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Abstract

Given a probability distribution, its corresponding information volume is

Shannon entropy. However, how to determine the information volume of a given

mass function is still an open issue. Based on Deng entropy, the information

volume of mass function is presented in this paper. Given a mass function, the

corresponding information volume is larger than its uncertainty measured by

Deng entropy. The so called Deng distribution is defined as the BPA condition

of the maximum Deng entropy. The information volume of Deng distribution is

called the maximum information volume, which is lager than the maximum Deng

entropy. In addition, both the total uncertainty case and the Deng distribution

have the same information volume, namely, the maximum information volume.

Some numerical examples are illustrated to show the efficiency of the proposed

information volume of mass function.

Keywords: information volume, mass function, Shannon entropy, Deng

entropy, Deng distribution.

1. Introduction

In the past decades, plenty of theories have been developed for expressing

and dealing with the uncertainty in the uncertain environment, for instance,
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probability theory [1], fuzzy set theory [2], Dempster-Shafer evidence theory

[3, 4], rough sets [5], and D numbers [6].5

Entropy function is very important in uncertainty modelling. Since firstly

derived from thermodynamics, different kinds of entropy have been proposed,

such as Shannon entropy [7], Tsallis entropy [8], nonadditive entropy [9]. Re-

cently, a new entropy, called Deng entropy [10], is presented for measuring the

uncertainty in evidence theory. Deng entropy is the generalization of Shannon10

entropy. Compared with traditional methods, Deng entropy is more reasonable,

and it takes both discord and non-specificity into account.

Given a probability distribution, its corresponding information volume can

be measured by Shannon entropy. However, how to determine the information

volume of mass function in evidence theory is still an open issue. In this paper,15

an information volume of mass function based on Deng entropy is presented.

The information volume of mass function is constructed with a new distribution,

named as Deng distribution. If the mass function is degenerated into probability

distribution, the proposed information volume is the same as Shannnon entropy.

The rest of this paper is organized as follows. In section 2, some preliminaries20

are briefly reviewed. In section 3, based on Deng entropy, the information

volume of mass function is proposed. In section 4, numerical examples are

expounded to illustrated the proposed method and definition. In section 5, we

have a brief conclusion.

2. Preliminaries25

Several preliminaries are briefly introduced in this section, including mass

function, Deng entropy, the maximum Deng entropy, fuzzy sets and intuitionistic

fuzzy sets.

2.1. Dempster-Shafer evidence theory

Dempster-Shafer evidence theory[3, 4] can be used to deal with uncertainty.30

Besides, evidence theory satisfies the weaker conditions than the probability the-
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ory, which provides it with the ability to express uncertain information directly.

Some basic conceptions of evidence theory are given as follows:

Definition 2.1: Frame of discernment and its power set

Let Θ, called the frame of discernment, denote an exhaustive nonempty set

of hypotheses, where the elements are mutually exclusive. Let the set Θ have N

elements, which can be expressed as:

Θ = {θ1, θ2, θ3, · · · , θN} (1)

The power set of Θ, denoted as 2Θ, contains all possible subsets of Θ and

has 2N elements, and 2Θ is represented by

2Θ = {A1, A2, A3, · · · , A2N }

= { ∅, {θ1}, {θ2}, · · · , {θN}, {θ1, θ2},

{θ1, θ3}, · · · , {θ1, θN}, · · · ,Θ } (2)

where the element Ak is called the focal element of Θ, if Ak is nonempty.35

Definition 2.2: Mass function

A mass function is also called Basic probability assignment (BPA), which

map m from 2Θ to [0, 1], and it is defined as follows:

m : 2Θ → [0, 1] (3)

which is constrained by the following conditions:

∑
A∈2Θ

m(A) = 1 (4)

m(∅) = 0 (5)
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2.2. Shannon entropy

In the field of classical probability theory, Shannon entropy [7] is often used

to measure the uncertainty of a probability distribution. Consider a probability40

distribution P defined on the set Θ = {H1,H2,H3, · · · ,HN}.

Definition 2.5: Shannon entropy

Shannon entropy Hs(P ) is defined as follows:

Hs(P ) =
∑
θ∈Θ

P (θ) log(
1

P (θ)
). (6)

where
∑

θ∈Θ P (θ) = 1 and P (θ) ∈ [0, 1].

Usually, the base of logarithm is 2, and entropy has the unit of bit. It’s not

hard to find that Hs(P ) is on the scale [0, logN ].45

2.3. Deng entropy

In information theory, entropy can be used to measure the uncertainty of a

system. Recently, a novel entropy, named as Deng entropy [10], is proposed to

measure the uncertainty in evidence theory.

Definition 2.5: Deng entropy50

Deng entropy is defined as:

HDE(m) = −
∑
A∈2Θ

m(A) log(
m(A)

2|A| − 1
) (7)

where |A| is the cardinal of a certain focal element A.

Deng entropy is the generalization of Shannon entropy. When every focal

element is singleton, Deng entropy degenerates into Shannon entropy.

Through a simple transformation, Eq.(7) can be rewritten as follows:

HDE(m) =
∑
A∈2Θ

log(2|A| − 1)−
∑
A∈2Θ

m(A) logm(A) (8)

where
∑

A∈2Θ log(2|A| − 1) and −
∑

A∈2Θ m(A) logm(A) are measurements of

nonspecificity and discord, respectively. As a result, Deng entropy is a composite55
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measurement of nonspecificity and discord, which means that it is a tool for

measuring total uncertainty.

2.4. The maximum Deng entropy

Assume A is the focal element of a certain frame of discernment Θ and m(A)

is the BPA for A. According to [11], the analytic solution of the maximum Deng60

entropy and the conditions of BPA distribution is as follows:

Theorem 2.1: The analytic solution of the maximum Deng Entropy and its

BPA distribution

If and only if m(A) = (2|A|−1)∑
A∈2Θ (2|A|−1)

, Deng entropy reaches its maximum

value, and the analytic solution of the maximum Deng entropy is

HMDE(m) = log
∑
A∈2Θ

(2|A| − 1) (9)

3. Information volume of mass function65

Given a probability distribution, the associated information volume can be

measured by Shannon entropy. However, how to measure the information vol-

ume of a given mass function is still an open issue.

In this section, firstly, we define Deng distribution as the BPA condition of

the maximum Deng entropy. Then, based on Deng entropy, the information70

volume of mass function is proposed.

3.1. The definition of Deng distribution

The maximum Deng entropy and the BPA condition of it have been analyzed

in [11]. However, the terminology, the BPA condition of the maximum Deng

entropy, is not convenient for discussing. As a result, we define Deng distribution75

as follows:

Definition 3.1: Deng distribution
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Deng distribution is defined as

mD(A) =
(2|A| − 1)∑

A∈2Θ(2
|A| − 1)

(10)

which is the BPA distribution of the maximum Deng entropy. Namely, if and

only if under this conditions, Deng entropy can reach its maximum value.

3.2. The definition of the information volume of mass function80

Definition 3.2: The definition of the information volume of mass function

Let the frame of discernment be Θ = {θ1, θ2, θ3, · · · , θN}. Use index i to

denote the times of this loop, and use m(Ai) to denote different mass function

of different loops. Based on Deng entropy, the information volume of mass

function can be calculated by following steps:85

step 1: Input mass function m(A0).

step 2: Continuously separate the mass function of the element whose cardinal

is larger than 1 until convergence. Concretely, repeat the loop from step

2-1 to step 2-3 until Deng entropy is convergent.

step 2-1: Focus on the element whose cardinal is larger than 1, namely,

|Ai| > 1. And then, separate its mass function based on the

proportion of Deng distribution:

mD(Ai) =
(2|Ai| − 1)∑

Ai∈2Θ(2
|Ai| − 1)

(11)

For example, given a focal element Ai−1 = {θx, θy} and its

mass function m(Ai−1), the separating proportion is that 1
5 :

1
5 : 3

5 . The ith times of separation divides m(Ai−1) and yields

following new mass function: m(Xi), m(Yi), m(Zi), where

Xi = {θx}, Yi = {θy} and Zi = {θx, θy}. In addition, they
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satisfy these equations:

m(Xi) +m(Yi) +m(Zi) =m(Ai−1) (12)

m(Xi) : m(Yi) : m(Zi) =
1

5
:
1

5
:
3

5
(13)

step 2-2: Based on Deng entropy, calculate the uncertainty of all the90

mass functions except for those who have been divided. The

result is denoted as Hi(m).

step 2-3: Calculate ∆i = Hi(m)−Hi−1(m). When ∆i satisfies following

condition, jump out of this loop.

∆i = Hi(m)−Hi−1(m) < ε (14)

where ε is the allowable error.

step 3: Output HIV−mass(m) = Hi(m), which is the information volume of the

mass function.95

3.3. The maximum information volume of mass function

Theorem 3.1: The maximum information volume of mass function

If and only if the mass function is Deng distribution mD(A), the information

volume achieve its maximum value, which is called the maximum information

volume of mass function HMIV−mass(m).100

4. Numerical examples and discussions

In this section, some examples are expounded to better understand the defi-

nition for the proposed information volume of mass function, and the discussion

is followed after every example. In the following examples, the base of the

logarithmic function is 2, and the allowable error is 0.001.105

Example 4.1:

Consider the frame of discernment be U = {θ1, θ2}, X = {θ1} and Y = {θ2}

be singletons. Let the mass function be m0(X) = m0(Y ) = 1
5 and m0(U) = 3

5 .
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Figure 1: The procedure of from step 2-1 to step 2-3

The information volume of this mass function can be calculated by Def-

inition 3.2, whose calculating procedure is illustrated in Figure 1. For the110

convenience of comprehension, the calculating procedure can be abstracted as

a directed acyclic graphical model shown in Figure 2.

Then, the convergence procedure of Hi(m) is listed in Table 1.

Table 1: The convergence procedure of Hi(m)

i Hi(m) i Hi(m)

1 2.321928 8 3.396431
2 2.764107 9 3.408809
3 3.029415 10 3.416236
4 3.188600 11 3.420692
5 3.284110 12 3.423366
6 3.341417 13 3.424970
7 3.375801 14 3.425933

According to Table 1, when we continuously separate the BPA of the element

whose cardinal is larger than 1, the ∆i of Deng entropy becomes smaller and115

smaller. When i = 14, Hi(m)−Hi−1(m) < 0.001, which means that Hi(m) fi-

nally converges to 3.425933. Hence the information volume of this mass function
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Figure 2: The directed acyclic graphical model

is HIV−mass(m) = 3.425933.

Example 4.2:

Consider the focal element be X = {θ1}, Y = {θ2} and Z = {θ3}. Let the120

mass function be m0(X) = m0(Y ) = m0(Z) = 1
3 .

Because there is no focal element whose cardinal is larger than 1, the step

2-1 can be skipped for all the times of the loop. Then, in step 2-2, use Deng

entropy to calculate the uncertainty of this mass function:

Hi(m) = −1

3
log2(

1

3
)− 1

3
log2(

1

3
)− 1

3
log2(

1

3
) = 1.585 (15)

After going through the loop again, the newHi(m) is also 1.585 since step 2-1

is always skipped. As a result, we escape from the loop and get the information

volume of this mass function HIV−mass(m) = 1.585.

Actually, this form of mass function is the probability distribution P1 =125
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P2 = P3 = 1
3 . Hence, when the mass function degenerates into the probability

distribution, the value of HIV−mass(m) is identical to the Shannon entropy.

Example 4.3:

Consider the frame of discernment be Θ = {θ1, θ2, θ3}. Let the mass func-

tion be m0({θ1}) = m0({θ2}) = m0({θ3}) = m0({θ1, θ2}) = m0({θ1, θ3}) =130

m0({θ2, θ3}) = m0({θ1, θ2, θ3}) = 1
7 .

The information volume of this mass function can be calculated by Defini-

tion 3.2. The convergence procedure of Hi(m) is listed in Table 2.

Table 2: The convergence procedure of Hi(m)

i Hi(m) i Hi(m)

1 3.887675 9 5.178227
2 4.409314 10 5.187146
3 4.724509 11 5.192498
4 4.914440 12 5.195709
5 5.028700 13 5.197636
6 5.097366 14 5.198792
7 5.138606 15 5.199486
8 5.163366

According to Table 2, when i = 15, Hi(m)−Hi−1(m) < 0.001, which means

that Hi(m) finally converges to 5.199486. Hence the information volume of this135

mass function is HIV−mass(m) = 5.199486.

Example 4.4:

Consider the frame of discernment be Θ = {θ1, θ2, θ3}. Let the mass function

be m0({θ1}) = m0({θ2}) = m0({θ3}) = 1
19 , m0({θ1, θ2}) = m0({θ1, θ3}) =

m0({θ2, θ3}) = 3
19 , m0({θ1, θ2, θ3}) = 7

19 , which is Deng distribution when the140

cardinal of the frame of discernment is 3.

The information volume of this mass function can be calculated by Defini-

tion 3.2. The convergence procedure of Hi(m) is listed in Table 3.

According to Table 3, when i = 16, Hi(m)−Hi−1(m) < 0.001, which means

that Hi(m) finally converges to 6.469009. Hence the information volume of145

Deng distribution is HIV−mass(m) = 6.469009.

It should be noted that, the HIV−mass(m) in Example 4.4 is 6.469009,
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Table 3: The convergence procedure of Hi(m)

i Hi(m) i Hi(m)

1 4.247928 9 6.432107
2 5.127754 10 6.447290
3 5.661354 11 6.456402
4 5.983615 12 6.461869
5 6.177746 13 6.465150
6 6.294510 14 6.467119
7 6.364674 15 6.468300
8 6.406810 16 6.469009

which is larger than HIV−mass(m) = 5.199486 in Example 4.3. As a result,

we can conclude that, under the same frame of discernment, the information

volume of Deng distribution is larger than the information volume of other forms150

of mass function.

Actually, the information volume of Deng distribution is called the maximum

information volume HMIV−mass(m), which means that, Deng distribution has

the largest information volume compare with other mass function.

Example 4.5:155

Consider the frame of discernment be Θ = {θ1, θ2, θ3}. Let the mass function

be m0(Θ) = m0({θ1, θ2, θ3}) = 1, which is called the total uncertainty case.

The information volume of the total uncertainty case can be calculated by

Definition 3.2. The convergence procedure of Hi(m) is listed in Table 4.

Table 4: The convergence procedure of Hi(m)

i Hi(m) i Hi(m)

1 2.807355 10 6.432107
2 4.247928 11 6.447290
3 5.127754 12 6.456402
4 5.661354 13 6.461869
5 5.983615 14 6.465150
6 6.177746 15 6.467119
7 6.294510 16 6.468300
8 6.364674 17 6.469009
9 6.406810
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According to Table 4, when i = 17, Hi(m)−Hi−1(m) < 0.001, which means160

that Hi(m) finally converges to 6.469009. Hence the information volume of the

total uncertainty case is HIV−mass(m) = 6.469009.

This example shows that, Deng distribution and the total uncertainty case

has identical information volume. Since the information volume of Deng distri-

bution is the maximum information volume, the total uncertainty case also has165

the maximum information volume. This point is consistent with the intuition.

5. Conclusion

In this paper, we define the information volume of a given mass function

based on Deng entropy. In addition, the Deng distribution is presented with the

case when Deng entropy achieves its maximum value.170

Some concluding remarks can be shown as follows.

1) If the mass function degenerates as probability distribution, the information

volume is the same as Shannon entropy.

2) Given a mass function, the corresponding information volume is larger than

its uncertainty measured by Deng entropy.175

3) If the mass function is Deng distribution, the corresponding information

volume is called the maximum information volume, which is larger than the

information volume of other forms of mass function.

4) The maximum information volume is lager than the maximum Deng entropy.

5) One interesting point is that Deng distribution and the total uncertainty case180

has the same information volume, which means that the total uncertainty

case also has the maximum information volume. This point is coincide with

the intuition.

Acknowledgment

The author greatly appreciates he China academician of the Academy of185

Engineering, Professor Shan Zhong and Professor You He, for their encourage-

ment to do this research. The author greatly appreciates Professor Yugeng Xi

12



in Shanghai Jiao Tong University to support this work. Research assistant, Jix-

iang Deng, and Ph.D student, Tao wen, discussed the idea and do a lot editorial

works. The author greatly appreciates the continuous funding for the past near-190

ly twenty years including National Natural Science Foundation of China, Grant

Nos. 30400067, 60874105, 61174022, 61573290 and 61973332, Program for New

Century Excellent Talents in University, Grant No. NCET-08-0345, Shang-

hai Rising-Star Program Grant No.09QA1402900, Chongqing Natural Science

Foundation for distinguished scientist, Grant No. CSCT, 2010BA2003.195

References

[1] P. Lee, Probability theory, Bulletin of the London Mathematical Society

12 (4) (1980) 318–319.

[2] L. A. Zadeh, Fuzzy sets, Information and control 8 (3) (1965) 338–353.

[3] A. P. Dempster, Upper and lower probabilities induced by a multivalued200

mapping, The Annals of Mathematical Statistics 38 (2) (1967) 325–339.

doi:10.1214/aoms/1177698950.

[4] G. Shafer, A mathematical theory of evidence, Vol. 1, Princeton university

press Princeton, 1976.

[5] Z. Pawlak, Rough sets, International journal of computer & information205

sciences 11 (5) (1982) 341–356.

[6] B. Liu, Y. Deng, Risk evaluation in failure mode and effects analysis based

on d numbers theory., International Journal of Computers, Communica-

tions & Control 14 (5).

[7] C. E. Shannon, A mathematical theory of communication, Bell System210

Technical Journal 27 (4) (1948) 379–423.

[8] C. Tsallis, Possible generalization of boltzmann-gibbs statistics, Journal of

statistical physics 52 (1-2) (1988) 479–487.

13



[9] C. Tsallis, Nonadditive entropy: The concept and its use, The European

Physical Journal A 40 (3) (2009) 257.215

[10] Y. Deng, Deng entropy, Chaos, Solitons & Fractals 91 (2016) 549 – 553.

[11] B. Kang, Y. Deng, The maximum deng entropy, IEEE Access 7 (2019)

120758–120765.

14


