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A basic approach to the perfect extensions of spaces

Giorgio Nordo

Abstract. In this paper we generalize the notion of perfect compacti�cation of a Ty-
chono� space to a generic extension of any space by introducing the concept of perfect
pair. This allow us to simplify the treatment in a basic way and in a more general
setting. Some [S1], [S2], and [D]'s results are improved and new characterizations for
perfect (Hausdor�) extensions of spaces are obtained.

Keywords: extension, maximal extension, perfect extension, perfect pair

Classi�cation: 54D35

1. Introduction

The notion of perfect compacti�cation of a Tychono� space was introduced
and studied by E.G. Skljarenko since 1961 ([S1], [S2]) by using proximal tech-
niques. In [D], B. Diamond gave some additional characterizations of perfectness
for compacti�cations of Tychono� spaces by using proximities, too.

The aim of this paper is to generalize the notion of perfectness from a Hausdor�
compacti�cation of a Tychono� space to a generic extension of any space by
introducing the notion of perfect pair. This de�nition allow us to simplify the
treatment in a basic way (without using proximities) and in a more general setting,
removing any additional hypothesis about the space.

Thus we are able to improve some Skljarenko and Diamond's results contained
in [S1], [S2], [D] and to establish new characterizations for perfect (Hausdor�)
extensions of spaces.

2. Notation and preliminaries

The word \space" will mean \topological space" on which, unless otherwise
speci�ed, no separation axiom is assumed.

If X is a space, �(X) will denote the set of open sets of X while �(X) will
denote the set of closed sets of X .

Terms and unde�ned concepts are used as in [E] and [PW].

This research was supported by a grant from the C.N.R. (G.N.S.A.G.A.) and M.U.R.S.T.
through \Gruppo Topologia e Geometria" (Italy)
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De�nition. Let Y be a generic extension of a space X and U be an open set
of X . We de�ne the maximal extension of U in Y and we will denote it by hUiY
(or hUi for short) by setting hUiY =

S
fV 2 �(Y ) : V \X = Ug.

The main properties of the operator h�i : �(X)! �(Y ) are summarized in the
following:

Lemma 2.1. For every extension Y of X and every pair of open set U , V of X ,

the following holds:

(1) hUi = Y nclY (XnU);
(2) U � V =) hUi � hV i;
(3) if Z � Y is another extension of X , then hUiZ = hUiY \ Z;

(4) hU \ V i = hUi \ hV i;
(5) hUi � clY (U);
(6) clY (hUi) = clY (U);
(7) U is dense in hUi;
(8) bdY (hUi)nbdX(U) � Y nX ;

(9) bdX(U) � bdY (hUi);
(10) clY (bdX (U)) � bdY (hUi).

Lemma 2.2. Let Y be an extension of X , U 2 �(X) and C 2 �(Y ) such that

C � X , then:

(1) hUi = hUnCi [ (U \ C);
(2) hUnCi = hUinC.

Proof: (1) Since C = C \ X 2 �(X), by 2.1.(4) and 2.1.(1), hUnCi = hUi \
hXnCi = hUi \ (Y nC) and so hUnCi \ (Y nX) = hUi \ (Y nX). Hence, hUi =
(hUi\(Y nX))[(hUi\X) = (hUnCi\(Y nX))[U = (hUnCi\(Y nX))[((UnC)[
(U \ C)) = (hUnCi \ (Y nX)) [ ((hUnCi \X) [ (U \ C)) = hUnCi [ (U \ C).

(2) It follows directly from (1) as the sets hUnCi and U \ C are disjoint. �

Lemma 2.3 [D]. If Y is an extension of X and U; V 2 �(X), then hU[V in(hUi[
hV i) � clY (U) \ clY (V ) \ (Y nX).

Lemma 2.4. Let Y be an extension of X , U 2 �(X) and V 2 �(Y ), then

hU \ V iV = hUiY \ V .

Proof: Obviously V is an extension of V \X and U \V 2 �(V ) � �(Y ) implies
hU \ V iV � hU \ V iY � hUiY by 2.1.(2). Thus hU \ V iV � hUiY \ V . On the
other hand, U 2 �(X) implies U \V 2 �(U) � �(X). So, being hUiY \ V 2 �(V )
and (hUiY \ V ) \X = U \ V , it follows that hUiY \ V � hU \ V iV . This proves
the equality. �

Corollary 2.5. Let Y be an extension of X , V be an open cover of Y and

U 2 �(X), then hUiY =
S
V 2V hU \ V iV .
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3. Perfect extensions of arbitrary spaces and their characterizations

De�nitions [S1]. Let Y be an extension of a space X .

(i) If U is an open set of X , we say that Y is a perfect extension of X with

respect to U if clY (bdX (U)) = bdY (hUi).
(ii) We say that Y is a perfect extension of X if it is a perfect extension of X

with respect to every open set of X .

Now, we introduce some new de�nitions closely connected with the previous
ones.

De�nitions. Let Y be an extension of X , U 2 �(X) and x 2 Y nX .

(i) We say that the pair (x; U) is perfect if x 2 clY (bdX (U)) provided x 2
bdY (hUi).

(ii) We say that Y is a perfect extension of X relatively to U if for every
y 2 Y nX the pair (y; U) is perfect.

(iii) We say that Y is a perfect extension of X relatively to x if for every
W 2 �(X) the pair (x;W ) is perfect.

Remark. It is clear that Y is a perfect extension of X i� all the pairs (x; U)
(with x 2 Y nX and U 2 �(X)) are perfect i� Y is a perfect extension of X
relatively to any open set of X (any point of the remainder Y nX).

Moreover, we give the following de�nitions.

De�nition. Let Y be an extension of X , U 2 �(X) and x 2 Y nX . We say that
Y nX cuts X at x relatively to U if there exists some O neighbourhood of x in Y
and some V open set of X such that O \X = (O \U)[ V , (O \U)\ V = ; and
x 2 clY (O \ U) \ clY (V ).

Note. Obviously in the previous de�nition it results U \ V = ;.

De�nition [S1]. Let X be a space, F � X and U; V 2 �(X). We say that F
separates X in U and V if U \ V = ; and XnF = U [ V .

Note. It is clear that in the last de�nition, F is a closed set of X .

De�nition. Let X be a space, A;C � X and U; V 2 �(X). We say that the set
A C-separates X in U and V if U \ V = ; and Xn(A [ C) = U [ V .

First we give the following characterization for a perfect pair.

Proposition 3.1. Let Y be an extension of X , U 2 �(X) and x 2 Y nX . The

following are equivalent:

(1) the pair (x; U) is perfect;

(2) Y nX does not cut X at x relatively to U ;

(3) there is no neighbourhood O of x in Y such that O \ X = (O \ U) [
(O \ (XnclX(U))) and x 2 clY (O \ U) \ clY (O \ (XnclX(U)));

(4) for every V 2 �(X) such that U \ V = ;, x =2 hU [ V in (hUi [ hV i);
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(5) x =2 hU [ (XnclX(U))in (hUi [ hXnclX(U)i);
(6) for every V 2 �(X) such that U \V = ;, x 2 clY (Xn(U [V ))[hUi[hV i;
(7) x 2 clY (bdX (U)) [ hUi [ hXnclX(U)i;
(8) for every F 2 �(Y ) such that F � X , the pair (x; UnF ) is perfect;

(9) for every F 2 �(Y ) such that F � X , Y nX does not cut X at x relatively

to UnF ;

(10) for every V 2 �(X) such that clY (U \ V ) � X , x =2 hU [ V in (hUi [ hV i);
(11) for every F 2 �(X) and C 2 �(Y ) such that C � X and F C-separates

X in U and V , then x 2 clY (F ) [ C [ hUi [ hV i;
(12) for every F 2 �(X) which separatesX in U and V , x 2 clY (F )[hUi[hV i;
(13) for every C 2 �(Y ) and V 2 �(X) such that C � X and (U [C)\V = ;,

then x 2 clY (Xn((UnC) [ V )) [ hUnCi [ hV i.

Proof: First of all, let us observe that the implications (2))(3), (4))(5),
(8))(1), (9))(2), (10))(4), (11))(12) and (13))(6) are trivial.

(1))(2) Suppose that the pair (x; U) is perfect and let us observe that if
x 2 hUi [ (Y nclY (hUi)), Y nX does not cut X at x relatively to U . In fact, if |
by contradiction | there is some O neighbourhood of x in Y and some V 2 �(X)
such that O \X = (O \U)[V , (O\U)\V = ; and x 2 clY (O \U)\ clY (V ), it
follows that U \ V = ; and by 2.1.(4), hUi \ hV i = ;. Hence, hUi \ clY (hV i) = ;
where x 2 clY (V ) = clY (hV i) by 2.1.(6). Thus, x =2 hUi and if x 2 Y nclY (hUi)
by 2.1.(2) and (6), we obtain x 2 clY (O \ U) � clY (U) = clY (hUi) which is
a contradiction.

So, we have only to consider the case x 2 bdY (hUi). Since the pair (x; U) is
perfect, x 2 clY (bdX(U)) and if | by contradiction | Y nX cutsX at x relatively
to U , i.e. if there is some O neighbourhood of x in Y and some V 2 �(X) such
that O \ X = (O \ U) [ V , (O \ U) \ V = ; and x 2 clY (O \ U) \ clY (V ),
it follows that O \ bdX(U) = O \ X \ bdX(U) = ((O \ U) [ V ) \ bdX(U) �
(U [ V ) \ bdX(U) = V \ bdX(U) � V \ clX(U) = ; and so x =2 clY (bdX (U)). A
contradiction which proves that Y nX does not cut X at x relatively to U .

(3))(4) Let V 2 �(X) such that U \ V = ;. If, by contradiction, x 2 hU [
V in(hUi [ hV i), by 2.3., x 2 clY (U) \ clY (V ). Now, from U \ V = ; follows
V � XnclX(U) = V 0 with V 0 2 �(X) and so O = hU[V 0i is a neighbourhood of x
in Y such that O\X = U[V 0, O\U = U , O\V 0 = V 0 and O\X = (O\U)[(O\
(XnclX(U))). Further, x 2 clY (U) = clY (O \ U) and x 2 clY (V ) � clY (V

0) =
clY (O\V

0) = clY (O\ (XnclX(U))) imply x 2 clY (O\U)\clY (O\ (XnclX(U)))
which is a contradiction to (3).

(5))(6) Suppose that x =2 hU [ (XnclX(U))in (hUi [ hXnclX(U)i) and | by
contradiction | that there exists some V 2 �(X) such that U \ V = ; and
x =2 clY (Xn(U [ V )) [ hUi [ hV i. So, from x =2 clY (Xn(U [ V )) follows that
there is some W neighboourhood of x in Y such that W \ clY (Xn(U [ V )) =
;. Hence, (W \ X)n(U [ V ) = ; implies W \ X � U [ V . So, by de�nition
of maximal extension and 2.1.(2), we obtain x 2 W � hW \ Xi � hU [ V i.
Further, from U \ V = ; follows V � XnclX(U) and again, by 2.1.(2), x 2
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hU [ (XnclX(U))i. Since x 2 hU [ V in(hUi [ hV i), by 2.3. and 2.1.(6), we
have that x 2 clY (U) \ clY (V ) = clY (hUi) \ clY (hV i). On the other hand,
by 2.1(4), U \ V = ; implies hUi \ hV i = ; and hUi \ clY (hV i) = ;. So,
x =2 hUi. Moreover, from U \ (XnclX(U)) = ; we obtain hUi \ hXnclX(U)i = ;
and by 2.1.(4) follows clY (hUi) \ hXnclX(U)i = ; and x =2 hXnclX(U)i. Thus
x 2 hU [ (XnclX(U))in (hUi [ hXnclX(U)i). A contradiction to (5).

(6))(7) It su�ces to put V = XnclX(U) and observe that bdX(U) = Xn(U [
V ).

(7))(1) Let x 2 bdY (hUi). Obviously x =2 hUi. Furthermore, being U \
(XnclX(U)) = ;, by 2.1.(4) we obtain hUi \ hXnclX(U)i = ; and bdY (hUi) \
(XnclX(U)) = ; which implies that x =2 hXnclX(U)i. So, as from (7), x 2
clY (bdX (U))[hUi[hXnclX(U)i, it follows that x 2 clY (bdX (U)) and this proves
that the pair (x; U) is perfect.

(1))(8) Suppose (x; U) be perfect and let F 2 �(Y ) such that F � X . Ob-
viously x =2 F , F = F \ X 2 �(X) and UnF 2 �(X). So, if x 2 bdY (hUnF i),
by 2.2.(2), x 2 bdY (hUi)nF and this leads to x 2 bdY (hUi). By perfectness of
(x; U), x 2 clY (bdX(U)) and being clearly bdX(U) � F [ bdX(UnF ), it follows
that x 2 F [ clY (bdX(UnF )) which implies x 2 clY (bdX (UnF )) and proves that
the pair (x; UnF ) is perfect.

(2))(9) Suppose that Y nX does not cut X at x relatively to U and let F 2
�(Y ) such that F � X . If, by contradiction, Y nX cuts X at x relatively to UnF ,
i.e. if there exists some O neighbourhood of x in Y and some V 2 �(Y ) such that
O \ X = (O \ (UnF )) [ V , it is clear that (UnF ) \ V = ;. Now, O0 = OnF
is a neighbourhood of x in Y and V 0 = V nF is an open set of Y such that
O0\X = (OnF )\X = (O\X)nF = ((O\(UnF ))[V )nF = (((OnF )\U)[V )nF =
((O0 \ U) [ V )nF = (O0 \ U) [ (V nF ) = (O0 \ U) [ V 0. Since x 2 clY (V )
and x =2 F 2 �(Y ), x 2 clY (V nF ) = clY (V

0) and as x 2 clY (O \ (UnF )) =
clY ((OnF ) \ U) = clY (O

0 \ U), it follows that x 2 clY (O
0 \ U) \ clY (V

0) which
means that Y nX cuts X at x relatively to U . A contradiction.

(4))(10) Let F = clY (U [ V ) � X . Then x =2 F = F \ X 2 �(X) Hence,
U 0 = UnF and V 0 = V nF are two disjoint open sets of X and by (4), x =2 hU 0 [
V 0in(hU 0i [ hV 0i). So, by 2.2.(2), hU 0i = hUinF , hV 0i = hV inF and hU 0 [ V 0i =
hU [ V inF . Thus, hU 0 [ V 0in(hU 0i [ hV 0i) = (hU [ V in(hUi [ hV i))nF and as
x =2 F this implies that x =2 hU [ V in(hUi [ hV i).

(6))(11) It is obvious, because if F C-separates X in U and V , i.e. if Xn(F [
C) = U [ V and U \ V = ;, by (6) it follows | in particular | that x 2
clY (Xn(U [ V )) [ hUi [ hV i, i.e. that x 2 clY (F ) [ C [ hUi [ hV i.

(12))(6) If U \ V = ;, it is clear that F = Xn(U [ V ), F separates X in U
and V and hence by (12), x 2 clY (Xn(U [ V )) [ hUi [ hV i.

(6))(13) Let C 2 �(Y ), V 2 �(X) such that C � X and (U [C)\V = ;. Let
us suppose that x =2 hUnCi[hV i. Since U\V = ;, by (6) we have x 2 clY (Xn(U[
V ))[hUi[hV i and so that x 2 (clY (Xn(U [V ))[hUi[hV i)n(hUnCi[hV i) = by
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2.1.(1) = ((Y nhU[V i)[hUi[hV i)n(hUnCi[hV i) = (Y nhU[V i)[(hUinhUnCi) =
by 2.2.(1) = (Y nhU [ V i) [ (U \ C). Hence, being x =2 C, it follows that x 2
(Y nhU [ V i)nC = Y n(hU [ V inC) = by 2.2.(2) = Y nh(U [ V )nCi = by 2.1.(1)
= clY (Xn((U[V )nC)) = clY (Xn((UnC)[(V nC))) = clY (Xn((UnC)[V )) which
proves (13). �

Since, by de�nition, Y is a perfect extension of X relatively to U 2 �(X) if
and only if for every x 2 Y nX the pair (x; U) is perfect, from the correspondent
points in 3.1., we have immediately the following characterization for a perfect
extension of a space relatively to a �xed open set.

Proposition 3.2. Let Y be an extension of X and U 2 �(X). The following are

equivalent:

(1) Y is a perfect extension of X relatively to U ;

(2) Y nX does not cut X at any point of Y nX relatively to U ;

(3) for any x 2 Y nX there is no neighbourhood O of x in Y such that O\X =
(O\U)[ (O \ (XnclX(U))) and x 2 clY (O\U)\ clY (O \ (XnclX(U)));

(4) for every V 2 �(X) such that U \ V = ;, hU [ V i = hUi [ hV i;
(5) hU [ (XnclX(U))i = hUi [ hXnclX(U)i;
(6) for every V 2 �(X) such that U \ V = ;, clY (Xn(U [ V )) separates Y in

hUi and hV i;
(7) clY (bdX (U)) separates Y in hUi and hXnclX(U)i;
(8) for every F 2 �(Y ) such that F � X , Y nX is a perfect extension of X

relatively to UnF ;

(9) for every F 2 �(Y ) such that F � X , Y nX does not cut X at any point

of Y nX relatively to UnF ;

(10) for every V 2 �(X) such that clY (U \ V ) � X , hU [ V i = hUi [ hV i;
(11) for every F 2 �(X) and C 2 �(Y ) such that C � X and F C-separates

X in U and V , clY (F ) C-separates Y in hUi and hV i;
(12) for every F 2 �(X) which separates X in U and V , clY (F ) separates Y

in hUi and hV i;
(13) for every C 2 �(Y ) and V 2 �(X) such that C � X and (U [C)\V = ;,

clY (Xn((UnC) [ V )) separates Y in hUnCi and hV i.

De�nition [S1]. Let Y be an extension of X and x 2 Y nX . We say that Y nX
cuts (= separates in [S1]) X at x if there exists some O neighbourhood of x in
Y and a pair U; V of disjoint open sets of X such that O \ X = U [ V and
x 2 clY (U) \ clY (V ).

Lemma 3.3. Let Y be an extension of X and x 2 Y nX , then Y nX does not cut

X at x i� Y nX does not cut X at x relatively to any open set of X .

Proof: (=)) If Y nX does not cut X at x and, by contradiction, Y nX cuts X
at x relatively to some U 2 �(X), we have that there are some O neighbourhood
of x in Y and some V 2 �(X) such that O \X = (O \ U) [ V , (O \ U) \ V = ;
and x 2 clY (O \ U) \ clY (V ). Since U 2 �(X), U 0 = O \ U 2 �(U) � �(X). So,
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it results O \ X = U 0 [ V , U 0 \ V = ; and x 2 clY (U
0) \ clY (V ), that is Y nX

cuts X at x. A contradiction.

((=) Suppose that Y nX does not cut X at x relatively to any U 2 �(X). If,
by contradiction, Y nX cuts X at x, i.e. there are a neighbourhood O of x in Y
and U; V 2 �(X) such that O \X = U [ V , U \ V = ; and x 2 clY (U)\ clY (V ),
it su�ces to observe that O\U = U to conclude that Y nX cuts X at x relatively
to U obtaining a contradiction. �

Now, using 3.1. and 3.3. (only for the equivalence (1) , (2)), we are able to
give a characterization of a perfect extension of a space relatively to some point
of its remainder.

Proposition 3.4. Let Y be an extension of X and x 2 Y nX . The following are

equivalent:

(1) Y nX is a perfect extension of X relatively to x;
(2) Y nX does not cut X at x;
(3) for any U 2 �(X) there is no neighbourhood O of x in Y such that

O \X = (O \ U) [ (O \ (XnclX(U))) and
x 2 clY (O \ U) \ clY (O \ (XnclX(U)));

(4) for every pair U; V of disjoint open sets of X , x =2 hU [ V in (hUi [ hV i);
(5) for every U 2 �(X), x =2 hU [ (XnclX(U))in (hUi [ hXnclX(U)i);
(6) for any pairU; V of disjoint open sets of X , x 2 clY (Xn(U[V ))[hUi[hV i;
(7) for every U 2 �(X), x 2 clY (bdX (U)) [ hUi [ hXnclX(U)i;
(8) for every U 2 �(X) and F 2 �(Y ) such that F � X , the pair (x; UnF ) is

perfect;

(9) for every U 2 �(X) and F 2 �(Y ) such that F � X , Y nX does not cut

X at x relatively to UnF ;

(10) for every U; V 2 �(X) such that clY (U\V ) � X , x =2 hU[V in (hUi [ hV i);
(11) for every F 2 �(X) and C 2 �(Y ) such that C � X and F C-separates

X in U and V x 2 clY (F ) [ C [ hUi [ hV i;
(12) for every F 2 �(X) which separatesX in U and V , x 2 clY (F )[hUi[hV i;
(13) for every C 2 �(Y ) and U; V 2 �(X) such that C � X and (U[C)\V = ;,

x 2 clY (Xn((UnC) [ V )) [ hUnCi [ hV i.

The following characterization of a perfect extension of a space is again a direct
consequence of the main Proposition 3.1. and of the Lemma 3.3.

Proposition 3.5. Let Y be an extension of X . The following are equivalent:

(1) Y is a perfect extension of X ;

(2) Y nX does not cut X at any point of Y nX ;

(3) for every U 2 �(X) and x 2 Y nX there is no neighbourhood O of x in

Y such that O \X = (O \ U) [ (O \ (XnclX(U))) and x 2 clY (O \ U) \
clY (O \ (XnclX(U)));

(4) for every pair U; V of disjoint open sets of X , hU [ V i = hUi [ hV i;
(5) for every U 2 �(X), hU [ (XnclX(U))i = hUi [ hXnclX(U)i;
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(6) for every pair U; V of disjoint open sets of X , clY (Xn(U [ V )) separates
Y in hUi and hV i;

(7) for every U 2 �(X), clY (bdX (U)) separates Y in hUi and hXnclX(U)i;
(8) for every U 2 �(X) and F 2 �(Y ) such that F � X , Y is a perfect

extension of X relatively to UnF ;

(9) for every U 2 �(X) and F 2 �(Y ) such that F � X , Y nX does not cut

X at any point of Y nX relatively to UnF ;

(10) for every U; V 2 �(X) such that clY (U \ V ) � X , hU [ V i = hUi [ hV i;
(11) for every F 2 �(X) and C 2 �(Y ) such that C � X and F C-separates

X in U and V , clY (F ) C-separates Y in hUi and hV i;
(12) for every F 2 �(X) which separates X in U and V , clY (F ) separates Y

in hUi and hV i;
(13) for every C 2 �(Y ) and U; V 2 �(X) such that C � X and (U[C)\V = ;,

clY (Xn((UnC) [ V )) separates Y in hUnCi and hV i.

Remark. The last proposition improves some results found by Skljarenko in [S1]
and by Diamond in [D]. In particular, the equivalence (1) , (4) was given by
Skljarenko only for the Stone-C�ech compacti�cation of a normal space and by
Diamond only for a generic compacti�cation of a Tychono� space. Moreover, the
equivalences (1) , (2) , (5) , (12) were obtained in [S1] for compacti�cations
of Tychono� spaces by using proximities.

4. Applications and other properties

We conclude with some applications of the Propositions 3.2. and 3.5. Also,
we establish a characterization for the T2 perfect extensions which improves and
generalizes an analogous result for the compacti�cations of Tychono� spaces given
by Diamond in [D].

Proposition 4.1. If Y is a perfect extension of X and Z be a space such that

X � Z � Y , then Z is a perfect extension of X , too.

Proof: Obviously X is dense in Z, i.e. Z is an extension of X . Moreover, for
every pair U; V of disjoint open sets of X , as Y is a perfect extension of X , by
2.1.(3) and 3.5.(4), we have that hU [V iZ = hU [V iY \Z = (hUiY [hV iY )\Z =
(hUiY \Z)[ (hV iY \Z) = hUiZ [ hV iZ and so, by 3.5.(4), it follows that Z is a
perfect extension of X . �

Proposition 4.2. Let Y be an extension of a space X and U 2 �(X). The

following are equivalent:

(1) Y is a perfect extension of X relatively to U ;

(2) every V 2 �(Y ) is a perfect extension of X \ V relatively to U \ V ;

(3) for every V open cover of Y , any V 2 V is a perfect extension of X \ V
relatively to U \ V ;

(4) there exists some V open cover of Y such that every V 2 V is a perfect

extension of X \ V relatively to U \ V .
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Proof: (1))(2) Suppose that Y is a perfect extension of X relatively to U and
let V 2 �(Y ). Then, for everyW 2 �(X\V ) such thatW \(U \V ) = ;, it results
W =W 0\V for someW 0 2 �(X). Since W 0\U = ;, by 2.4. and 3.2.(4), we have
that hW [(U \V )iV = h(W 0[U)\V iV = hW 0[UiY \V = (hW 0iY [hUiY )\V =
(hW 0iY \ V ) [ (hUiY \ V ) = hW 0 \ V iV [ hU \ V iV = hW iV [ hU \ V iV and
again by 3.2.(4), this means that V is a perfect extension of X \ V relatively to
U \ V .

(2))(3) Trivial.

(3))(4) It su�ces to consider V = fY g.

(4))(1) Let V be an open cover of Y such that every V 2 V is a perfect
extension of X \ V relatively to U \ V . Then, for every W 2 �(X) such that
W \ U = ; it is clear that for any V 2 V , W \ V and U \ V are two disjoint
open sets of V . So, by 2.5. and 3.2.(4), it results hW [ UiY =

S
V 2V h(W [

U) \ V iV =
S
V 2V h(W \ V ) [ (U \ V )iV =

S
V 2V (hW \ V iV [ hU \ V iV ) =�S

V 2VhW \ V iV
�
[
�S

V 2V hU \ V iV
�
= hW iY [ hUiY and by 3.2.(4) we can

conclude that Y is a perfect extension of X relatively to U . �

Corollary 4.3. Let Y be an extension of a space X . The following are equiva-

lent:

(1) Y is a perfect extension of X ;

(2) every V 2 �(Y ) is a perfect extension of X \ V ;

(3) for every V open cover of Y , any V 2 V is a perfect extension of X \ V ;

(4) there exists some V open cover of Y such that every V 2 V is a perfect

extension of X \ V .

In order to obtain a stronger version of the Proposition 3.5. for the Hausdor�
perfect extensions, we give the following:

De�nition. Let Y be an extension of X and x 2 Y nX . We say that Y nX c-cuts
( � cuts by a compact set) X at x if there exists some O neighbourhood of x in
Y , a compact set K � X and a pair of disjoint open sets U; V of X such that
(OnK) \X = U [ V and x 2 clY (U) \ clY (V ).

Remark. Obviously, if Y nX cuts X in some point x 2 Y nX , then Y nX c-cuts X
in the same point x. The converse in general is false, but for Hausdor� extensions
we have the following result:

Proposition 4.4. Let Y be a Hausdor� extension of X and x 2 Y nX . Then

Y nX cuts X at x i� Y nX c-cuts X at x.

Proof: By the previous remark we need only to prove the second implication.
Let us suppose that Y nX c-cuts X at x, i.e. that there exist a neighbourhood O of
x in Y , a compact set K � X and two disjoint open subsets U; V of X such that
(OnK) \X = U [ V and x 2 clY (U) \ clY (V ). Since Y is Hausdor�, K 2 �(Y ).
So, being K � X and x 2 Y nX , it is clear that O0 = OnK is a neighbourhood of
x in Y such that O0 \X = U [ V . This proves that Y nX cuts X at x. �
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Now we can give a characterization of the Hausdor� perfect extensions.

Proposition 4.5. Let Y be a Hausdor� extension of X . The following are

equivalent:

(1) Y is a perfect extension of X ;

(2) Y nX does not c-cut X at any point of Y nX ;

(3) for every pair U; V of open sets of X such that clX(U \ V ) is compact,

hU [ V i = hUi [ hV i;
(4) for every closed set F of X and every compact set K � X such that F

K-separates X in U and V , clY (F ) K-separates Y in hUi and hV i.

Proof: (1))(2) It is obvious by 3.5.(2) and 4.4.

(2))(3) Let U; V 2 �(X) such that clX(U \ V ) is compact. Since Y is
Hausdor�, by 4.4. Y nX does not cut X at any point of Y nX . Moreover,
clX(U \ V ) 2 �(Y ) and it results clY (U \ V ) � clX(U \ V ) � X and so, by
3.5.(10), we have that hU [ V i = hUi [ hV i.

(3))(4) Let F 2 �(X) and K � X be a compact set such that F K-separates
X in U; V 2 �(X). Since Y is Hausdor�, K 2 �(Y ) while U \ V = ; implies
obviously that clY (U \ V ) is a compact set. So, by hypothesis (3), it results
hU [ V i = hUi [ hV i and by the equivalence (4),(11) of 3.5., it follows that
clY (F ) K-separates Y in hUi and hV i.

(4))(1) In fact, for every F 2 �(X) such that F separates X in U; V 2 �(X),
it su�ces to consider the compact set ; to have that F ;-separates X in U and
V and so by the hypothesis (4), it follows that clY (F ) ;-separates Y in hUi; hV i
that is clY (F ) separates Y in hUi and hV i. Thus, by 3.5.(12), Y is a perfect
extension of X . �

Remark. The equivalence (1),(3) of 4.5. generalizes to any Hausdor� exten-
sion of a (Hausdor�) space a result given by Diamond in [D] only for Hausdor�
compacti�cations of Tychono� spaces.
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