The abc Conjecture is False: The End of The Mystery

Abdelmajid Ben Hadj Salem, Dipl.-Eng.

Received: date / Accepted: date

Abstract In this note, I give the proof that the *abc* conjecture is false because, in the case c > rad(abc), for $0 < \epsilon < 1$ presenting a counterexample that implies a contradiction for c very large.

Keywords Elementary number theory \cdot real functions of one variable.

Mathematics Subject Classification (2010) $11AXX \cdot 26AXX$

To the memory of my Father who taught me arithmetic To my wife Wahida, my daughter Sinda and my son Mohamed Mazen

1 Introduction

Let a positive integer $a = \prod_i a_i^{\alpha_i}$, a_i prime integers and $\alpha_i \ge 1$ positive integers. We call *radical* of *a* the integer $\prod_i a_i$ noted by rad(a). Then *a* is written as :

$$a = \prod_{i} a_i^{\alpha_i} = rad(a) \cdot \prod_{i} a_i^{\alpha_i - 1} \tag{1}$$

We note:

$$\mu_a = \prod_i a_i^{\alpha_i - 1} \Longrightarrow a = \mu_a . rad(a) \tag{2}$$

The *abc* conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph (Esterlé of Pierre et Marie Curie University (Paris 6) [1]. It describes the distribution of the prime factors of two integers with those of its sum. The definition of the *abc* conjecture is given below:

Abdelmajid Ben Hadj Salem

Résidence Bousten 8, Mosquée Er-Raoudha, Bloc B, 1181 La Soukra Er-Raoudha, Tunisia.

E-mail: abenhadjsalem@gmail.com

Conjecture 1 Let a, b, c positive integers relatively prime with c = a + b, then for each $\epsilon > 0$, there exists a constant $K(\epsilon)$ such that :

$$c < K(\epsilon).rad^{1+\epsilon}(abc), \quad K(\epsilon) \text{ depending only of } \epsilon.$$
 (3)

The idea to try to write a paper about this conjecture was born after the publication of an article in Quanta magazine, in November 2018, about the remarks of professors Peter Scholze of the University of Bonn and Jakob Stix of Goethe University Frankfurt concerning the proof of Shinichi Mochizuki [2]. The difficulty to find a proof of the *abc* conjecture is due to the incomprehensibility how the prime factors are organized in *c* giving *a*, *b* with c = a+b.

We know that numerically, $\frac{Logc}{Log(rad(abc))} \leq 1.629912$ [1]. A conjecture was proposed that $c < rad^2(abc)$ [3]:

Conjecture 2 Let a, b, c positive integers relatively prime with c = a + b, then:

$$c < rad^2(abc) \Longrightarrow \frac{Logc}{Log(rad(abc))} < 2$$
 (4)

After studying the *abc* conjecture using different choices of the constant $K(\epsilon)$ and having attacked the problem from diverse angles, I have arrived to conclude that, assuming that $c < rad^2(abc)$ or $c < rad^{1.63}$ is true, the *abc* conjecture does not hold when $0 < \epsilon < 1$. Then the *abc* conjecture as it was defined is false. In this note, I give a counterexample that the *abc* conjecture is not true, in the case rad(abc) < c taking $\epsilon \in]0, 1[$ without assuming one of the two open questions : $c < rad^2(abc)$ and $c < rad^{1.63}(abc)$ that was proposed in 1996 by A. Nitaj [4].

The paper is organized as follows: in the second section, we give a counterexample that abc conjecture is false in the case rad(abc) < c, choosing $\epsilon \in]0, 1[$.

2 Proof the *abc* Conjecture is False

We note R = rad(ac) in the case c = a + 1 (respectively R = rad(abc) if c = a + b).

2.1 Case c < R:

As $c < R \implies c < R \implies c < K(\epsilon) \cdot R^{1+\epsilon}$, $\forall \epsilon > 0$ since we choose $K(\epsilon) \ge 1$ and the conjecture (1) is verified.

2.2 Case c = R

Case to reject as a, b, c (respectively a, c) are relatively prime.

2.3 Case R < c

I will consider the case c = a + 1. I give the following counterexample:

$$8^{n} = 2^{3n} = (7+1)^{n} = 7^{n} + 7^{n-1}n + \dots + 7n + 1 \Longrightarrow$$

$$2^{3n} = 7(7^{n-1} + n7^{n-2} + \dots + n) + 1$$
(5)

We consider that n = 2m is even so that the condition R < c is verified. In this case, $c = 2^{3n} = 2^{6m} \Longrightarrow a = c - 1 = 2^{6m} - 1$. As $2^3 \equiv -1 \pmod{9} \Longrightarrow 2^{6m} \equiv (-1)^{2m} \equiv 1 \equiv 0 \pmod{9} \Longrightarrow 3^2 | a$, so we can write $a = 3a_1$ with $a_1 \ge rad(a)$, it follows $c > a \ge 3rad(a) > 2rad(a) \Longrightarrow c > R$. We suppose that for n = 2m large, the *abc* conjecture holds taking $\epsilon = \epsilon_0 \in]0, 1[$. Then $\exists K(\epsilon_0) > 0$ and:

$$2^{6m} < K(\epsilon_0) R^{1+\epsilon_0} \tag{6}$$

We obtain $rad(c) = rad(2^{6m}) = 2$. As $a = \mu_a \cdot rad(a)$ and $3^2|a \Longrightarrow \mu_a \ge 3$, we can write $\mu_a = \mu_{\mu_a} rad(\mu_a)$ and $rad(a) = rad(\mu_a) \cdot \prod_{i=1}^{i=I_1} a_i$.

But:

$$a = \mu_{a} rad(a) = \mu_{\mu_{a}} rad(\mu_{a}) rad(a) = \mu_{\mu_{a}} \cdot \prod_{i=1}^{i=I_{1}} a_{i} \cdot rad^{2}(\mu_{a}) \Longrightarrow$$
$$rad^{2}(\mu_{a}) = \frac{a}{\mu_{\mu_{a}} \cdot \prod_{i=1}^{i=I_{1}} a_{i}} \Longrightarrow rad(\mu_{a}) = \frac{\sqrt{a}}{\sqrt{\mu_{\mu_{a}} \cdot \prod_{i=1}^{i=I_{1}} a_{i}}} < \sqrt{a} \Longrightarrow$$
$$rad(\mu_{a}) < 2^{3m} \cdot \left(1 - \frac{1}{2^{6m}}\right)^{1/2} \Longrightarrow rad(a) < \prod_{i=1}^{i=I_{1}} a_{i} \cdot 2^{3m} \cdot \left(1 - \frac{1}{2^{6m}}\right)^{1/2} (7)$$

We re-write the equation (6) in detail:

$$2^{6m} < K(\epsilon_0) 2^{1+\epsilon_0} rad^{1+\epsilon_0}(a) < K(\epsilon_0) 2^{1+\epsilon_0} \prod_{i=1}^{i=I_1} a_i^{1+\epsilon_0} \cdot 2^{3m(1+\epsilon_0)} \cdot \left(1 - \frac{1}{2^{6m}}\right)^{\frac{1+\epsilon_0}{2}}$$
(8)

That we can write as:

$$2^{3m(1-\epsilon_0)} \cdot \left(1 - \frac{1}{2^{6m}}\right)^{-\frac{1+\epsilon_0}{2}} < K(\epsilon_0) 2^{1+\epsilon_0} \cdot \prod_{i=1}^{i=I_1} a_i^{1+\epsilon_0}$$
(9)

The left member of the above inequality depends of m, but the right member does not depend explicitly of m. Now we consider that m becomes m' very large $(m' \rightarrow +\infty)$, then we obtain:

$$+\infty \le K(\epsilon_0)2^{1+\epsilon_0} \cdot \prod_{i=1}^{i=I_1} a_i^{1+\epsilon_0} \tag{10}$$

where the prime numbers a_i obtained for the case $2^{6m} = a + 1$. Hence the contradiction, and the *abc* conjecture is false for the value $\epsilon_0 \in]0, 1[$.

However, We can announce the following theorems that are very easy to prove:

Theorem 1 (*The truncated abc conjecture:*) Let a, b, c positive integers relatively prime with c = a + b, and assuming $c < rad^2(abc)$ is true, then for each $\epsilon \geq 1$, there exists $K(\epsilon)$ such that :

$$c < K(\epsilon).rad^{1+\epsilon}(abc) \tag{11}$$

where $K(\epsilon)$ is a constant depending of ϵ proposed as :

$$K(\epsilon) = e^{\left(\frac{1}{\epsilon^2}\right)} , \epsilon \ge 1$$

and:

Theorem 2 (*The truncated abc conjecture:*) Let a, b, c positive integers relatively prime with c = a + b, and assuming $c < rad^{1.63}(abc)$ is true, then for each $\epsilon \ge 0.63$, there exists $K(\epsilon)$ such that :

$$c < K(\epsilon).rad^{1+\epsilon}(abc) \tag{12}$$

where $K(\epsilon)$ is a constant depending of ϵ proposed as :

$$K(\epsilon) = e^{\left(\frac{1}{\epsilon^2}\right)} , \epsilon \ge 0.63$$

Ouf! The end of the mystery!

Acknowledgements

The author is very grateful to Professors Mihăilescu Preda and Gérald Tenenbaum for their comments about errors found in previous manuscripts concerning proofs proposed of the *abc* conjecture.

References

- 1. M. WALDSCHMIDT, On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, (2013).
- 2. K. KREMMERZ for Quanta Magazine, Titans of Mathematics Clash Over Epic Proof of ABC Conjecture. The Quanta Newsletter, 20 September 2018. www.quantamagazine.org. (2018).
- P. MIHĂILESCU, Around ABC. European Mathematical Society Newsletter N° 93, September 2014. pp 29-34. (2014).
- A. NITAJ, Aspects expérimentaux de la conjecture *abc.* Séminaire de Théorie des Nombres de Paris (1993-1994), London Math. Soc. Lecture Note Ser., Vol n°235. Cambridge Univ. Press. pp. 145-156. (1996)