. Next we prove that there must exist an interior and limit point in any
ball induced by points under compression of any scale in any dimension.
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Theorem 3.9. Let ~x = (x1, x2, . . . , xn) ∈ Rn with xi 6= xj for all 1 ≤ i < j ≤ n
with yi ≥ 1 for all 1 ≤ i ≤ n. Then the ball B 1

2G◦Vm[~x][~x] contains an interior point

and a limit point.

Proof. Let ~x = (x1, x2, . . . , xn) ∈ Rn with xi 6= xj for all 1 ≤ i < j ≤ n with xi ≥ 1
for all 1 ≤ i ≤ n and suppose on the contrary that B 1

2G◦Vm[~x][~x] contains no limit

point. Then pick

~z1 ∈ B 1
2G◦Vm[~x][~x].

with ||~z1|| < ||~x|| such that ||~z1 − ~x|| < ε for ε > 0 sufficiently small. Then by
Theorem 3.5 and Theorem 3.4, it follows that

B 1
2G◦Vm[~z1][~z1] ⊂ B 1

2G◦Vm[~x][~x]

with G ◦Vm[~z1] . G ◦Vm[~x]. Again pick ~z2 ∈ B 1
2G◦Vm[~z1][~z1] with ||~z2|| < ||~z1|| such

that ||~z2 − ~z1|| < δ for δ > 0 sufficiently small. Then by employing Theorem 3.5
and Theorem 3.4, we have

B 1
2G◦Vm[~z2][~z2] ⊂ B 1

2G◦Vm[~z1][~z1]

with G◦Vm[~z2] . G◦Vm[~z1]. By continuing the argument in this manner we obtain
the infinite descending sequence of the gap of compression

G ◦ Vm[~x] & G ◦ Vm[~z1] & G ◦ Vm[~z2] & · · · & G ◦ Vm[~zn] & · · ·

thereby ending the proof of the theorem. �

Proposition 3.2. The point ~x = (x1, x2, . . . , xn) with xi = 1 for each 1 ≤ i ≤ n is
the limit point of the ball B 1

2G◦V1[~y][~y] for any ~y = (y1, y2, . . . , yn) ∈ Rn with yi > 1

for each 1 ≤ i ≤ n.

Proof. Applying the compression V1 : Rn −→ Rn on the point ~x = (x1, x2, . . . , xn)
with xi = 1 for each 1 ≤ i ≤ n, we obtain V1[~x] = (1, 1, . . . , 1) so that G ◦V1[~x] = 0
and the corresponding ball induced under compression B 1

2G◦V1[~x][~x] contains only

the point ~x. It follows by Definition 3.9 the point ~x must be the limit point of the
ball B 1

2G◦V1[~x][~x]. It follows that

B 1
2G◦V1[~x][~x] ⊆ B 1

2G◦V1[~y][~y]

for any ~y = (y1, y2, . . . , yn) ∈ Rn with yi > 1 for all 1 ≤ i ≤ n. For if the contrary

B 1
2G◦V1[~x][~x] 6⊆ B 1

2G◦V1[~y][~y]

holds for some ~y = (y1, y2, . . . , yn) ∈ Rn with yi > 1 for each 1 ≤ i ≤ n, then there
must exists some point ~z ∈ B 1

2G◦V1[~x][~x] such that ~z 6∈ B 1
2G◦V1[~y][~y]. Since ~x is the

only point in the ball B 1
2G◦V1[~x][~x], it follows that

~x 6∈ B 1
2G◦V1[~y][~y]

which is inconsistent with the fact that ~x is the limit point of the ball. �
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3.2. Admissible points of balls induced under compression. We launch the
notion of admissible points of balls induced by points under compression. We study
this notion in depth and explore some possible connections.

Definition 3.10. Let ~y = (y1, y2, . . . , yn) ∈ Rn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then ~y is said to be an admissible point of the ball B 1

2G◦Vm[~x][~x] if∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ =
1

2
G ◦ Vm[~x].

Remark 3.11. It is important to notice that the notion of admissible points of balls
induced by points under compression encompasses points on the ball. These points
in geometrical terms basically sit on the outer of the induced ball. Next we show
that all balls can in principle be generated by their admissible points.

Theorem 3.12. Let ~x ∈ Rn with xi 6= xj (i 6= j) such that xi ≥ 1 for all 1 ≤ i ≤ n
and set m := m(n) = o(1) as n −→∞. The point ~y ∈ B 1

2G◦Vm[~x][~x] with ||~y|| < ||~x||
such that ||~y − ~x|| < ε for ε > 0 sufficiently small is admissible if and only if

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] with ||~y|| < ||~x|| such that ||~y − ~x|| < ε for ε > 0

sufficiently small be admissible and suppose on the contrary that

B 1
2G◦Vm[~y][~y] 6= B 1

2G◦Vm[~x][~x].

Without loss of generality, we can choose some ~z ∈ B 1
2G◦Vm[~x][~x] with ||~z|| < ||~x||

such that

~z /∈ B 1
2G◦Vm[~y][~y].

for ||~z − ~x|| < δ for δ > 0 sufficiently small. Applying Theorem 3.4, we obtain the
inequality

G ◦ Vm[~y] . G ◦ Vm[~x].

This already contradicts the equality G ◦Vm[~y] = G ◦Vm[~x]. The latter equality of
compression gaps follows from the requirement that the balls are indistinguishable.
Conversely, suppose

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x]. Then it follows that the point ~y lives on the outer of
the two indistinguishable balls and so must satisfy the equality∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣~z − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
=

1

2
G ◦ Vm[~x].

It follows that

1

2
G ◦ Vm[~x] =

∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
and ~y is indeed admissible, thereby ending the proof. �
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Next we obtain an equivalent notion of the area of the circle induced by points
under compression in the plane R2 in the following result.

Proposition 3.3. Let ~x ∈ R2 with xi 6= 0 for each 1 ≤ i ≤ 2. Then the area of the
circle induced by point ~x under compression of scale m, denote by Vm[~x] is given
by

δ(Vm[~x]) =
π(G ◦ Vm[~x])2

4
.

Proof. This follows from the mere definition of the area of a circle and noting that
the radius r of the circle induced by the point ~x ∈ R2 under compression is given
by

r =
G ◦ Vm[~x]

2
.

�

4. The lower bound

Theorem 4.1. Let ∆(s) denotes the minimal area of the triangle formed by s points
in the unit disc. Then we have the lower bound

∆(s)� log s

s
√
s
.

Proof. First let s ≥ 4 and let 1 ≥ m := m(s) > 0 be fixed. Pick arbitrarily a point
(x1, x2) = ~x ∈ R2 with xj > 1 for 1 ≤ j ≤ 2 so that x1 6= x2 and set G ◦Vm[~x] < 1.
This ensures the circle induced under compression is contained in some unit disc.
Next we apply the compression of scale 1 ≥ m > 0, given by Vm[~x] and construct
the circle induced by the compression given by

B 1
2G◦Vm[~x][~x]

with radius (G◦Vm[~x])
2 . On this circle locate (s − 3) admissible points so that the

chord joining each pair of adjacent (s− 1) admissible points including ~x and Vm[~x]
are equidistant. Let us now join each of the (s− 1) admissible point considered to
the center of the circle given by

~y :=
1

2

(
x1 +

m

x1
, x2 +

m

x2

)
.

Invoking Proposition 3.3, the area of the circle induced under compression is given
by

δ(Vm[~x]) =
π(G ◦ Vm[~x])2

4
.

We join all pairs of adjacent admissible points considered by a chord and produce
(s − 1) triangles of equal area. We note that we can use the area of each sector
formed from this construction to approximate the area of each of the triangles
inscribed in the sector as we increase the number of such admissible points on the
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circle. It follows that the area of each sector formed must be the same and given
by

A : =
π(G ◦ Vm[~x])2

4× (s− 1)

�
2Inf(x2j ) +m2 log

(
1− 1

sup(x2
j )

)−1
− 4m

4× s
.

The lower bound follows by taking

m :=
log2 s

4s
< 1 and Inf(xj) := 1 +

log s√
s

since points ~x = (x1, x2) can only have a compression gap G◦Vm[~x] < 1 if x1 = 1+δ
and x2 = 1 + ε for any small δ, ε > 0. �

Albeit Heilbronn’s triangle problem is a max − min problem, the area of each
triangle espoused in the construction is the same, to which the underlying condition
has little relevance in this particular framework.
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