One page Proof of Riemann Hypothesis

Dmitri Martila

Institute of Theoretical Physics, Tartu University, 4 Tähe Street, 51010 Tartu, Estonia^{*} (Dated: May 27, 2020)

Abstract

There are tenths of proofs for Riemann Hypothesis and 3 or 5 disproofs of it in arXiv. I am adding to the Status Quo my proof, which uses the achievement of Dr. Zhu.

^{*}Electronic address: eestidima@gmail.com

I. PRIOR RESEARCH RESULT

Because the paper of Dr. Zhu [1] is not published in a peer-review journal (for 4 years) and is very complicated, it could contain a fatal mistake. Thus, I do not start with the final result called "The probability of Riemann's hypothesis being true is equal to 1" but rather with the starting information of the papers [1, 2] (one of the papers is peer-reviewed), where is proven, that

$$\lim_{n \to \infty} \inf d(n) = 0, \qquad (1)$$

where d(n) = D(n)/n, and $D(n) = e^{\gamma} n \ln \ln n - \sigma(n)$. Hereby the Riemann Hypothesis holds true, if $\lim_{n\to\infty} \inf D(n) \ge 0$.

II. MY PROOF

The Eq.(1) means, that $\lim_{n\to\infty} d(n) \ge 0$. However, the limit does not exist, because the number $X = \lim \sigma(n)/n$ can not be determined: the function jumps from one value to another, namely $(\sigma(n) - \sigma(n+j))/n \ne 0$ if $n \to \infty$ for $j < \infty$. Therefore, instead of Eq.(1) it is mathematically correct to write: $d(n) = D(n)/n \ge 0$, when $n \gg 1$. The expression $n \gg 1$ means, that the *n* is always finite $n < \infty$. But for any finite *n* the $D(n)/n \ge 0$ implies, that $D(n) \ge 0$.

- Yuyang Zhu, The probability of Riemann's hypothesis being true is equal to 1, arXiv:1609.07555v2 [math.GM] (2018)
- [2] P. Solé and Y. Zhu. An Asymptotic Robin Inequality. INTEGERS, Nr.A81, 16 (2016), http://math.colgate.edu/~integers/q81/q81.pdf