Proof of the Beal conjecture and Fermat- Catalan conjecture (summary)

Nguyen Van Quang
Hue - Vietnam, 05-2020

Abstract

This article includes the theorems [7], [8] and the lemmas, using them to prove the Beal conjecture and the Fermat - Catalan conjecture, through which we learn more about rational and irrational numbers. I think the method of proof will be useful for solving other Math - problems, and they need more research

1 The theorems

Theorem 1. For positive integers x, y, z, k_{i} and A, B coprime integers, and $a_{k}, a_{k-1}, \ldots, a_{1}, a_{0}$ are fixed numbers. $\sqrt[z]{A^{x} \pm B^{y}}=a_{k} s^{k}+a_{k-1} s^{k-1} t+a_{k-2} s^{k-2} t^{2}+\ldots+a_{1} s t^{k-1}+a_{0} s^{k}$ for any s, t coprime integers.

$$
\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{3}{\operatorname{LCM}(x, y, z)}>1
$$

In other worlds, the $C=\sqrt[z]{A^{x} \pm B^{y}}(A, B, C \neq 1$, coprime $)$ can not be expressed as $a_{k} s^{k}+a_{k-1} s^{k-1} t+a_{k-2} s^{k-2} t^{2}+\ldots+a_{1} s t^{k-1}+a_{0} s^{k}$ with all fixed coefficients, s, t coprime integer if

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{3}{\operatorname{LCM}(x, y, z)} \leqslant 1
$$

Notes:
LCM (x, y, z): least common multiples of x, y and z.
Except $A=3, B=2, \sqrt[z]{3^{2}-2^{3}}=1$
Theorem 2. For positive integers x, y, z, and $A, B, C \neq \pm 1$, coprime integers:
The equation $A^{x}+B^{y}=C^{z} \Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{3}{\operatorname{LCM}(x, y, z)}>1$
In other worlds, the equation $A^{x}+B^{y}=C^{z}$ has no solution $(A, B, C \neq \pm 1$, coprime $)$ in integer if

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{3}{\operatorname{LCM}(x, y, z)} \leqslant 1
$$

Notes:

LCM (x, y, z): least common multiples of x, y and z.

As above, if A, B and C have a common factor, we always find a solution as below:
Let $a_{0}^{x}+b_{0}^{x}=c_{0}$ then $c_{0}^{x} a_{0}^{x}+c_{0}^{x} b_{0}^{x}=c_{0}^{x+1}$
so $A^{x}+B^{x}=C^{x+1}\left(A=c_{0} a_{0}, B=c_{0} b_{0}, C=c_{0}\right)$
Or
Let $a_{0}^{x}+b_{0}^{y}=c_{0}$ then $c_{0}^{x y} a_{0}^{x}+c_{0}^{x y} b_{0}^{y}=c_{0}^{x y+1}$
so $A^{x}+B^{y}=C^{x y+1}$, $\left(A=c_{0}^{y} a_{0}, B=c_{0}^{x} b_{0}, C=c_{0}\right)$

2 The lemmas

Lemma 1. For any integer N,s,t $(s, t=1)$, there exist integers $a_{k}, a_{k-1}, a_{k-2}, \ldots, a_{0}$ such that : $N=a_{k} s^{k}+a_{k-1} s^{k-1} t+a_{k-2} s^{k-2} t^{2}+\ldots+a_{1} s t^{k-1}+a_{0} t^{k}$
In others wolds, any integer N can be expressed as:
$N=a_{1} s+a_{0} t$
$N=a_{2} s^{2}+a_{1} s t+a_{0} t^{2}$
$N=a_{k} s^{k}+a_{k-1} s^{k-1} t+a_{k-2} s^{k-2} t^{2}+\ldots+a_{1} s t^{k-1}+a_{0} t^{k}$

Proof. It is known, given any integer s, t coprime, then exit the integers N_{1}, N_{0}, such that any integer N can be express as
$N=N_{1} s+N_{0} t$
then, we express for N_{1} and N_{0} :
$N_{1}=N_{11} s+N_{10} t$
$N_{0}=N_{01} s+N_{00} t$
it gives:
$N=\left(N_{11} s+N_{10} t\right) s+\left(N_{01} s+N_{00} t\right) t=N_{11} s^{2}+\left(N_{10}+N_{01}\right) s t+N_{00} t^{2}$
Then we express for $N_{11},\left(N_{10}+N_{01}\right), N_{00}$
and so on we obtain the express $N=a_{k} s^{k}+a_{k-1} s^{k-1} t+a_{k-2} s^{k-2} t^{2}+\ldots+a_{1} s t^{k-1}+a_{0} t^{k}$

* Clearly, expression for N above is also true when N is not a integer, then all a_{i} are also not simultaneously integers.

Lemma 2. The equation $u_{k} s^{k}+u_{k-1} s^{k-1} t+u_{k-2} s^{k-2} t^{2}+\ldots+u_{1} s t^{k-1}+u_{0} t^{k}=0$ for any s, t coprime if the coefficients u_{i} satify :

1. Each coefficients satify :
$u_{k}=h_{k} t$
$u_{k-1}=-h_{k} s+h_{k-1} t$
$u_{k-2}=-h_{k-1} s+h_{k-2} t$
...
$u_{1}=-h_{2} s+h_{1} t$
$u_{0}=-h_{1} s$

2.All coefficients (u_{i}) equal to zero(all $h_{i}=0$)

Note that the number h_{k}, h_{1} appear once, the remaining h_{i} appear twice in two successive $i^{\text {th }},(i-1)^{\text {th }}$ equations with opposite signs. Change each other's sign, the result will remain the same.

Proof. From the equation $u_{k} s^{k}+u_{k-1} s^{k-1} t+u_{k-2} s^{k-2} t^{2}+\ldots+u_{1} s t^{k-1}+u_{0} t^{k}=0 \Rightarrow u_{k}=$ $h_{k} t, u_{0}=-h_{1} s$, substitute into this equation, it gives:
$h_{k} s^{k} t+u_{k-1} s^{k-1} t+u_{k-2} s^{k-2} t^{2}+\ldots+u_{1} s t^{k-1}-h_{1} s t^{k}=0$
$s t\left(h_{k} s^{k-1}+u_{k-1} s^{k-2}+u_{k-2} s^{k-1} t+\ldots+u_{1} t^{k-2}-h_{1} t^{k-1}\right)=0$
$\left(h_{k} s+u_{k-1}\right) s^{k-2}+u_{k-2} t^{k-3} s+\ldots+\left(u_{1}-h_{1} t\right) t^{k-2}=0$
$\Rightarrow h_{k} s+u_{k-1}=-h_{k-1} t \Rightarrow u_{k-1}=-h_{k} s+h_{k-1} t$
and $\Rightarrow u_{1}-h_{1} t=-h_{2} s \Rightarrow u_{1}=-h_{2} s+h_{1} t$
and so on.

3 Proof of theorem 1 and 2

$$
A^{x}+B^{y}=C^{z}
$$

1. Case A: $x=y=z$ (Fermat Last's theorem)

Express A,B, and C as polynomial of the same degree by using lemma 1 :

$$
\begin{aligned}
& A=a_{k} s^{k}+a_{k-1} s^{k-1} t+a_{k-2} s^{k-2} t^{2}+\ldots+a_{1} s t^{k-1}+a_{0} t^{k} \\
& B=b_{k} s^{k}+b_{k-1} s^{k-1} t+b_{k-2} s^{k-2} t^{2}+\ldots+b_{1} s t^{k-1}+b_{0} t^{k} \\
& C=c_{k} s^{k}+c_{k-1} s^{k-1} t+c_{k-2} s^{k-2} t^{2}+\ldots+c_{1} s t^{k-1}+c_{0} t^{k}
\end{aligned}
$$

And we obtain the equation below:

$$
\begin{aligned}
& \left(a_{k} s^{k}+a_{k-1} s^{k-1} t+a_{k-2} s^{k-2} t^{2}+\ldots+a_{1} s t^{k-1}+a_{0} t^{k}\right)^{x} \\
+ & \left(b_{k} s^{k}+b_{k-1} s^{k-1} t+b_{k-2} s^{k-2} t^{2}+\ldots+b_{1} s t^{k-1}+b_{0} t^{k}\right)^{x} \\
= & \left(c_{k} s^{k}+c_{k-1} s^{k-1} t+c_{k-2} s^{k-2} t^{2}+\ldots+c_{1} s t^{k-1}+c_{0} t^{k}\right)^{x}
\end{aligned}
$$

Combine coefficients with common $s^{i} t^{j}$ we obtain the equation:

$$
\left(a_{k}^{x}+b_{k}^{x}-c_{k}^{x}\right) s^{k x}+x\left(a_{k}^{x-1} a_{k-1}+b_{k}^{x-1} b_{k-1}-c_{k}^{x-1} c_{k-1}\right) s^{k x-1} t+\ldots .+\left(a_{0}^{x}+b_{0}^{x}-c_{0}^{x}\right) t^{k x}=0
$$

Using the lemma 2 , we get $\mathrm{kx}+1$ equations below:
$1^{t h}: a_{k}^{x}+b_{k}^{x}-c_{k}^{x}=h_{k} t$

$$
2^{t h}: a_{k}^{x-1} a_{k-1}+b_{k}^{x-1} b_{k-1}-c_{k}^{x-1} c_{k-1}=-h_{k} s+h_{k-1} t
$$

$(k x+1)^{t h}: a_{0}^{x}+b_{0}^{x}-c_{0}^{x}=-h_{1} s$
If all coefficients a_{i}, b_{i}, c_{i} of A, B and C polynomials are fixed numbers, then:
$1^{\text {th }}: a_{k}^{x}+b_{k}^{x}-c_{k}^{x}=0$

$$
2^{\text {th }}: a_{k}^{x-1} a_{k-1}+b_{k}^{x-1} b_{k-1}-c_{k}^{x-1} c_{k-1}=0
$$

...
$(k x+1)^{t h}: a_{0}^{x}+b_{0}^{x}-c_{0}^{x}=0$
And the number of variables, for $a_{i}: k+1$, for $b_{i}: k+1$, for $c_{i}: k+1$
The total of variables is $3 \mathrm{k}+3$.
The total of equations is $\mathrm{kx}+1$.
2. Case B: x, y and z are not the same, we need to homogenize the degree:

- Homogenization for degree:
-We denote $\mathrm{l}=\operatorname{LCM}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ as the least common multiple of x, y and z , we convert the equation to the equation with the same degree, $($ degree $=\mathrm{kl})$ by selecting the polynomials below:

$$
\begin{aligned}
& A=a_{k l / x} s^{k l / x}+a_{(k l / x)-1} s^{(k l / x)-1} t+a_{(k l / x)-2} s^{(k l / x)-2} t^{2}+\ldots+a_{1} s t^{(k l / x)-1}+a_{0} t^{k l / x} \\
& B=b_{k l / y} s^{k l / y}+b_{(k l / y)-1} s^{(k l / y)-1} t+b_{(k l / y)-2} s^{k l / y)-2} t^{2}+\ldots+b_{1} s t^{k l / y)-1}+b_{0} t^{k l / y} \\
& C=c_{k l / z} s^{k l / x}+c_{(k l / z)-1} s^{(k l / y)-1} t+c_{(k l / z)-2} s^{(k l / z)-2} t^{2}+\ldots+c_{1} s t^{(k l / z)-1}+c_{0} t^{k l / z}
\end{aligned}
$$

Since $\mathrm{l}=\operatorname{LCM}(\mathrm{x}, \mathrm{y}, \mathrm{z})$, hence $x|l, y| l, z \mid l$, that means $\mathrm{kl} / \mathrm{x}, \mathrm{kl} / \mathrm{y}, \mathrm{kl} / \mathrm{z}$ are integers.
And we obtain equation below:

$$
\begin{aligned}
& \quad\left(a_{k l / x} s^{k l / x}+a_{(k l / x)-1} s^{(k l / x)-1} t+a_{(k l / x)-2} s^{(k l / x)-2} t^{2}+\ldots+a_{1} s t^{(k l / x)-1}+a_{0} t^{k l / x}\right)^{x}+ \\
& \left(b_{k l / / y} s^{k l / y}+b_{(k l / y)-1} s^{k l / y)-1} t+b_{(k l / y)-2} s^{(k l / y)-2} t^{2}+\ldots+b_{1} s t^{(k l / y)-1}+b_{0} t^{k l / y}\right)^{y}= \\
& \left(c_{k l / z} s^{k l / z}+c_{(k l / z)-1} s^{(k l / z)-1} t+c_{(k l / z)-2} s^{(k l / z)-2} t^{2}+\ldots+c_{1} s t^{(k l / z)-1}+c_{0} t^{(k l / z}\right)^{z}
\end{aligned}
$$

with degree $=\mathrm{kl}$.
Combine coefficients with common $s^{i} t^{j}$ we obtain the equation:

$$
\begin{aligned}
& \quad\left(a_{k l / x}^{x}+b_{k l / y}^{y}-c_{k l / z}^{z}\right) s^{k l}+\left(x a_{k l / x}^{x-1} a_{(k l / x)-1}+y b_{k l / y}^{y-1} b_{(k l / y)-1}+z c_{k l / z}^{z-1} c_{(k l / z)-1}\right) s^{k l-1} t+\ldots+\left(a_{0}^{x}+\right. \\
& \left.b_{0}^{y}-c_{0}^{z}\right) t^{k l}=0
\end{aligned}
$$

Using the lemma 2 , we get $\mathrm{kl}+1$ equations below:

$$
\begin{aligned}
& 1^{t h}: a_{k l / x}^{x}+b_{k l / y}^{y}-c_{k l / z}^{z}=h_{k} t \\
& 2^{t h}: x a_{k l / x}^{x-1} a_{(k l / x)-1}+y b_{k l / y}^{y-1} b_{(k l / y)-1}-z c_{k l / z}^{z-1} c_{(k l / z)-1}=-h_{k} s+h_{k-1} t
\end{aligned}
$$

$$
(k l+1)^{t h}: a_{0}^{x}+b_{0}^{y}-c_{0}^{z}=-h_{1} s
$$

If all coefficients a_{i}, b_{i}, c_{i} of A, B and C polynomials are fixed numbers, then
$1^{t h}: a_{k l / x}^{x}+b_{k l / y}^{y}-c_{k l / z}^{z}=0$

$$
2^{t h}: x a_{k l / x}^{x-1} a_{(k l / x)-1}+y b_{k l / y}^{y-1} b_{(k l / y)-1}-z c_{k l / z}^{z-1} c_{(k l / z)-1}=0
$$

$(k l+1)^{t h}: a_{0}^{x}+b_{0}^{y}-c_{0}^{z}=0$
And the number of variables, for $a_{i}:(k l / x)+1$, for $b_{i}:(k l / y)+1$, for $c_{i}:(k l / z)+1$
The total of variables is $k l / x+k l / y+k l / z+3$.
The total of equations is $\mathrm{kl}+1$
The system of equations is overdetermined if the number of equations is higher than the number of variables $\Rightarrow k l / x+k l / y+k l / z+3<k l+1 \Longleftrightarrow k l / x+k l / y+k l / z+3 \leqslant k l$

Divide both sides by $k l$ we obtain:

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{3}{k l} \leqslant 1
$$

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{3}{k l}$ is max if $k=1$, we get

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{3}{l} \leqslant 1
$$

* Special case $x=y=z=l$

This formula is mentioned in the theorem 1 and 2.
If all coefficients a_{i}, b_{i}, c_{i} of A, B and C polynomials are not simultaneously fixed number for any k, then at least one of A, B and C is not determined.Thus, for any degree of A, B and C , there must be exist k so that all coefficients are fixed, meaning that for this value k , then all right sides are equal to 0 .

If all right sides are equal to 0 , then for the case: $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{3}{k l} \leqslant \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{3}{l} \leqslant 1$ the system of equations is overdetermined, and all equations in the system above are independent, hence the system is inconsistent, and have no non- trivial solutions.

Theorem 1 is proven, the theorem 2 is also true [8], the algorithm of the proof for general theorems [7], [8] is similar.

And adding argument in [7]the Beal conjecture and the Fermat - Catalan conjecture are proven.

References

[1] Beal conjecture - Wikipedia
[2] Fermat Catalan conjecture - Wikipedia
[3] Catalan's conjecture - Wikipedia
[4] Euler's Sum of powers conjecture - Wikipedia
[5] Quang N V, Theorem for W^{n} and Fermat's Last theorem Vixra: 1811.0072 v2(NT)
[6] Quang N V, A proof of the four color theorem by induction Vixra: 1601.0247 (CO)
[7] Quang N V, $A^{x}+B^{y}=C^{z}$ - Part 1: My theorem Vixra: 1910.0563 (NT)
[8] Quang N V, $A^{x}+B^{y}=C^{z}$ - Part 2: Another version of my theorem and infinite ascent Vixra: 2004.0690 (NT)

Email:
nguyenvquang67@gmail.com
quangnhu67@yahoo.com.vn

