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Abstract

We present some recent results in Fibrewise General Topology with
special regard to the theory of Tychonoff compactifications of mappings.
Several open problems are also proposed.

1. Introduction

Mapping are more general object than of topological spaces. In fact, it is
evident that any space can be trivially identified with the continuous mapping of
that space to a single-point space.

Since 50’s, this simple fact suggested the idea to consider properties for map-
pings instead of the traditional ones for spaces in order to obtain more general
statements.

First steps in this direction were moved by Whyburn [W;, W3] and Dickman
[D], but only in 1975, Ul’janov [U] introduced the notion of Hausdorff mapping
(formerly called separable) to study the Hausdorff compactifications of countable
character.

Later, Pasynkov [P3] generalized and studied in a systematic way to the con-
tinuous mappings various other notions and properties concerning spaces like the
separation axioms Tgy, T3, T3, Ty1, the regularity, the complete regularity, the
normality, the compactness and the local compactness. A considerable part of
these new definitions and constructions is based on the notion of partial topo-
logical product (briefly PTP) introduced and studied by Pasynkov in [P;]. The
main properties of PTP’s, included an analogous for mappings of the Embedding
Lemma, are proved in detail in [Py].
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Some weaker separation axioms for continuous mappings such as semireqularity
and almost regularity were introduced and studied in [CN]. The problem of their
productivity was investigated in [Ny].

Let us note that Pasynkov’s papers ([Ps], in particular) have inspirated James
to give a slightly different approach to the same topic (see [J]).

The generalization to mappings of notions originally defined for spaces belongs
to the more general branch of the Fibrewise General Topology (sometimes called
General Topology of mappings) and, from a categorial point of view, it means
to pass from the study of the property of the category Top to those of the
category Top, whose objects are the continuous mappings into some fixed space
Y and whose morphisms are the continuous functions commutating the triangular
diagram of two objects.

Because a property Py of Top, can be considered as a generalization of some
corresponding property P of Top it must coincide with P when Y is a single-
point space, that is when every object f : X — Y of Top, can be identified with
the space X, i.e. with an object of Top.

In rare case, the analogous Py in Top, of some property P of Top is quite
evident. For example, to P = compactness corresponds Py = perfectness. In
other cases (e.g. for the separation axioms T, and 7}) the property Py can be
obtained by requiring that the corresponding property P holds on every fibre of
the mappings, but for many properties for mappings, it is necessary to give new
definitions which are more complex than the corresponding ones for the spaces.

The notion of compactification (i.e. perfect extension) of a continuous mapping
was given first by Whyburn in 1953 [W,, Wy|.

It is worth mentioning that in [Ny] it is presented a filter based method which
allows us to build perfect extension of every function (not necessarily continuous)
between two arbitrary topological spaces.

However, the first general definition of compactification for mappings analogous
to the well-known notion for spaces, was given by Pasynkov in [P3]. In fact, in
that paper, using techniques based on PTP’s, a method is described to obtain
Tychonoff (i.e. completely regular, Ty) compactifications of Tychonoff mappings
between arbitrary spaces, and it is proved that the poset TK(f) of all the Ty-
chonoff compactifications of a Tychonoff mapping f : X — Y admits a maximal
compactification Bf : f; X — Y which is the exact analogous, in Topy, of the
Stone-Cech compactification of a Tychonoff space.

Let us note that Kiinzi and Pasynkov [KP] have completely described the set
TK(f) of all the Tychonoff compactifications of a Tychonoff mapping f: X —» Y
by means of presheaves of the rings C* (f~!(U)) with U open set of Y.

Recently, Bludova and Nordo [BN] have shown that if a mapping f : X — Y is
Hausdorff compactifiable (i.e. it has some Hausdorff compactification) then there
exists the greatest (called ”maximal”) compactification x f : x;X — Y in the set



HEK(f) of all the Hausdorff compactifications of f.

An extension to mappings of the notion of H-closedness (see [PoW] or [CGNP]
for a complete survey) was given in [CFP| by Cammaroto, Fedorchuk and Porter,
while some other generalizations to the mappings of the concepts of realcompact-
ness and Dieudonné completeness were introduced and studied in [IP], [BuP],
[MuP] and [Py].

The notion of perfect compactification given by Skljarenko in [S] was recently
generalized to the mappings in [NP] and, in [CaP], it was proved that both
the maximal realcompactification v f and the Dieudonné completion uf of a Ty-
chonoff mapping f are perfect extensions of f.

2. Extension to mappings of notions for spaces

Throughout all the paper, the word ”space” will mean ”topological space” on
which, no separation axiom is assumed and all the mappings will be supposed
continuous unless otherwise specified. If X is a space, 7(X) will denote the family
of all open sets of X.

For terms and undefined concepts we refer to [E].

For any fixed space Y, we consider the category Top, where
Ob(Topy) ={f € C(X,Y) : X € Ob(Top)}
is the class of the objects and, for every pair f: X — Y, ¢g: Z — Y of objects,

M(f,g)={ €C(X,Z): gol=f}

is the class of the morphisms from f to g, whose generic representant is denoted
for short by A : f — g¢.

A morphism A : f - gfrom f: X =Y tog: Z — Y will be called surjective
(resp. closed, dense) if A\(X) = Z (resp. A(X) is closed in Z, A\(X) is dense in
Z).

If A: f — g is a surjective morphism, we will say that g is the image of f (by
the morphism A) and we will write that g = A(f).

Moreover, we say that a morphism A: f - gfrom f: X - Y tog: Z — Y is
an embedding (resp. a homeomorphism) if so is the function A : X — Z.

A mapping g : Z — Y is said an extension of f : X — Y if there exists some
dense embedding A : f — ¢ (as usual, we shall identify X and f by A(X) and

g|xx) respectively).
A morphism A : g — h between two extensions g: Z — Y and h: W — Y of
a mapping f : X — Y will be called canonical if A|x = idx.

Let us introduce some notions and basic facts about partial products [Py, Ps].



Given two spaces Y, Z and an open set O of Y, we consider the set P = (Y\O)U
(O x Z) and the map p : P — Y defined by ply\o = idy\o and ploxz = pro
where pro : O x Z — O denotes the projection of O x Z onto O.

We will call elementary partial topological product (briefly EPTP) of Y and
fibre Z relatively to the open set O and we will denote it by P (Y, Z, O), the space
generated on P by the basis B(Y, Z,0) =p~'(r(Y)) UT(0 x Z).

The mapping p : P — Y above defined will be called the projection of the EPTP
P = P(Y,Z,0) and it is routine to prove that it is a continuous, onto, open
mapping.

It is evident that the EPTP P(Y, Z, () is simply Y and that P(Y, Z,Y) coincides
with the usual product space ¥ x Z.

Now, let Y be a topological space, {Z,}aca be a family of spaces and {Og}aecn
be a family of open sets of Y. For every a € A, let P, = P(Y, Z,,0,) be the
EPTP of base Y and fibre Z,, relatively to O, and p, : P, — Y be its projection.
We will call partial topological product (PTP for short) of base Y and fibres
{Za}aen relatively to the open sets {Oy}aecn the fan product of the spaces { P, }aca
relatively to the mappings {pa }aca, i-e. the subspace

pP= {t = (tadoer € 1] Po :  Dalta) =ps(ts) Vo,B € A}

a€A

and we will denote it by P(Y;{Z,},{0.};a € A).

For every a € A, the restriction 7, = pro|p : P — P, of the a-th canon-
ical projection pr, will be called the a-th short projection, while the fibrewise
product of the mappings {Pa }aca, i-e. the continuous mapping p : P — Y de-
fined by p, o 7, = p for any a € A will be said the long projection of the PTP
P(Y,{Za},{O0a};a € A).

In case O, =Y for every a € A, the PTP P(Y,{Z,},{O.}; @ € A) coincides
(up to homeomorphisms) with the usual product Y X [Toea Za, if |On] = 1 for
every a € A, the PTP P(Y,{Z,},{0.}; @ € A) coincides with the usual Ty-
chonoff product [aep Zo of its fibres, while if O, = () for any o € A, the PTP
P(Y,{Z,},{O4}; @ € A) is simply (homeomorphic to) the space Y.

Definitions. A mapping f : X — Y is said to be Ty [P3] if for every z,2' € X
such that x # 2’ and f(z) = f(2') there exists a neighborhood of z in X which
does not contain z’ or a neighborhood of 2’ in X not containing x.

A mapping f : X — Y is said to be Hausdorff (or Ty) [U, Ps] if for every
z,2' € X such that z # 2’ and f(x) = f(2') there are two disjoint neighborhoods
of z and 2’ in X.

We will say that f : X — Y is compact if it is perfect (i.e. it is closed and every
its fibre is compact).

A mapping f : X — Y is said to be completely reqular [Ps] if for every closed set
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F of X and x € X\ F there exists a neighborhood O of f(z) in Y and a continuous
function ¢ : f~1(0) — [0,1] such that p(xz) =0 and o(F N f71(0)) C {1}.

A completely regular, Ty, mapping is called Tychonoff (or Ty %) [Ps3].
Remark. It is easy to verify that all the previous properties in Top, coincide
with the corresponding ones in Top provided |Y| =1 and that every continuous
mapping f : X — Y has such a property ¢ff both the spaces X and Y have

the corresponding properties (in particular, they are P—functions in the sense of
[CN]).

Definition. A restriction f|x : X' =Y to X' C X of a mapping f: X — Y is
said a closed restriction of f, if X' is a closed subset of X.

Obviously (see for example [PoW]), every closed restriction of a compact map-
ping is compact too.

Most well-known statements which hold in the category Top have correspon-
dent ones (and hence generalizations) in Top,. The following properties are
essentially given in [P3] (detailed proofs can be found in [Ny]).

PROPOSITION 2.1. Every image A(f) of a compact mapping f : X — Y is
compact too.

PROPOSITION 2.2. Every closed restriction f|x: of a compact mapping f :
X — Y is compact too.

PROPOSITION 2.3. Every compact restriction f|x of a Hausdorff mapping
f: X — Y is a closed restriction of f.

PROPOSITION 2.4. Let A and i1 be morphisms from a mapping f : X — Y
to a Hausdorff mapping g : Z — Y and D be a dense subset of X. Then if
A p = p|p, the morphisms A and p coincide.

PROPOSITION 2.5. Every morphism \ : f — g from a compact mapping
f X — Y toa Hausdorff mapping g : Z — Y is perfect.

3. Compactification of mappings
Let f : X — Y be a mapping. We say that a mapping ¢ : X¢ — Y is a
compactification of f (in Topy ) if it is a compact (= perfect) extension of f.

This approach to the notion of the compactification of a mapping was proposed
by Whyburn [W], but in the most general situation, this notion was studied first
by Pasynkov in [P3].

Remark. A different variant of compactifications of mappings was examined by
Uljanov [U]. But, it is a common opinion that Uljanov’s definition is not natural
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for non-surjective mappings because, in that case, a compact mapping is not its
own compactification.

Definitions. Let ¢ : X¢ = Y and d : X? — Y be two compactifications of a
mapping f: X — Y (in Top, ). We say that:

e c is projectively larger than d (relatively to f) and we write that ¢ > d (or
¢ > d, for short) if there exists some canonical morphism \ : ¢ — d.

e c is equivalent to d (relatively to f) and we write that ¢ =; d (shortly,
¢ = d) if there exists a canonical homeomorphism A : ¢ — d.

The following useful result is given in [BN].

PROPOSITION 3.1. Let ¢ : X¢ - Y and d : X¢ — Y be two Hausdorff
compactifications of a mapping f : X — Y. Then ¢ =; d if and only if c >5 d
and d >y c.

Definition. A Hausdorff mapping f : X — Y will be called Hausdorff compact-
ifiable if it has some Hausdorff compactification (in Topy, ).

In [BN], it is noted that the class of all Hausdorff compactifications of any
Hausdorff compactifiable mapping f : X — Y forms a set modulo the equivalence
= f-

Definition. If f : X — Y is a Hausdorff compactifiable mapping, HK (f) will
denote the set of all equivalence classes of Hausdorff compactifications of f.

So, by 3.1, it follows that (HK(f),>) is a poset and, for any pair of Hausdorff
compactifications ¢,d € HK(f) we can write ¢ = d instead of ¢ = d, that is we
do not distinguish between equivalent Hausdorff compactifications.

In [P;], Pasynkov erroneously indicated that it is proved in [U] that every
Hausdorff compactifiable mapping f : X — Y has a maximal one.
This fact was also used in several following papers like [BuP], [CFP], [IP], [KP],
[MuP], [Ms], [P4], etc. but it is not correct because the Ul’janov’s definition is
different from the currently used one (given by Pasynkov in [P3]) that does not
include the surjectivity.
Anyway the existence of the maximal Hausdorff compactification was actually
proved by Bludova and the author as direct consequence of the following more
general result.

THEOREM 3.2. [BN] For any Hausdorff compactifiable mapping f : X — Y,
(HK(f),>) is a complete upper semilattice

The projective maximum of (HK(f),>), i.e. the mazimal Hausdorff compact-
ification of f, will be denoted by x f : x; X — Y.



From this and by 2.4 and 2.5, it follows — in particular — that for any Hausdorff
compactification bf : X® — Y of a Hausdorff compactifiable mapping f : X — Y
there exists a unique perfect canonical morphism Ay : xf — bf.

In [P3], Pasynkov proved that every Tychonoff mapping has a Tychonoff com-
pactification.

Since it is easy to show that a Tychonoff mapping is Hausdorff, Proposition 3.1
allow us to give the following:

Definition. For any Tychonoff mapping f : X — Y, we will denote by TK(f)
the set of all Tychonoff compactifications of f up to the equivalence =;.

For a mapping f : X — Y, let us denote by C*(f) the family of all the
partial mappings on f, i.e. of all the continuous bounded real-valued mappings
¢ : f71(O,) — I, defined from the inverse image by f of an open set O, of Y to
a compact subset I, of the real line IR

Definitions. A subfamily C = {¢: f~'(0,) — I,} of C*(f) is said to be:
e separating the points of f if for every x, 2’ € X such that f(z) = f(«') there
exists some ¢ € C such that z,2' € f1(O,) and ¢(z) # ¢(z').
e separating the points from the closed sets of f if for any closed set F' of X
and every z € X \ F there exists some ¢ € C such that z € f~*(0,) and
o(x) & clr, (F N f71(0,)).

It is shown in [P3] (see [N4] for a more detailed proof) that every Tychonoff
compactification bf : X* — Y of a Tychonoff mapping f : X — Y is uniquely
determinated by a subfamily C = {¢ : f7}(O,) — I, : O, € 7(Y)} of C*(f)
separating the points and the points from the closed sets of f and that bf coincides

with a particular restriction of the long projection pe : P — Y of the PTP
Pe = P(Y,{0,},{L,};p € C).

Thus, the notion of PTP plays in the category Topy the same role that the
notion of product space has in the category Top and, as matter of fact, they
coincide when |Y| = 1.

In [P3], it is also proved that for any Tychonoff mapping f : X — Y there
exists, in (TK(f),>), a maximal Tychonoff compactification Sf : ;X — Y
that is determinated by all the whole family C*(f) and characterized by some
extension properties very similar to that of the Stone-Cech compactification.
We have, in fact, the following:

THEOREM 3.3. For any Tychonoff compactification bf : X° — Y of a Ty-
chonoff mapping f : X — Y, the following conditions are equivalent:

(1) of = Bf ;

(2) for every U € 7(Y) and ¢ € C*(f~1(U)) there exists a unique extension
e ((bf)71(U)) ;

(3) for every compact Tychonoff mapping k : Z — Y and every morphism
At [ — k there exists a morphism A : bf — k which extends .
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Moreover, Theorem 3.2. allow us to obtain as immediate consequence the
following:

THEOREM 3.4. [BN]| The poset (T K(f), >) of all Tychonoff compactifications
of a Tychonoff mapping f : X — Y is a complete upper semilattice whose
projective maximum is S f.

PROPOSITION 3.5. [P3] For any Tychonoff compactification bf : X® — Y
of a Tychonoff mapping f : X — Y there exists a unique (perfect) canonical
morphism py, : Bf — bf such that py(BrX\X) = X°\X.

Let us observe that if |Y'| = 1, X is a Tychonoff space, the domain 8;X of 5f
coincides with the Stone Cech compactification SX of X, the domain X of bf is
a generic compactification of X and X, : ;X — X° becomes the usual quotient
map (see for example [Ch]).

In general, for a Tychonoff mapping f : X — Y, we have

TK(f) c HK(f)
o

that is, unlike the corresponding case for spaces, there exist Hausdorff compact-
ification which are not Tychonoff or, equivalently, there are compact Hausdorff
mapping which are not Tychonoff. In fact, it was proved in [Cb] (see also [HI))
that it is possible to build a perfect (= compact) mapping defined on a regular
Ty but non Tychonoff space onto a Tychonoff space (that is the property T3% is
not an inverse invariant by perfect mappings) and since it is proved in [P3] that if
a mapping and its range are both completely regular, its domain is too, it follows
directly that such a mapping can not be completely regular and hence Tychonoff.

This is the reason why it is necessary to study the classes of Tychonoff and
Hausdorff compactifiable mappings separately.

4. Open problems.

It seems that the following questions might be interesting. Some of these prob-
lems are published for the first time.

Problem 1. It is well-known that the poset K (X) of all Hausdorff compactifi-
cation of a Tychonoff space X can be completely characterized in terms of the
families of C*(X) that separete points and points from closed sets of X (see, for
example, [Ch]).

Is it possible to obtain such a similar characterization for the set HK(f) (the set
TK(f)) of all Hausdorff (Tychonoff) compactification of a Hausdorff compacti-
fiable (Tychonoff) mapping f in terms of the separating families of C*(f) ¢



Problem 2. Magill has proved in [M] (see also [Ch]) that the posets K(X) and
K(Y) of all Hausdorff compactifications of two locally compact spaces X and YV
are isomorphic if and only if their Stone-Cech remainders X \ X and Y\ Y
are homeomorphic.

Is it possible to find a definition of locally compact mapping that allow us to obtain
a Maygill-type theorem for mappings ¢

Problem 3. Is it possible to obtain analogous in Topy of properties like the
countably compactness, the paracompactness and the pseudocompactness ?

Problem 4. Is there a consistent definition of metrizable mapping which extends
the corresponding notion for spaces and allow us to obtain general metrization
theorems ?

Problem 5. Is it possible to extend to mappings other kind of Tychonoff exten-
sion properties like the m-boundedness (see [PoW]) ¢
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