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Abstract

In 1891 Georg Cantor published his Diagonal Method which, he
asserted, proved that the real numbers cannot be put into a one-to-one
correspondence with the natural numbers. In this paper we will see
how by varying the initial conditions of Cantor’s proof we can use the
diagonal method to produce a one-to-one correspondence between the
set of natural numbers and the set of infinite binary decimals in the
interval (0, 1).

In the appendix we demonstrate that using the diagonal method
recursively will, at the limit of the process, fully account for all the
infinite binary decimals in (0, 1). The proof will cement the one-to-one
correspondence between the natural numbers and the infinite binary
decimals in (0, 1).



I. Introduction

In 1891 Georg Cantor published his Diagonal Method which, he asserted,
proved that the real numbers cannot be put into a one-to-one correspondence
with the natural numbers. Cantor’s proof relies on the fact that a complete
list of infinite binary decimals over the open interval (0, 1) cannot, in fact be
realized. That is to say, the infinite set of binary decimal numbers in (0, 1)
cannot be listed linearly in its entirety and thus is uncountable. Cantor’s rea-
soning is that since the binary decimal numbers listed, even though infinite,
must necessarily be incomplete, then any attempt to put those numbers in
(0, 1) in a one-to-one correspondence with the natural numbers is bound to
fail. To demonstrate, we begin with a matched list of infinite binary decimal
numbers in (0, 1) which we assume is complete. Each number in the list is
matched with a corresponding natural number. Any infinite binary decimal
number not in the list will have no natural number to pair with. Cantor’s
diagonal method produces numbers not contained in the list and from this
he concludes that the set of infinite binary decimals in (0, 1) must have more
members than the set of all natural numbers.

In this paper we will see how by varying the initial conditions of Cantor’s
proof we can use the diagonal method to produce a one-to-one correspondence
between the set of natural numbers and the set of infinite binary decimals
in (0, 1). We concede that the initial list of infinite binary decimals is, in
fact, incomplete and that the diagonal method does produce a number not
contained in the list. Also we’ll agree that there are an infinite number of
binary decimal numbers in the interval that are not in the list. We are not
arguing that Cantor’s proof is incorrect, only that it’s not the last word on
the subject. We will see how using the same diagonal method we can create
infinitely many binary decimal numbers contained in the interval and that
for each number we so create, each will correspond with one and only one
natural number.

In the appendix we demonstrate that using the diagonal method recursively
will, at the limit of the process, fully account for all the infinite binary deci-
mals in (0, 1). The proof will cement the one-to-one correspondence between
the natural numbers and the infinite binary decimals in (0, 1).
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II. Initial Conditions, Cantor’s 1891 Proof

1. The set B of infinite binary decimals on the interval (0, 1),

B = {d : 0 < d < 1}

2. An assumed complete list L, of the elements of B.

d
. 0 1 0 1 0 1 0 1 0 1 . . .
. 1 1 0 1 1 0 1 1 0 1 . . .
. 0 0 1 0 0 1 0 0 1 0 . . .
. 0 0 0 1 0 0 0 1 0 0 . . .
. 1 0 1 0 1 0 1 0 1 0 . . .

...

3. The set of natural numbers N,

N = {1, 2, 3, ...}

4. The following arrangement matching each item in L with an element of
N:

n d
1 . 0 1 0 1 0 1 0 1 0 1 . . .
2 . 1 1 0 1 1 0 1 1 0 1 . . .
3 . 0 0 1 0 0 1 0 0 1 0 . . .
4 . 0 0 0 1 0 0 0 1 0 0 . . .
5 . 1 1 1 0 1 1 1 0 1 1 . . .
6 . 0 0 0 0 1 0 0 0 0 1 . . .
7 . 1 1 1 1 0 1 1 1 1 0 . . .
8 . 0 0 1 1 0 0 1 1 0 0 . . .
9 . 1 1 0 0 1 1 0 0 1 1 . . .
10 . 1 0 1 0 1 0 1 0 1 0 . . .
... ...

III. Creating a number Y not contained in L

Next we use the diagonal method to construct a binary decimal number that
is not in the list by flipping the first digit of the number in the first row, the
second digit of the number in the second row, the third digit in the number
in the third row and so on. The resulting table will appear as follows:
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n d
1 . 0 1 0 1 0 1 0 1 0 1 . . .
2 . 1 1 0 1 1 0 1 1 0 1 . . .
3 . 0 0 1 0 0 1 0 0 1 0 . . .
4 . 0 0 0 1 0 0 0 1 0 0 . . .
5 . 1 1 1 0 1 1 1 0 1 1 . . .
6 . 0 0 0 0 1 0 0 0 0 1 . . .
7 . 1 1 1 1 0 1 1 1 1 0 . . .
8 . 0 0 1 1 0 0 1 1 0 0 . . .
9 . 1 1 0 0 1 1 0 0 1 1 . . .
10 . 1 0 1 0 1 0 1 0 1 0 . . .
... ...
Y . 1 0 0 0 0 1 0 0 0 1 . . .

The number Y will differ at each nth digit from the number in the nth row of
the table. Therefore Y cannot be in L and cannot be matched with a natural
number. Since Y cannot be paired with a natural number not already in L,
Cantor reasoned that the set of numbers in (0, 1) must be larger than the set
of natural numbers.

IV. Changing the Initial Conditions

We will construct a proof with slightly different initial conditions that will
demonstrate that the infinite binary decimals in (0, 1) and natural numbers
can be arranged in such a way as to match one natural number with one
infinite binary decimal number in the interval without exception. Our new
initial conditions are as follows:

1. The set N of natural numbers,

N = {1, 2, 3, ...}

2. The set Ne of even natural numbers,

Ne = {2, 4, 6, ...}

3. The set No of odd natural numbers,

No = {1, 3, 5, ...}
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4. From set theory we know that:

f : N→ No,

f : N→ Ne

and
No ∪ Ne = N

therefore
f : N→ No ∪ Ne

5. The set B of infinite binary decimals in the interval (0, 1),

B = {d : 0 < d < 1}

6. An infinite, incomplete list L, of the elements of B.

d
. 0 1 0 1 0 1 0 1 0 1 . . .
. 1 1 0 1 1 0 1 1 0 1 . . .
. 0 0 1 0 0 1 0 0 1 0 . . .
. 0 0 0 1 0 0 0 1 0 0 . . .
. 1 0 1 0 1 0 1 0 1 0 . . .

...

We now begin as Cantor did, by constructing a number Y not in L. Our list
is constructed slightly differently than Cantor’s in that we are matching each
infinite binary decimal number in L with an element of No as shown below:
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n d
1 . 0 1 0 1 0 1 0 1 0 1 . . .
3 . 1 1 0 1 1 0 1 1 0 1 . . .
5 . 0 0 1 0 0 1 0 0 1 0 . . .
7 . 0 0 0 1 0 0 0 1 0 0 . . .
9 . 1 1 1 0 1 1 1 0 1 1 . . .
11 . 0 0 0 0 1 0 0 0 0 1 . . .
13 . 1 1 1 1 0 1 1 1 1 0 . . .
15 . 0 0 1 1 0 0 1 1 0 0 . . .
17 . 1 1 0 0 1 1 0 0 1 1 . . .
19 . 1 0 1 0 1 0 1 0 1 0 . . .
... ...
Y . 1 0 0 0 0 1 0 0 0 1 . . .

As before, Y is not in L. The next step requires that we enter Y into L. L
has no end so we put Y in at the beginning of L and match it with the first
element of the set Ne, which is 2. See below.

n d
2 . 1 0 0 0 0 1 0 0 0 1 . . .
1 . 0 1 0 1 0 1 0 1 0 1 . . .
3 . 1 1 0 1 1 0 1 1 0 1 . . .
5 . 0 0 1 0 0 1 0 0 1 0 . . .
7 . 0 0 0 1 0 0 0 1 0 0 . . .
9 . 1 1 1 0 1 1 1 0 1 1 . . .
11 . 0 0 0 0 1 0 0 0 0 1 . . .
13 . 1 1 1 1 0 1 1 1 1 0 . . .
15 . 0 0 1 1 0 0 1 1 0 0 . . .
17 . 1 1 0 0 1 1 0 0 1 1 . . .
... ...
Y . 0 0 1 1 1 0 1 0 1 0 . . .

We repeat the procedure with the new number added to the list to create
another number Y also not in the list and match this number with the next
element of Ne and add it to the list. Our list now looks like:
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n d
4 . 0 0 1 1 1 0 1 0 1 0 . . .
2 . 1 0 0 0 0 1 0 0 0 1 . . .
1 . 0 1 0 1 0 1 0 1 0 1 . . .
3 . 1 1 0 1 1 0 1 1 0 1 . . .
5 . 0 0 1 0 0 1 0 0 1 0 . . .
7 . 0 0 0 1 0 0 0 1 0 0 . . .
9 . 1 1 1 0 1 1 1 0 1 1 . . .
11 . 0 0 0 0 1 0 0 0 0 1 . . .
13 . 1 1 1 1 0 1 1 1 1 0 . . .
15 . 0 0 1 1 0 0 1 1 0 0 . . .
... ...
Y . 1 1 1 0 1 1 0 1 0 1 . . .

This procedure can be repeated over and over indefinitely, expanding L with
infinite binary decimal numbers from (0, 1) not initially in L. After i itera-
tions our list looks like:

n d
n Y
... ...
4 . 0 0 1 1 1 0 1 0 1 0 . . .
2 . 1 0 0 0 0 1 0 0 0 1 . . .
1 . 0 1 0 1 0 1 0 1 0 1 . . .
3 . 1 1 0 1 1 0 1 1 0 1 . . .
5 . 0 0 1 0 0 1 0 0 1 0 . . .
7 . 0 0 0 1 0 0 0 1 0 0 . . .
9 . 1 1 1 0 1 1 1 0 1 1 . . .
11 . 0 0 0 0 1 0 0 0 0 1 . . .
13 . 1 1 1 1 0 1 1 1 1 0 . . .
15 . 0 0 1 1 0 0 1 1 0 0 . . .
... ...

We now have a situation where every element of L, at any moment in time,
is matched with one and only one natural number. And going forward, no
matter how many numbers Y are added to the list, each will be matched
with one and only one natural number.
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V. Proof that f : N→ B

Let Bm be defined as a subset of B such that every element of Bm is a
member of L before any number Y has been created and inserted into L,

Bm ⊂ B and Bm = {d : d ∈ L}.

Let Bn be defined as a subset of B such that every element of Bn is not a
member of L before any number Y has been created and inserted into L,

Bn ⊂ B and Bn = {d : d /∈ L}.

The union of Bm and Bn is the set B,

Bm ∪Bn = B.

For every d ∈ Bm we have one and only one corresponding n ∈ No therefore

f : No → Bm exists.

For every d ∈ Bn we have one and only one corresponding n ∈ Ne therefore

f : Ne → Bn exists.

It follows that

f : (No ∪ Ne)→ (Bm ∪Bn) exists and since

(No ∪ Ne) = N and (Bm ∪Bn) = B then

f : N→ B

This ends the demonstration and completes the proof.
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Appendix

In the appendix we demonstrate that using the diagonal method recursively
will, at the limit of the process, fully account for all the infinite binary deci-
mals in (0, 1). The proof will cement the one-to-one correspondence between
the natural numbers and the infinite binary decimals in (0, 1). Finally, we
will propose a conjecture that the apparent different sizes of infinite sets are
merely a matter of arrangement or the form of presentation and not actual
differences.

I. Initial Conditions

1. The set N of natural numbers,

N = {1, 2, 3, ...}

2. The set Ne of even natural numbers,

Ne = {2, 4, 6, ...}

3. The set No of odd natural numbers,

No = {1, 3, 5, ...}

4. From set theory we know that:

f : N→ No, f : N→ Ne and No ∪ Ne = N therefore f : N→ No ∪ Ne

5. The set B of infinite binary decimals in the interval (0, 1),

B = {d : 0 < d < 1}

6. The infinite list L of elements of B,

d
. d1 d2 d3 d4 d5 d6 d7 d8 d9 . . .
. d1 d2 d3 d4 d5 d6 d7 d8 d9 . . .
. d1 d2 d3 d4 d5 d6 d7 d8 d9 . . .
. d1 d2 d3 d4 d5 d6 d7 d8 d9 . . .
. d1 d2 d3 d4 d5 d6 d7 d8 d9 . . .

...

7. Let Bm be defined as a subset of B such that every element of Bm is a
member of L before any number Y has been created and inserted into L,
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Bm ⊂ B and Bm = {d : d ∈ L} therefore (∀d ∈ Bm) ∈ L

8. Let Bn be defined as a subset of B such that every element of Bn is not
a member of L before any number Y has been created and inserted into L,

Bn ⊂ B and Bn = {d : d /∈ L} therefore (∀d ∈ Bn) /∈ L

II. Demonstration

Since

(∀d ∈ Bm) ∈ L

and each d in L is matched with one and only one n ∈ No then

f : No → Bm

Since for each

(d ∈ Bn) /∈ L

when constructed and entered into L via the diagonal method, is matched
with one and only one n ∈ Ne then

f : Ne → Bn

Let Yi represent a given (d ∈ Bn) constructed via the diagonal method. Yi

can then be viewed as a function of employing the diagonal method over
the domain L. The function is recursive in nature since each Yi constructed
becomes part of the domain for the next iteration.

f(Yi) = DM(L + Yi−1)

We can now ask the question:

At the limit of the diagonal method process will f(Yi) = DM(L + Yi−1)
capture all the elements of Bn? That is, what is the resolution of the following
limit expression:

lim
i→∞

f(Yi) = ∀d ∈ Bn
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If

∃r ∈ Bn 6= f(Yi)

then we must conclude that
lim
i→∞

f(Yi)

produces a list L that is a subset of B and that a one-to-one correspondence
between N and B cannot be constructed using the arrangement proposed in
The Diagonal Paradox.

To prove that at the limit of the process L is complete we must show that
all d ∈ Bn will be constructed using the diagonal method:

DM(L + Yi−1) = ∀d ∈ Bn

and since
f(Yi) = DM(L + Yi−1)

we have
f(Yi) = ∀d ∈ Bn

1. f(Yi) is a value in the range of the diagonal method applied recursively
over the domain L with Yi−1 appended to the beginning of L

2. Therefore Yi is defined as DM(L + Yi−1), that is

f(Yi) = DM(L + Yi−1)

3. The complete range of f(Y ) is equal to the limit as i→∞ of the diagonal
method applied to the entire domain (L + ∀Y )

f(Y ) = lim
i→∞

DM(L + ∀Y )

4. Assume the existence of at least one d ∈ Bn which is not in the range of
f(Yi), that is

(∃d ∈ Bn) 6= f(Yi)

5. Let (∃d ∈ Bn) 6= f(Yi) be denoted by X

6. If X exists and is not created during the diagonal method procedure then
the procedure must be finite with X being the value of the limit at ∞. But
then X can simply be added to the beginning of L and another Yi will be
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constructed kicking off the procedure once more. Since any X will restart
the procedure it stands to reason that the procedure is not finite and that
all d ∈ Bn will be created at the limit of the process and L will be complete.

7. The completed list L is then equal to the union of the sets Bm and Bn

and we have L = Bm∪Bn. But we have previously shown that f : No → Bm

is given and demonstrated that f : Ne → Bn. This appendix justifies the
statement that the diagonal method recursively applied will, at the limit of
the process, capture all d ∈ Bn which supports the conclusion that

f : N → B

as demonstrated in the main paper.

III. Conclusion

We have seen that by splitting the set of natural numbers into two subsets,
the odd numbers and the even numbers, that we are able to construct an
arrangement of symbols whereby a one-to-one correspondence between the
natural numbers and the infinite binary decimal numbers in the open interval
(0, 1). We made use of Cantor’s diagonal method applied recursively in order
to show that the list of infinite binary decimals can be considered complete
at the limit of the diagonalization process. This result lends credence to the
supposition that the success of one-to-one matching of infinite sets is more
a matter of arrangement than anything to do with the ”size” of one infinite
set compared to another.
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