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Proof of Fermat Last Theorem based on successive presentations of pairs 
of odd numbers 
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A simpler proof of Fermat Last Theorem (FLT), based mostly on new concepts, is suggested. FLT was 
formulated by Fermat in 1637, and proved by A. Wiles in 1995. The initial equation x^n + y^n = z^n is 
considered not in natural, but in integer numbers. It is subdivided into four equations based on parity of 
terms and their powers. Cases 1, 3 and 4 can be converted to case 2, which is studied using presentations 
of pairs of odd numbers with a successively increasing presentation factor of 2^r. The proposed methods 
and ideas can be used for studying other problems in number theory. 
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1. Introduction  
One of the reasons that FLT still attracts people is that the known solution [1], in their view, is too 
complicated for the problem. Here, we introduce a simpler approach based on earlier work [2].  
 
2. FLT sub-equations  
Let us consider an equation. 

aaa zyx =+                   (1) 
The power a is a natural number 3≥a . Unlike in the original FLT equation, here, x, y, z belong to the 
set of integer numbers Z. Combinations with zero values are not considered as solutions. We assume 
that variables x, y, z have no common divisor. Indeed, if they have such a divisor d, both parts of 
equation can be divided by ad , so that the new variables dxx /1 = , dyy /1 = , dzz /1 =  will have no 
common divisor. We will call such a solution, without a common divisor, a primitive solution. From the 
formulas above, it is clear that any non-primitive solution can be reduced to a primitive solution by 
dividing by the greatest common divisor. The reverse is also true, that is any non-primitive solution can 
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be obtained from a primitive solution by multiplying the primitive solution by a certain number. So, it is 
suffice to consider primitive solutions only.  
 Values x, y, z in (1) cannot be all even. Indeed, if this is so, this means that the solution is not 
primitive. By dividing it by the greatest common divisor, it can be reduced to a primitive solution. 
Obviously, x, y, z cannot be all odd. So, the only possible combinations left are when x and y are both 
odd, then z is even, or when one of the variables, x or y, is even, and the other is odd. In this case, z is 
odd. Thus, equation (1) can be subdivided into the following cases, which cover all permissible 
permutations of equation's parameters. 
1. na 2= ;   12 += kx ; 12 += py . Then, z is even, mz 2= .      (2) 
2. 12 += na ;  12 += px ; my 2= .   Then, z is odd, 12 += kz .      (3) 
3. 12 += na ;  12 += kx ; 12 += py . Then, z is even, mz 2= .       (4) 
4. na 2= ;   12 += px ; my 2= .   Then, z is odd, 12 += kz .      (5) 
 
3. Conversion of cases 1, 3 and 4 to case 2 
It will be shown in section 4.10 that case 3 is equivalent to case 2. For cases 1 and 4, as Dr. M. J. 
Leamer noted in his comment, there is a well known way to show that considering equation (1) is 
equivalent (in terms of existence of solution) to the case when exponent a is represented as a product of 
number four and (or) odd prime numbers. Indeed, we can assume that fpa = , where p is a product of 
one or more prime factors, so that p is odd; 1≥f  is an even natural number (since a is even for cases 1 
and 4). (Certainly, prime factors of a can be distributed between f and p.) We can rewrite (1) as 

pfpfpf zyx )()()( =+  
Then, if there is no integer solution for the odd exponent p>1, then (1) has no integer solution too. 
Indeed, if one assumes that {x,y,z} is a solution of (1), then { fx , fy , fz } would be integers representing 
a solution for the above equation. However, by assumption, it has no solution. The obtained 
contradiction means that {x,y,z} is not a solution of (1). 
 When a has no prime factors, 1=p . Since 3≥a , 4≥f . When f is divisible by four, we can use 
Corollary 2 on p. 53 in [3] that (1) has no solution in natural numbers for 4=a , representing the terms 
of (1) - say, the first one, as 44/ )( fx . Note that because of the even power, the Corollary extends on 
integer numbers too. However, then {x,y,z} also cannot be a solution of (1), since in this case 4/fx , 

4/fy , 4/fz  will be integers satisfying to (1), contrary to the aforementioned Corollary 2.  
When f  is divisible by two, but not four, that would mean that 3≥p  (since 3≥a ), and we again can 
convert (1) to an equation with an odd power.  
 Thus, cases 1 and 4 with even powers can be converted to cases 3 and 2 accordingly. Case 3 is 
equivalent to case 2. So, it is suffice to only prove that there is no integer solution for case 2. 
Independent solutions for cases 1 and 4 are presented in [2], v. 9. 
 
4. Cases 2 and 3 
We will need several Lemmas. 
 
4.1. Presentation of numbers in a binary form 
 
 Lemma 1: Each non-negative integer number n can be presented in a form  

i

r

i

i Kn ∑
=

=
0

2                   (6) 

where }1,0{=iK .  
 
Proof: Effectively, this Lemma states the fact that any non-negative number can be presented in a binary 
form.  
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From Lemma 1, the following Corollary follows. 

Corollary 1: Any negative integer number n can be presented as i

r

i

i Bn ∑
=

=
0

2 , where }0,1{−=iB . 

4.2. Presentation of equation (1) for cases 2 and 3  
For the case 3, we have 12 += na ; 12 1 += kx ; 12 1 += py ; mz 2= . Then, (1) transforms to 

1212
1

12
1 )2()12()12( +++ =+++ nnn mpk             (7) 

For the case 2, the power 12 += na ; 12 += px ; my 2= . Then, z is odd, 12 += kz .  
121212 )12()2()12( +++ +=++ nnn kmp  

It can be rewritten in a form 
121212 )2()12()12( +++ =+−+ nnn mpk             (8) 

We can present m in (8) as 12 mm μ= , where 0≥μ , and 1m  is an odd number. Then, (8) transforms to 
NNNN mpk 1

)1(2)12()12( +=+−+ μ               (9) 
where 12 += nN . Note that the value )1( += μNrt  is a threshold one. If we divide both parts of the 
equation by r2 , then for trr <  the right part is even, for trr =  it is odd, and for trr >  it is rational. 
 In the following, we will use a presentation of pairs of odd numbers with a factor of r2 , where 

1≥r , whose properties are considered below.  
 
4.3. Presentation of pairs of odd numbers with a factor of 2r 
 
4.3.1. Introducing pairs of presentation terms 
Let us consider an infinite set of pairs of odd integers produced by a pair of terms [ )12( +k , )12( +p ], k 
and p are integer variables without duplicate values, ),( ∞<<−∞ pk . The set, produced by a term 

)12( +k , can be presented by two subterms )14( +t  and )34( +t , )( ∞<<−∞ t , with a factor of four (for 
the even and odd k (k=2t, k=2t+1)). Numbers 1 and 3 are free coefficients (abbreviated as FC and FCs in 
this paper). Each such subterm represents a subset of odd numbers. Similarly, the set of odd numbers 
{ )12( +p }, produced by a term )12( +p , can be presented by two subterms )14( +s  and )34( +s , 

)( ∞<<−∞ s . (Here and in the entire paper such parameters as k, p, t and s, defining sets of numbers, are 
integer variables without duplicate values, defined on the range ),( ∞−∞ ). Thus, the original set, 
produced by a pair of terms [ )12( +k , )12( +p ], can be presented by four possible pairs from the above 
subterms with a presentation factor of four ( 22 ). In the following, such a pair of terms (for an arbitrary 
presentation level) will be called a pair of presentation terms (PPT). Note that in this paper we will 
consider only the terms presenting odd numbers. PPT defines a set of pairs of odd numbers. Such, each 
one PPT, presented above, defines an infinite set of pairs of odd numbers. 
 In essence, PPT is a set of numbers it produces. The distinction between PPTs and sets of pairs of 
odd numbers they produce is subtle; it emerges only when one begins splitting presentation terms (and 
consequently splitting the corresponding sets). In this case, instead of operating on infinite sets one 
could operate on presentation terms, producing these sets. Of course, the presentation terms have to have 
certain properties, which make operations on them equivalent to desirable operations on infinite sets. 
 Table 1 shows four possible PPTs, expressed with a factor of four. Such a presentation produces a 
complete set of pairs of odd integer numbers, since we considered all possible combinations of parities 
of k and p. (The completeness of such a presentation will be proved later for a general case of 
presentation with a factor r2 ). 
 We can continue presenting sets of pairs of odd numbers by PPTs using a successively increasing 
factor of r2 . Initial PPTs for the next presentation level with a factor of 32  are in cells (2,1)-(2,4). Table 
2 shows the presentation with a factor of 32 for two initial PPTs (cells (2,3), (2,4) in Table 1). Note that 
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index '3' for variables t, s corresponds to power r=3 in a presentation factor r2 . Such correspondence of 
the index to the power r of two in a presentation factor will be used throughout the paper. 
 
Table 1. All possible PPTs, defining sets of pairs of odd numbers, expressed with a factor of four. 

 0 1 2 3 4 
1 
 

k 
p 

2t2 
2s2+1

2t2+1
2s2 

2t2 
2s2 

2t2+1 
2s2+1

2 2k+1
2p+1

4t2+1 
4s2+3 

4t2+3 
4s2+1

4t2+1 
4s2+1

4t2+3 
4s2+3

 
Table 2. PPTs, expressed with a factor of eight ( 32 ), corresponding to initial PPTs  [ 14 2 +t , 14 2 +s ], 
[ 34 2 +t , 34 2 +s ] from Table 1. 

  0 1 2 3 4 
1 t2 

s2 
2t3 
2s3+1

2t3+1
2s3 

2t3 
2s3 

2t3+1 
2s3+1

2 4t2+1 
4s2+1

8t3+1 
8s3+5 

8t3+5 
8s3+1

8t3+1 
8s3+1

8t3+5 
8s3+5

3 4t2+3 
4s2+3

8t3+3 
8s3+7 

8t3+7 
8s3+3

8t3+3 
8s3+3

8t3+7 
8s3+7

 
Note: Of course, odd values k=2t+1 and p=2s+1 could be presented as k=2t-1 and p=2s-1, in which case 
the subterms will be accordingly )14( −t  and )14( −s . However, since )( ∞<<−∞ t , the subterms )14( −t  
and )34( +t  produce the same subsets of odd numbers.  
 
4.3.2. Presentation terms and infinite subsets of integer numbers 
So, we have two tightly related entities: PPTs and the corresponding infinite sets of pairs of odd 
numbers they produce. Eventually, we need to prove that (1) has no solution for all possible pairs of odd 
numbers. However, the proof is based on consideration of PPTs, which are producers of infinite sets and 
subsets of pairs of odd numbers. On the surface, one observes that the number of PPTs at each 
presentation level is finite, while they produce subsets composed of infinite number of pairs of odd 
numbers, which could be perceived as an issue. 
 In fact, the same issue is implicitly present in all problems, dealing with infinite sets of numbers. 
However, in those problems, the sets and the appropriate terms, producers of these sets, relate to one 
presentation level, so that one even doesn't think about such an issue, taking for granted that the 
expression-producer, indeed, represents the infinite set; in fact, is this set. For instance, if one considers 
an infinite set of odd integer numbers, then a term, producing this set, is )12( +k , where k is an integer. 
Once one proves that a certain problem has no solution for )12( +k , that is for the term, this implicitly 
assumes that the problem has no solution for the set of all odd integers. In this case, there is no question 
about the legitimacy of the used approach. 
 The issue emerges when we represent the term )12( +k  as a union of two terms )14( +t  and )34( +t . 
Since k can only be odd or even, these two terms describe all possible odd integers, the same as the 
initial term )12( +k . Each of these terms is a producer of the associated infinite subset of odd integers. 
Then, can one say that the union of these two infinite subsets represents the whole set of odd integers, 
same as the term )12( +k  does? Intuitively, this is obviously so. We have two non-intersecting subsets, 
which together comprise all possible odd integers. We just have to prove that such subsets, indeed, are 
non-intersecting, and the operations of splitting them and assembling back - by appropriate splitting and 
assembling their presentation terms - are unique and reversible. The uniqueness is understood as 
follows. Suppose subset S is produced by a term T, which then is split into several subterms mttt ,..., 21  for 
another presentation level. Each of these subterms accordingly produces subsets msss ,..., 21 . Then, such a 
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splitting of the term T is unique (and the appropriate operation of splitting subset S into subsets 
msss ,..., 21  is unique too), if for any element in S there is one and only one such element in one of the 

subsets msss ,..., 21 . The uniqueness of the reverse operation, assembling subterms mttt ,..., 21  into the term 
T (with appropriate assembling of subsets msss ,..., 21  into set S) is defined in the same way.  
 Infinite subsets of numbers are produced by the subterms. There is no infinite subset of numbers 
without its producer, the term, which entirely defines the properties of the subset. Operating on the 
terms, we operate on the produced by them subsets of numbers. If subterms uniquely add to a term, 
generating a certain set of numbers, this is the same as adding corresponding subsets of numbers to 
produce such a set. We just have to make sure that the operations of adding subterms are unique. 
 What embarrasses people in the above procedures though, is splitting and assembling infinite sets, 
which they mentally detach from the presentation terms, quickly forgetting that these terms in essence 
are the sets in question. Such confusion might come from the notion of asymptotic density [4,5], which 
is used for characterization of infinite sets with relation to the set of integer numbers. Once people come 
across the aforementioned splitting of infinite subsets, they begin to think of their characterization in 
terms of asymptotic densities, which is absolutely not the case in our situation. By definition, asymptotic 
density is rather a stochastic notion, while we consider only deterministic values. The fact that for a 
certain infinite set the density converges to value sd  does not mean that all elements of the set satisfy to 
a certain criterion, say, not being a solution of some equation. Any finite number of such elements-
exceptions, for which the equation does have a solution, won't change the value of asymptotic density 

sd , since the number of elements in the set is infinite. In our case, we need all elements of the 
considered sets and subsets to satisfy the same criterion, that is to not be a solution of equation (1), with 
absolutely no possibility of any exception. The notion of density is certainly unsuitable for such a 
purpose, and so it is not used in this proof, as some commenters wrongly assumed. 
 
4.4. The concept of the proof 
Each PPT in Tables 1 and 2, and in subsequent presentations, defines an infinite set of pairs of odd 
numbers. However, the number of PPTs at each presentation level is finite. All PPTs, belonging to the 
same presentation level, together produce the whole set of pairs of odd numbers.  
 A subset of PPTs from one level can be uniquely transformed to a subset of PPTs at another 
presentation level. The subsets of pairs of odd numbers, corresponding to initial PPTs and the 
transformed ones, are the same. Using such transformations of PPTs, we can distribute the set of PPTs 
from the initial level across different presentation levels, and vice versa (that is to combine PPTs from 
different upper presentation levels back to initial or other lower level). Accordingly, the pairs of odd 
numbers, associated with PPTs at different presentation levels, will be associated with one presentation 
level again. Such transformations are one-to-one transformations in both directions, meaning that for 
each pair of odd numbers at one presentation level there is one and only one such pair at any other 
presentation level. The properties of a subset of pairs of odd numbers (and of associated PPTs), acquired 
at other presentation levels (say, that (1) has no solution on this subset), remain with this subset at 
another presentation level (because these are just the same combinations of numbers).  
 It will be proved in Lemma 3 that the infinite sets, defined by PPTs at the same level, are unique 
and do not intersect. At each presentation level, equation (8) has no solution for a certain fraction of 
PPTs. Such "no solution" fractions accumulate through subsequent presentation levels, producing a 
greater and greater total fraction of PPTs, for which (8) has no solution. In the limit, this total "no 
solution" fraction becomes equal to one, which can be considered as if all "no solution" PPTs sums up to 
the initial PPT [ )12( +k , )12( +p ], which defines a set of all possible pairs of odd numbers. From this, 
one may conclude that (8) has no solution for all possible pairs of odd numbers - the result we aim for. 
However, connecting the limit of one with the whole set of pairs of odd numbers was considered by 
some reviewers as a too subtle proposition. Therefore, in this paper, we present an entirely different 
conventional mathematical approach, based on the proof that with the increase of presentation level any 
pair of odd numbers will eventually belong to a "no solution" PPT (section 4.9). 
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 It is important to note that we deal with purely deterministic (but not stochastic!) values and 
relationships. The "no solution" fractions, associated with finite number of PPTs at different 
presentation levels, are such deterministic values.  
 The illustration of the concept of the proof below is not an actual proof, which is different. It only 
illustrates one of the possible considerations, related to parity, while the actual proof uses also rationality 
and zero values of equations' terms (without which the proof would be unlikely possible).  
 We begin the illustration with the whole set of all possible pairs of odd integer numbers, defined by 
a PPT [ )12( +k , )12( +p ]. At the next presentation level r=2, we have four PPTs listed in Table 1. 
Equations, corresponding to a half of these PPTs, have no solution. This half of PPTs (that is two of 
them) is set aside (they constitute the "no solution" fraction nsf2 ). The remaining half of PPTs compose 
an "uncertain" fraction of PPTs, for which solution is uncertain. The "uncertain" fraction is equal to 

2/11 22 =−= nsu ff .  
 Equation (8) can be transformed as a difference of two numbers in odd powers. 

∑
=

+− =++−
n

i

niin mpkpk
2

0

122 )2()12()12()(2             

Dividing both parts by two, one obtains 

∑
=

− =++−
n

i

niin mmpkpk
2

0

22 )2()12()12()(             

Here, the sum is odd as an odd quantity of odd numbers. If the factor )( pk −  is odd, then the left part is 
odd, while the right part is even (since n > 0). This means that there is no solution in this case. The value 
of )( pk −  is odd when one of the terms is odd and the other is even, which are the values of k and p in 
cells (1,1), (1,2) in Table 1, corresponding to PPTs [ 14 +t , 34 +s ] and [ 34 +t , 14 +s ] with a presentation 
factor of 22 . The change of algebraic signs of k and p does not change the parity of the left part. So, the 
result is valid for integer numbers k and p. When 0)( =− pk , the left part is zero, while the right part is 
an integer. So, there is no solution in this case. 
 When )( pk −  is even, both parts of equation are even, and solution is uncertain. This corresponds 
to values of k and p in cells (1,3), (1,4) in Table 1, with corresponding PPTs [ 14 +t , 14 +s ] and 
[ 34 +t , 34 +s ]. These "uncertain" PPTs should be used as initial ones for the next presentation level 
with a factor of 32  in Table 2.  
 At the presentation level with r=3, we again find that a half of new PPTs (four PPTs in bold in 
Table 2) correspond to a "no solution" fraction, which is found as 4/12/123 =×= uns ff . The fraction of 
remaining uncertain PPTs is accordingly 4/14/12/1323 =−=−= nsuu fff . Therefore, two presentation 
levels produce the following total fraction of PPTs, for which (8) has no solution, 

4/34/12/1323 =+=+= nsnsNS ffF . The "uncertain" fraction 4/14/313 =−=uf , gives initial PPTs for the 
next presentation level (r=4), and so forth, until in infinity the "no solution" fraction accumulates to one 
(that is to the reference value, corresponding to initial term [ )12( +k , )12( +p ], which produces the 
whole set of pairs of odd numbers). (The real situation with the "no solution" fractions is more 
complicated, since some PPTs may have no solution for the entire PPT, and such a branch is closed. 
However, the total "no solution" fraction is still equal to one in the limit.) Fig. 1 illustrates the concept.  
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Fig. 1. Graphical presentation of how the "No solution" fraction accumulates through presentation 
levels, and the appropriate decrease of "Uncertain" fraction. The value of r=rt=N(µ+1) is a threshold value, 
after which the groups of PPTs with unequal FCs seize to be "No solution" PPTs, and become 
"Uncertain" ones.  
 
4.4.1. Properties of PPTs with a factor of r2  
 
 Lemma 2: Successive presentations of odd numbers with a factor of r2 cannot contain a FC, whose 
module is greater or equal to r2 . 
 
Proof: Presentations of odd numbers with factors 22  and 32 satisfy this requirement. Let us assume that 
this is true for a presentation level r, that is the FC v in a term )2( vtr

r +  satisfies the condition rv 2< . 

At a presentation level (r + 1), this term is presented as )22( 1
1 vt r

r
r +++
+  or )2( 1

1 vtr
r ++
+ . In the latter 

term, the condition is already fulfilled. In the first term, 122220 +=+<+< rrrr v , since rv 2<  is true 
for level r by assumption (zero value corresponds to negative v). So, assuming that the condition is 
fulfilled at the level r, we obtained that it is also fulfilled at the level (r + 1). According to principle of 
mathematical induction, this means the validity of the assumption. This proves the Lemma.  
 
Note: PPT with a negative FC can be always transformed to a PPT with a positive one. Let 0>v . Then 
one can present an odd number with negative FC as  112)2()1(2)2( vtvtvt r

rr
r

r
r

r +=−+−=− , where 
11 −= rr tt , vv r −= 21 . According to Lemma 2, the FC )2(1 vv r −=  is positive. Since 

),( 1 ∞<<−∞ rr tt , both PPTs )2( vtr
r −  and )2( 11 vt r

r +  define the same set of odd integers. So, without 
restricting generality, we can consider only PPTs with positive FCs.  

1/2   

. . . 

"No solution "fractions "Uncertain" fractions 

1/22 

1/2 (Here and below, this number 
presents the "no solution" fraction) 

1/22 

1/23 1/23 

  1/2r-1 

  

r=rt=N(µ+1). The last level, where the second 
summand in the right part of (13) is an integer. 

r=4 

  1/2r r=rt+1. PPTs with equal free coefficients become 
the "no solution" group.  

1/2r+1 

r=2 

r=rt+2. Starting from this level, each PPT is 
considered separately. All PPTs, except 
completed branches, are "uncertain" PPTs.     

                

. . . . .

. . . . .

. . . . .

. . . . .

Until the level r=rt, PPTs with unequal free 
coefficients form the "no solution" group 

    

r=rt+3. At this level, PPTs 
are divided into "no 
solution" and "uncertain" 
groups. 

r=3
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 The substitution 11 −= rr tt  affects the parity of certain equation terms, which will be considered 
later. Thus, if some PPT has negative FCs, it first has to be converted to a PPT with positive FCs, and 
only then the parity and other considerations should be applied to the corresponding equation.  
 
The number of PPTs grows for successive complete presentations in a geometrical progression with a 
common ratio of four, since each initial PPT produces four new PPTs at the next presentation level. 
(Each new PPT corresponds to one of the four possible parity combinations of input parameters, like 2t , 

2s  in Table 2, whose parity is expressed through 3t , 3s .)  
 For the following, we need to prove that (a) such a presentation produces the whole set of pairs of 
odd numbers at each level; (b) the presentation is unique, that is for each pair of odd integers at one level 
there is one and only one such pair at any other presentation level. 
 
 Lemma 3: Successive PPTs with a factor of r2 , 2≥r , produce the same whole set of pairs of odd 
numbers at each presentation level. Such presentations are unique, that is for any pair of odd numbers 
there is one and only one the same pair at any other presentation level. Each PPT at the same 
presentation level produces a unique set of pairs of odd numbers. 
 
Proof: First let us note that each next presentation level (r+1) is obtained prom the previous one through 
branching of each initial PPT from level r into all four possible combinations of parities of parameters tr 
and sr, so that there are no any other possible combinations of parities, and so no element of the original 
set, defined by the initial PPT [ )2( vtr

r + , )2( wsr
r + ], could be missing at the next presentation level. 

This means that any PPT from an arbitrary level r is fully represented at level (r+1), although in the 
form of four new PPTs. In fact, this is just a different form of presentation of the same PPT. However, 
this also means that the initial set from level r is also fully represented at level (r+1). 
 Let us show that each new PPT at level (r+1) produces a unique set. The term )2( vtr

r +  of the 
initial PPT can be presented at level (r+1) only in two forms (for even and odd values of rt ), that is as 

vtvt r
r

r
r +=+ +

+
+ 1

1
1 2)2(2 , or vtvt r

r
r

r
r ++=++ +

+
+ 22)12(2 1

1
1 . Similarly, the term )2( wsr

r +  can be 
represented in the same two forms only. So, only four combinations of these terms, containing both t and 
s parameters, are possible. These combinations are unique, because the combinations of FCs are unique. 
Indeed, the FCs' combinations are as follows: [v,w], [ vr +2 ,w] , [v, wr +2 ], [ vr +2 , wr +2 ], and 
neither one can be obtained from another on the interval (0, 12 +r ). Thus, each of the four new PPTs 
produces unique set of pairs of odd integers, and these sets do not intersect. At the same time, together 
they constitute the whole set of pairs of odd numbers, produced by the initial PPT.  
 Now, we should show that there are no duplicate elements in each set defined by new PPTs. 
Suppose there are such duplicate pairs of odd numbers in the set defined by PPT [ vtr

r ++
+

1
12 , 

wsr
r ++
+

1
12 ], corresponding to a pair of FCs [v,w]. Transformation from level r to level (r+1) is a one-

to-one transformation, that is one value of 1,rt can correspond to only one value of 1+rt  at level (r+1). 
(And the same is true for 1,rs .) Indeed, according to transformation rule (see an example in the above 

paragraph) )2(22 1,1
1

r
r

r
r tt =+
+ , which is a one-to-one transformation. So, if we have duplicate pairs, then 

they should be produced by different values of rt  and rs , say by 2,rt  and 2,rs . So, one can write the 

following: vtvtvt r
r

r
r

r
r +=+=+ +

+
1

1
2,1, 2)(2)(2 , or vtvt r

r
r

r +=+ )(2)(2 2,1, , from which 2,1, rr tt =  follows, 
which is contrary to our assumption that 2,1, rr tt ≠ . So, it is invalid. (Similarly, we can prove that 

2,1, rr ss = .) Thus, the set defined by PPT [ vtr
r ++
+

1
12 , wsr

r ++
+

1
12 ], contrary to our assumption, has no 

duplicate elements.  
 The above considerations are similarly applicable to other PPTs, corresponding to remaining three 
pairs of FCs. The sets, corresponding to these PPTs, also have no duplicate pairs. Since all four such sets 
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have no duplicates, and these sets do not intersect, this means that the whole presentation level has no 
duplicate elements (provided the initial level has no duplicates, which was earlier stated).  
   
So, we found that (a) the subsets defined by new PPTs at level (r+1) are unique in that regard that each 
of them contains unique elements; (b) each of these subsets has no duplicate elements; (c) four new 
PPTs at level (r+1) together define the same set of pairs of odd numbers as the initial PPT at level r. 
 The reverse is also true, that is four PPTs at presentation level (r+1) uniquely converge to one initial 
PPT at lower level r. Indeed, two terms with parameter t converge to the same term )2( vtr

r + . 
vtvtvt r

r
r

r
r

r +=+=+ ++
+ 2)2(22 11
1              (10) 

vtvtvt r
r

r
rr

r
r +=++=++ +

+
+

+ 2)12(222 1
1

1
1            (11) 

where }.12,2{ 11 += ++ rrr ttt  
 Since (10) and (11) represent one-to-one transformations, the same value of 1+rt  cannot produce two 
different elements at level r. Also, two different values of 1,1+rt  an 2,1+rt  cannot produce the same value 
of rt  at level r. The proof is similar to what we did to prove the uniqueness of transformation from level 
r to level (r+1), that is we assume that two different values of  1,1+rt  and 2,1+rt  produce the same value of 

vtr
r +2 . Equating, for instance, presentations vtvt r

r
r

r +=+ ++ )2(2)2(2 2,11,1 , we obtain that 2,11,1 ++ = rr tt , 
contrary to the assumption that 2,11,1 ++ ≠ rr tt . 
 The same convergence to a single term can be obtained for a general case of presenting two terms at 
level (r+1) using Lemma 1, and then transforming them to level r.  

12212)2(2122
1

1

1

1
1

1
1

1 ++=+++=++ ∑∑∑
−

=

−

=
+

=
+

+
i

r

i

i
r

r
i

r

i

i
rr

r
i

r

i

i
r

r KtKKtKt       (12)  

For a positive number, }1,0{=rK , so }12,2{ 11 += ++ rrr ttt , that is the same set of integer numbers, on 
which rt  was defined originally. The same is true for negative numbers. 
 Similarly, one can convert two terms with parameter 1+rs  at level (r+1) to a single term with 
parameter rs  at level r. So, four PPTs at level (r+1), indeed, converge to one PPT [ vtr

r +2 , wsr
r +2 ] at 

level r, which, accordingly, defines the same initial set of pairs of odd integers.  
 Therefore, such transformations of presentation forms from level r to level (r+1) and backward are 
unique; they neither remove nor add new pairs of odd numbers compared to the initial set. The initial set 
does not have duplicate entries, and so four sets at the next presentation level do not have duplicate 
entries too. So, for each pair of odd integers at level r there is one and only one pair of odd numbers at 
level (r+1), and vice versa. This proves the Lemma. 
 
It follows from Lemma that all PPTs of each presentation level together define the same set of pairs of 
odd integers, as the initial PPT [ )12( +k , )12( +p ] does, that is the whole set of pairs of odd integers. 
This result can be formulated as a Corollary. 
  
 Corollary 2: All PPTs of each presentation layer together define the whole set of pairs of odd 
integers. This set has no duplicate entries.  
 
4.5. Properties of equations, corresponding to pairs of odd numbers with a factor of r2  
This section introduces an equation, to which all equations, corresponding to pairs of odd numbers, can 
be transformed, and explores its properties. 
 
 Lemma 4: Let us consider an equation 

NNN
r

rN
r

r mwsvt 1
)1(2)2()2( +=+−+ μ             (13) 
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where rt  and rs  are integers; N=2n+1; 1m  is odd; v, w are positive odd (possibly equal) numbers, 
obtained through successive PPTs (and consequently through successive presentations of pairs of odd 
numbers). Then, for any 3≥r , such equations can be transformed to the following form 

trrNr
rrrr mcAAst −+=− 2/2/)( 1               (14) 

where ∑
−

=

−− ++=
1

0

1 )2()2(
N

i

i
r

riN
r

r
r wsvtA is an odd integer; c is an even integer; )1( += μNrt . 

 
Proof: Equation (13) is equation (8), rewritten for a presentation with a factor of r2 . 

NN
N

i

i
r

riN
r

r
rr

r mwsvtwvst 1
)1(

1

0

1 2)2()2()]()(2[ +
−

=

−− =++−+− ∑ μ        (15) 

The sum in (15) is odd, because it presents the sum of odd quantity of odd values. Let us denote it  

∑
−

=

−− ++=
1

0

1 )2()2(
N

i

i
r

riN
r

r
r wsvtA  

Since v and w are odd, (v - w) is even. Also, in successive presentation of odd numbers, according to 
Lemma 2, rv 2< , rw 2< . Since both values are positive (we can assume this without losing generality, 
according to a note after Lemma 2), their absolute difference is also less than r2 . According to Lemma 
1 and Corollary 1, (v - w) can be presented as a sum of powers of two, where non-zero coefficients 
(equal to one by module) have the same algebraic sign. Since rwv 2<− , such a sum cannot contain a 

summand with a power greater than 12 −r . It also cannot contain two in a zero power, since in this case 
the sum could be odd, while (v - w) is even. 

NN
ri

r

i

i
rr

r mAKst 1
)1(

1

1
2]2)(2[ +

−

=

=+− ∑ μ              (16) 

Then, (16) can be rewritten as follows. 
NN

ri

r

i

i
rrr

r mAKAst 1
)1(

1

1
22)(2 +

−

=

+⎟
⎠

⎞
⎜
⎝

⎛
−=− ∑ μ            (17) 

Let us denote i

r

i

i Kc ∑
−

=

−=
1

1
2 . Since vwc −= , when vw =  (that is FCs are equal), 0=c . When vw ≠ , the 

value of 0≠c  and it is even, as the difference of two odd FCs. Dividing both parts of (17) by r2 , and 
taking into account that )1( += μNrt , we obtain  

trrNr
rrrr mcAAst −+=− 2/2/)( 1              (18) 

 This proves the Lemma.  
 
 Lemma 5: If 0≠c  in (18), then r

rcA 2/  is a rational number. 
Proof: It was indicated in Lemma 4 that when FCs w and v are unequal, 0≠c . According to Lemmas 1 

and 4, we can always use a presentation i

r

i

i Kc ∑
−

=

−=
1

1
2  with values }1,0{=iK , 11 −≤≤ ri , when 0<c , 

and }0,1{−=iK  when 0>c . Then 

22)12/()12(222 1
1

1

1

1
−=−−=≤= −

−

=

−

=
∑∑ rr
r

i

i
i

r

i

i Kc           (19) 

(Here, we substituted the sum of a geometrical progression with a common ratio of two and the first 
term of two.)  Accordingly 

)2/11(2/ 1−−≤ r
r

r
r AcA                (20) 

Dividing inequality (20) by a positive number rA , one obtains 
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)2/11(2/ 1−−≤ rrc                 (21) 

Thus, rc 2/  is a rational number. The term rA  is an odd number, which, consequently, contains no 
dividers of two. In turn, this means that r

rcA 2/  is a rational number. This proves the Lemma. 
 
 Lemma 6: Equation (14) has no solution for PPTs with unequal FCs when )1( +≤ μNr , while 
solution is uncertain for PPTs with equal FCs. 
 
Proof: For trNr =+≤ )1(μ , the term Nrr mt

12 −  in (14) is an integer. According to Lemma 5, the summand 
r

rcA 2/  is rational for PPTs with unequal FCs. So, the right part of (14) is rational. On the other hand, 
the left part is an integer when 0)( ≠− rr st . This means that (14) has no solution in this case. When 

0)( =− rr st , (14) presents equality of zero (in the left part), and of a rational number, which is 
impossible too. So, (14) has no solution for PPTs with unequal FCs. 
 When FCs are equal, c = 0, and (14) transforms to  

Nrr
rrr mAst t

12)( −=−                 (22) 
For trr < , the right part is even, for trr =  it is odd. The left part can be odd, or even, or zero. So, the 
solution of this equation is uncertain. Consequently, the PPTs, whose terms have equal FCs, should be 
used as initial PPTs for the next presentation level. This proves the Lemma. 
 
Now, we should establish relationships between the sizes of groups, corresponding to PPTs with equal 
and unequal FCs, and the parity of the term )( rr st −  in (14).  
 
 Lemma 7: When initial PPTs, obtained from r-level of presentation for level (r+1), have equal FCs, 
the number of PPTs with equal and unequal FCs at level (r+1) is the same and is equal to 1/2 of the 
total number of PPTs. The group of PPTs with equal FCs correspond to even values of )( rr st − , while 
PPTs with unequal FCs correspond to odd )( rr st − , so that it is equivalent subdividing the PPTs based 
on parity of )( rr st − , or on the basis of equal and unequal FCs. 
 
Proof: It follows from Table 1 that for 22 =r  the quantities of PPTs with equal and unequal FCs are 
equal. Consequently, each group constitutes a half of all PPTs. Odd values of )(

22 rr st −  correspond to 
PPTs with unequal FCs at level r = 3. Accordingly, even values of )(

22 rr st −  correspond to PPTs with 
equal FCs. Let us assume that the same is true for an initial PPT with equal FCs at a greater level r, 

3≥r . The presentation for all possible parity combinations of tr and sr at level (r+1) is shown in Table 3 
for one generic PPT with equal FCs.   
 
Table 3. Presentation with a factor 2r for a PPT with equal FCs. 

 0 1 2 3 4 
1 
 

tr 
sr 

2tr+1 
2s r+1+1 

2tr+1+1 
2s r+1 

2t r+1 
2s r+1 

2t r+1+1 
2s r+1+1 

2 2rtr+vi 
2rsr+ vi 

2r+1tr+1+ vi 
2r+1sr+1+2r + vi

2r+1tr+1+2r +vi
2r+1s r+1+ vi 

2r+1t r+1+ vi 
2r+1s r+1+ vi

2r+1t r+1+2r + vi 
2r+1s r+1+2r +vi 

 
It follows from Table 3 that the number of PPTs with equal and unequal FCs is the same, and is equal to 
1/2 of quantity of all PPTs. Unequal FCs correspond to odd values of )( rr st − , while even values 

)( rr st −  correspond to PPTs with equal FCs. So, we obtained the same results as for 2=r . Since the 
rest of initial PPTs have the same form (in all of them FCs are equal), depending on the parity of 

)( rr st − , they also produce a half of PPTs with equal FCs, and a half with unequal ones. According to 
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principle of mathematical induction, this means that the found properties are valid for any presentation 
level 2≥r . This proves the Lemma. 
 
 Corollary 3: Consider successive presentations of pairs of odd integers by PPTs having a factor of 

r2 , which use initial PPTs with equal FCs from the previous level, beginning with one PPT. Then, the 
number of initial PPTs at level r is equal to 12 −r .  
 
Proof: For a factor of two, we have one PPT; for a factor of 22  there are two PPTs with equal FCs 
(Table 1); for a factor of 32 there are 22  such PPTs (Table 2), and so forth. The total number of PPTs 
increases by four times for the next presentation level (since each initial PPT produces four new PPTs, 
one per parity combination of rr st , ). From this amount, a half of PPTs correspond to PPTs with equal 
FCs, according to Lemma 7. The value of 12 −r  reflects on the fact that at each presentation level the 
number of PPTs with equal FCs doubles. This proves the Corollary.  
 
 Corollary 4: For )1( +=≤ μNrr t , the fraction of PPTs, for which equation (8) has no solution at a 
presentation level r, is equal to  

1)2/1( −= r
rf                   (23)  

 
Proof: It was shown in Lemma 6 that in this case (13) has no solution for PPTs with unequal FCs, while, 
according to Lemma 7, these PPTs constitute half of all PPTs at a given presentation level. Thus, (23) is 
true for 2=r . Let us assume that Lemma is valid for the value of 2>r . According to Lemma 6, for 

trr ≤ , the corresponding equations have no solution for PPTs with unequal FCs, so that initial PPTs for 
the next level are always PPTs with equal FCs. Then, the fraction ruf  of PPTs, for which solution is 
uncertain, is the same, as the fraction of "no solution" PPTs, that is 1)2/1( −= r

ruf . This fraction contains 
initial PPTs for the presentation level (r+1). At this level, all PPTs are again divided into two equal 
groups of "no solution" and "uncertain" PPTs (Lemma 7), so that the "no solution" fraction is 

rr
rur ff )2/1(2/)2/1()2/1( 1

1 ==×= −
+ , 

which is formula (23) for the level (r+1). According to principle of mathematical induction, this means 
validity of (23). This proves the Corollary. 
 
 Lemma 8: At each next presentation level (r+1), the number of PPTs, corresponding to odd and 
even values of )( rr st − , are equal.  
 
Proof: Suppose we have 1+rp  initial PPTs at a presentation level (r+1). Each initial PPT produces four 
PPTs at level (r+1), one PPT per each possible parity combination of terms rr st , , listed in the first row 
of Table 3. These parity combinations do not depend, whether the initial PPTs have equal or unequal 
FCs, and also do not depend on the value of r compared to tr . Two of these parity combinations (in cells 
(1,1), (1,2) in Table 3) produce odd values of )( rr st − , namely when rr st ,  are equal to [ 12 +rt , 12 1 ++rs ], 
[ 12 1 ++rt , 12 +rs ]. Two other combinations, in cells (1,3), (1,4), produce even values of )( rr st −  for PPTs 
[ 12 +rt , 12 +rs ], [ 12 1 ++rt , 12 1 ++rs ]. So, the number of PPTs, for which )( rr st −  is odd is equal to 12 +rp . 
The number of PPTs, for which )( rr st −  is even, is also 12 +rp . So, quantities of PPTs, corresponding to 
odd and even values of )( rr st − , are equal. This proves the Lemma. 
 
Note: At the presentation level (r+1), odd values )( rr st −  cannot be zero, given the presentation of rt  
and rs  through t r+1 and s r+1 in Table 3. Even values of )( rr st −  can be zero. However, from the 
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perspective of existence of a solution, such a zero term can be transformed to a non-zero even term 
(such a transition is addressed by Lemma 9). 
 
4.6. Finding fraction of "no solution" PPTs for presentation levels with )1( +=≤ μNrr t  
We found so far that for )1( +=≤ μNrr t the following is true:  
(a) Initial PPTs with equal FCs, taken from level r, produce equal number of PPTs with equal and 
unequal FCs at a presentation level (r+1), Lemma 7;  
(b) Corresponding to PPTs equations have no solution for PPTs with unequal FCs, while solution is 
uncertain for PPTs with equal FCs, Lemma 6; 
(c) Each presentation level adds a "no solution" fraction of PPTs equal to 1)2/1( −= r

rf ; 
(d) Sets of pairs of odd integers, defined by "no solution" PPTs, do not intersect. This follows from 
Lemma 3, since each PPT of the next level defines unique set of pairs of odd integers compared to sets 
defined by other PPTs of the same level. 
 
So, each previous level supplies to the next presentation level "uncertain" PPTs, which constitute half of 
all PPTs of the previous level. These initial PPTs have equal FCs. This allows finding a "no solution" 
fraction of PPTs from successive presentations with a factor of r2 . Since each level adds 1/2 of PPTs to 
a "no solution" fraction, the total such fraction rF  is equal to a sum of geometrical progression with a 
common ratio 2/1=q , and the first term 2/12 =f  (the "no solution" fraction at level r=2). Fig. 1 
illustrates this consideration.  
 So, we can write 

)1/()1( 1
2

2

2
2

2

qqfqffF r
r

i

i
r

i
ir −−=== −

=

−

=
∑∑             (24) 

Note that if such a progression is valid to infinity, the total fraction in the limit would be 
1)2/1/()2/1()1/(lim 2 ==−=∞→ qfFrr             (25) 

(Here, the limit is understood as an ordinary Cauchy's limit.) The obtained limit of one would mean that 
the union of all "no solution" PPTs converges to initial PPT [ )12( +k , )12( +p ], from which the 
presentation of pairs of odd integer numbers with a factor of r2  began, and whose fraction was taken as 
a reference value of one. However, in order to realize such considerations, one needs to confirm that 
such a progression is true for )1( +=> μNrr t . 
 
4.7. Transcending presentation levels above the threshold value tr  
Presentation level )1( +tr  
Table 4 shows PPTs for level )1( +tr . The number of initial PPTs is defined by Corollary 3, and is equal 
to tr2  for this level. For PPTs with equal FCs (columns 3 and 4 in Table 4), (14) transform to 

2/)( 1,111
N

ijrrr mAst
ttt

=− +++                (26) 
 The right part of (26) is rational ( 1m  is an odd number). The left part is an integer. So, (26) has no 
solution for PPTs with equal FCs (and, consequently, for even )(

tt rr st − , according to Lemmas 7 and 8). 
When 0)( =−

tt rr st , the left part is zero, while the right part is rational. So, (26) has no solution too. This 
group of PPTs constitutes 1/2 of all PPTs (Lemma 8), so that the common ratio remains equal to 1/2, 
and formula (24) stays valid.  
 For PPTs with unequal FCs (and consequently odd )(

tt rr st − , Lemma 8), (14) transforms to 

2/2/)( 1
1

,1,111
Nr

jrjrrr mcAAst t

tttt
+=− +

++++             (27) 
The right part can be rational, an integer or zero. Since the sums jrA ,1+  are all odd, parity of the left part 
in (27) is defined by the term )( 11 ++ −

tt rr st , which can be odd, even or zero. So, solution of (27) for odd 
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)(
tt rr st −  is uncertain, and such PPTs should be used as initial PPTs for the next presentation level 
)2( +tr . As it was mentioned (a note after Lemma 8), for odd )(

tt rr st − , the term 0)( 11 ≠− ++ tt rr st .  
 
Table 4. PPTs with a factor of 12 +tr . It is assumed that trr = . 

 0 1 2 3 4 
 tr 

sr 
2tr+1 
2s r+1+1 

2t r+1+1 
2s r+1 

2t r+1 
2s r+1 

2t r+1+1 
2s r+1+1 

1 
12 rr

r vt +  

12 rr
r vs +  

11
12 rr

r vt ++
+  

11
1 22 r

r
r

r vs +++
+  

11
1 22 r

r
r

r vt +++
+  

11
12 rr

r vs ++
+  

11
12 rr

r vt ++
+  

11
12 rr

r vs ++
+  

11
1 22 r

r
r

r vt +++
+  

11
1 22 r

r
r

r vs +++
+  

2 
22 rr

r vt +  

22 rr
r vs +  

21
12 rr

r vt ++
+  

21
1 22 r

r
r

r vs +++
+

21
1 22 r

r
r

r vt +++
+

21
12 rr

r vs ++
+  

21
12 rr

r vt ++
+  

21
12 rr

r vs ++
+

21
1 22 r

r
r

r vt +++
+  

21
1 22 r

r
r

r vs +++
+

…      
r2  rRr

r vt +2  

rRr
r vs +2  

rRr
r vt ++
+

1
12  

rR
r

r
r vs +++
+ 22 1
1

rR
r

r
r vt +++
+ 22 1
1

rRr
r vs ++
+

1
12  

rRr
r vt ++
+

1
12  

rRr
r vs ++
+

1
12

rR
r

r
r vt +++
+ 22 1
1  

rR
r

r
r vs +++
+ 22 1
1

 
Recall that before the level )1( +tr  PPTs with unequal FCs had no solution, while (26) has no solution 
for even )( 11 ++ −

tt rr st , corresponding to PPTs with equal FCs. In this regard, the level )1( +tr  reverses the 
groups of PPTs. The "uncertain" group of PPTs is now composed of PPTs with unequal FCs (and 
accordingly with odd )(

tt rr st − ). These PPTs (in columns 1 and 2 in Table 4) should be used as initial 
PPTs at the next presentation level )2( +tr .  
 
Transition in the presentation level )2( +tr  
Level )1( +tr supplied initial PPTs with unequal FCs. This means that we do not have anymore distinct 
groups with equal and unequal FCs at level )2( +tr , as before, since the initial PPTs with unequal FCs 
produce mostly PPTs with unequal FCs, with occasional inclusion of PPTs with equal ones. Previously, 
we have seen that the parity of parameter )( rr st −  was defining the absence or uncertainty of solution. 
However, beginning from level )2( +tr , this parameter lost association with groups of PPTs with equal 
and unequal FCs. This is due to the fact that the right part of equation (27) can be an integer, a rational 
number, or zero per PPT basis, and so we should consider the use of parameter )( rr st −  this way. We 
will still have a half of "no solution" and a half of "uncertain" PPTs, but only for a block of four PPTs, 
corresponding to each initial PPT. This is the assembly of such "uncertain" PPTs from each block, 
which goes to the next level (Fig. 1). Table 5 shows PPTs for level )2( +tr .  
 When r=(rt+2), (14) transforms to 

4/2/)( 1
2

,2,222
Nr

ijrijrrr mcAAst t

tttt
+=− +

++++             (28) 
where index 'ij' denotes the cell number. The right part of (28) can be rational, an integer, or zero. When 
the left part is an integer (the case, when it's zero, will be considered later), (28) has no solution for any 

)( 22 ++ −
tt rr st  for the rational or zero right part, and, consequently, this branch is completed. (Compared to 

continuing branches, the completed branch delivers double fraction of PPTs, for which (8) has no 
solution, since in this case two equal fractions of PPTs compose one "no solution" fraction.) If the right 
part is an integer, (28) has no solution when )( 22 ++ −

tt rr st  has the opposite parity, and the solution is 
uncertain for another parity of )( 22 ++ −

tt rr st . The number of combinations of parameters 2+tr
t  and 2+tr

s , 
corresponding to each parity, is equal to two from four in this case, and so we still have equal division 
between the "no solution" and "uncertain" PPTs. However, at this level, we have no distinction between 
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the odd and even values of 2+tr
t  and 2+tr

s  in the same way, as before, when there was association with 
equal and unequal FCs. Such distinction can be done only at the next presentation level )3( +tr . All 
PPTs at level 2+tr  correspond to "uncertain" equations, except for the cases when the PPT's branch is 
completed. 
 
Table 5. PPTs with a factor of 22 +tr , obtained from initial PPTs in Table 4, for which )( rr st −  is odd. 
First two rows correspond to cells (1,1), (1,2) in Table 4. It is assumed that trr = . 

 0 1 2 
 tr+1 

sr+1 
2tr+2 
2s r+2+1 

2t r+2+1 
2s r+2 

1 
11

12 rr
r vt ++
+  

11
1 22 r

r
r

r vs +++
+  

12
22 rr

r vt ++
+  

1
1

2
2 222 r

rr
r

r vs +++ +
+

+  
1

1
2

2 22 r
r

r
r vt ++ +

+
+  

12
2 22 r

r
r

r vs +++
+  

2 
11

1 22 r
r

r
r vt +++
+  

11
12 rr

r vs ++
+  

12
2 22 r

r
r

r vt +++
+  

1
1

2
2 22 r

r
r

r vs ++ +
+

+  
1

1
2

2 222 r
rr

r
r vt +++ +

+
+  

12
22 rr

r vs ++
+  

. . . . . . . . . . . . 
12 +r  . . . . . . . . . 

 
Table 5 continued  

3 4 
2t r+2 
2s r+2 

2t r+2+1 
2s r+2+1 

12
22 rr

r vt ++
+  

12
2 22 r

r
r

r vs +++
+  

1
1

2
2 22 r

r
r

r vt ++ +
+

+  

1
1

2
2 222 r

rr
r

r vs +++ +
+

+  

12
2 22 r

r
r

r vt +++
+  

12
22 rr

r vs ++
+  

1
1

2
2 222 r

rr
r

r vt +++ +
+

+  

1
1

2
2 22 r

r
r

r vs ++ +
+

+  
. . . . . . 
. . . . . . 

 
The case of 0)( 22 =− ++ tt rr st  is also an "uncertain" one, since there is a possibility that two terms in the 
right part are equal in absolute values and have the opposite algebraic signs. 
 Note that values ijrt

A ,2+  are different, so that the right parts of corresponding equations, transformed 
to a form (14), may have dissimilar parities (as well as may be rational or zeros) for different PPTs. (The 
right part can be an integer, provided 0≠c  in (14), otherwise the right part is equal to trrNm −2/1 , which 
is always rational for trr > , so that such a branch is completed.) This is why one should consider each 
PPT separately (Fig. 1). (In fact, it is possible to show that at level )2( +tr , when 0≠c , integer right 
parts of these equations have the same parity. However, this is not necessarily true for the next levels, so 
we use the same generic approach for this and higher levels of presentation.)  
 With regard to accumulation of a total "no solution" fraction, we have the same common ratio of 
1/2, although it is obtained differently - not per group, as previously, but per PPT, and then such "per 
PPT" fractions are summed up, in order to obtain the total "no solution" fraction. We will consider this 
assembling process in detail later.  
 
So, we found that the corresponding equations for PPTs in both groups (meaning groups of PPTs, 
having either even or odd values of )( 22 ++ −

tt rr st  ) converge to equations, which have no solution for one 
parity of )( 22 ++ −

tt rr st , and accordingly for one half of PPTs (according to Lemma 8), while solution is 



Shestopaloff Yu. K. http://doi.org/10.5281/zenodo.4033466 

16

uncertain for the other parity, corresponding to the second half of PPTs. So, the common ratio for a 
geometric progression, defining fractions of "no solution" PPTs, will remain equal to 1/2. However, 
because we can specify particular PPTs, corresponding to odd or even )( 22 ++ −

tt rr st , at the next level 
only, this common ratio accordingly should be assigned to a presentation level, where such a 
specification actually happens; in this case, this is the next level )3( +tr . At level 2+tr , all equations, 
corresponding to initial PPTs, have the same form (14), and consequently, the same "uncertain" status. 
All PPTs (except for completed ones) are "uncertain" PPTs.  
 
Presentation level )3( +tr  
We will need the following Lemma to address zero values of 0)( =− rr st  in equation (14). Note that 

0)( =− rr st  only when both parameters are equal, including when both are equal to zero. When 
)( rr st −  is odd (parameters have different parity), 0)( ≠− rr st . 

 
 Lemma 9: Equation (14), that is trrNr

rrrr mcAAst −+=− 2/2/)( 1 , is equivalent to equation 
trrNr

rrrrr mcAAbaAst −++−=− 2/2/)(2)( 111  in terms of parities of both parts, with the substitutions 
att rr 21 −=  and bss rr 21 −= , where a and b are integers. If the second equation has no solution based 

on parity or rationality considerations, then the first equation also has no solution, and vice versa. 
 
Proof: According to the notion of presentation of odd numbers with a factor of r2 , the terms rt  and rs  
are integers, having ranges of definition )( ∞<<−∞ rt  and )( ∞<<−∞ rs . The only property, which is 
of importance with regard to such a presentation, is that these parameters should be defined on the whole 
set of integer numbers, in order to include all possible numbers, corresponding to a particular 
presentation; for instance, the term )2( rr

r vt +  should produce the whole set of the appropriate 
"stroboscopic" numbers in the range ),( ∞−∞ , located at the distance r2  from each other. As long as this 
condition is fulfilled, that is such a set can be reproduced, we can make an equivalent substitution for 
parameters rt , rs . Let us consider the substitution att rr 21 −=  and show that it is an equivalent one. 
Indeed, it preserves the range of definition )( 1 ∞<<−∞ rt , and accordingly produces all numbers, which 
parameter rt  produces (only with a shift of )22( ra×−  for the same values of rt  and rt1 ). However, this 
shift makes no difference with regard to the range of produced numbers, since our range ),( ∞−∞  is 
infinite in both directions. On the other hand, when 0)( =− rr st , we have 0)( 1 ≠− rr st , and when 

0)( 1 =− rr st , 0)( ≠− rr st . So, for 0)( =− rr st , such a substitution produces an equation with a non-
zero left part. Value of rA  remains the same, since, due to the substitution att rr 21 −= , bss rr 21 −= , 

)2,2(),( 11 bsatAstA rrrrrr −−= . 
 Substituting  att rr 21 −=  into (14), one obtains the equation 

trrNr
rrrrr mcAaAAst −++=− 2/2/2)( 11             (29) 

When 0)( =− rr st , we have 02)( 1 ≠=− ast rr . Also, the appearance of the even term raA2 does not 
change the parity of the right part, nor this substitution changes the parity of the left part (if it is not zero; 
if it is zero, the substitution still provides an even increment).  Thus, with regard to parities, (14) and 
(29), indeed, are equivalent equations.  
 If the equivalent equation (29) has no solution, then the original equation (14) has no solution too. 
The proof is as follows. Let us assume that (29) has no solution, while (14) does, so that  

trrNr
rrrr mcAAst −+=− 2/2/)( 1  

Adding raA2  to the left and right parts of this equation, one obtains an equivalent equation, which also 
should have a solution. 
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trrNr
rrrrr mcAaAAsat −++=−+ 2/2/2)2( 1             

According to the substitution, att rr 21 −= , so that rr tat 12 =+ , and the obtained equation transforms to 
(29), which should also have a solution. However, according to our assumption, it has no solution. The 
obtained contradiction means that the assumption that (14) has a solution is invalid, and, in fact, it has 
no solution.  
 Similarly, we can assume that (29) has a solution, while (14) does not. With the substitution  

att rr 21 += , (29) then converts to (14), which should have a solution. However, this contradicts the 
initial assumption.  
 Substitution bss rr 21 −= , and both substitutions together, are considered similarly. In case of two 
substitutions, the condition 0)( ≠− ba  should be fulfilled, in order for (29) to have a non-zero left part.  
 This proves the Lemma. 
  
Although we proved the equivalency of equations with regard to their solution properties in a general 
case, we need such equivalency only when the left part of equivalent equations is zero (because 

0)( =− rr st ). The proposed substitution then makes the left part of the equivalent equation a non-zero 
value, and the inference about the absence of solution or its uncertainty can be made based on parities 
and rationalities of the non-zero left and right parts.  
 
Table 6 shows an example of PPTs for the presentation level )3( +tr . Four initial PPTs are from cells 
(1,1)-(1,4) in Table 5. If (28) has no solution for even )( 22 ++ −

tt rr st , then these are PPTs (1,3), (1,4) in 
Table 6, which satisfy this condition. Accordingly, PPTs (1,1) and (1,2), for which )( 22 ++ −

tt rr st  is odd, 
are "uncertain" PPTs, which should be used as initial PPTs for the next, )4( +tr , level. If, on the 
contrary, (28) has no solution for odd )( 22 ++ −

tt rr st , then (1,1) and (1,2) are the "no solution" PPTs, while 
(1,3), (1,4) become "uncertain" PPTs, which should be used as initial PPTs for the next level. This way, 
all new PPTs, four per each initial pair, are divided into two halves as before, so that the common ratio 
of geometrical progression remains equal to 1/2. The case 0)( 22 =− ++ tt rr st  is addressed by Lemma 9 
through equivalent equations. 
 In the same way, as we considered one PPT above, we should consider the rest of initial PPTs in 
Table 6 and find out, which two PPTs should be used as initial ones for the next level. Then, the same 
procedure should be repeated for each initial PPT at level )3( +tr . 
 Then, the cycle is repeated for the next two levels )4( +tr  and )5( +tr , and so forth, to infinity, since 
there are no anymore threshold values of r, at which the corresponding equations  can change their form 
and properties, as it happened at the level 1+= trr . The following Lemma generalizes the discovered 
order. 
 
Table 6. PPTs with a factor of 32 +tr . Initial PPTs are (1,1)-(1,4) from Table 5. Here, trr = . 

 0 1 2 
 2+rt  

2+rs  
32 +rt  

12 3 ++rs  
12 3 ++rt  

32 +rs  
1 

12
22 rr

r vt ++
+  

1
1

2
2 222 r

rr
r

r vs +++ +
+

+  
13

32 rr
r vt ++
+  

1
12

3
3 2222 r

rrr
r

r vs ++++ ++
+

+  
1

2
3

3 22 r
r

r
r vt ++ +

+
+  

1
1

3
3 222 r

rr
r

r vs +++ +
+

+  
2 

1
1

2
2 22 r

r
r

r vt ++ +
+

+  

12
2 22 r

r
r

r vs +++
+  

1
1

3
3 22 r

r
r

r vt ++ +
+

+  

1
2

3
3 222 r

rr
r

r vs +++ +
+

+  
1

12
3

3 222 r
rr

r
r vt +++ ++

+
+

13
3 22 r

r
r

r vs +++
+  

3 
12

22 rr
r vt ++
+  23

32 rr
r vt ++
+  1

2
3

3 22 r
r

r
r vt ++ +

+
+  
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12
2 22 r

r
r

r vs +++
+  2

2
3

3 222 r
rr

r
r vs +++ +

+
+  13

3 22 r
r

r
r vs +++
+  

4 
1

1
2

2 22 r
r

r
r vt ++ +

+
+  

1
1

2
2 222 r

rr
r

r vs +++ +
+

+  
2

1
3

3 22 r
r

r
r vt ++ +

+
+  

2
12

3
3 2222 r

rrr
r

r vs ++++ ++
+

+
1

12
3

3 222 r
rr

r
r vt +++ ++

+
+

1
1

3
3 222 r

rr
r

r vs +++ +
+

+  
 
Table 6 continued 

3 4 
32 +rt  

32 +rs  
12 3 ++rt  
12 3 ++rs  

13
32 rr

r vt ++
+  

1
1

3
3 222 r

rr
r

r vs +++ +
+

+
1

2
3

3 22 r
r

r
r vt ++ +

+
+  

1
12

3
3 2222 r

rrr
r

r vs ++++ ++
+

+  

1
1

3
3 22 r

r
r

r vt ++ +
+

+  

13
3 22 r

r
r

r vs +++
+  

1
12

3
3 222 r

rr
r

r vt +++ ++
+

+  

1
2

3
3 222 r

rr
r

r vs +++ +
+

+  

13
32 rr

r vt ++
+  

13
3 22 r

r
r

r vs +++
+  

1
2

3
3 22 r

r
r

r vt ++ +
+

+  

1
2

3
3 222 r

rr
r

r vs +++ +
+

+  

1
1

3
3 22 r

r
r

r vt ++ +
+

+  

1
1

3
3 222 r

rr
r

r vs +++ +
+

+
1

12
3

3 222 r
rr

r
r vt +++ ++

+
+  

1
12

3
3 2222 r

rrr
r

r vs ++++ ++
+

+  
 
 Lemma 10: From the presentation level )2( +tr , the "no solution" fraction of PPTs is accumulated 
across two sequential levels, and then the pattern repeats for each two successive levels, to infinity. 
Some branches can be completed at levels )2( Lrt + , where ,..2,1=L , but otherwise such levels provide 
no explicit division into the "no solution" and "uncertain" groups. Except for the PPTs, corresponding 
to completed branches, PPTs from such levels become initial "uncertain" PPTs for the next presentation 
levels )12( ++ Lrt , ,..2,1=L ,. at which all new PPTs are divided into the "no solution" and "uncertain" 
groups (according to odd or even parity of )( rr st −  in equation (14)). The "uncertain" PPTs become 
initial PPTs for the next presentation level, and the two-level cycle repeats to infinity. 
 
Proof: Previously, we have seen that the Lemma is true for the paired levels )2( +tr  and )3( +tr . Let us 
assume that Lemma is true for the )1( −+ drt  level, which then supplies initial "uncertain" PPTs for the 
next level )( drt + . We need to prove that Lemma is true for the next two levels )( drt +  and )1( ++ drt . 
Initial PPTs may have equal and unequal FCs.  
 Let us consider an equation for a PPT with FCs v and w. 

NNN
dr

drN
dr

dr mwsvt
t

t

t

t
1

)1(2)2()2( +
+

+
+

+ =+−+ μ            (30) 
where 2≥d . 
According to Lemma 4, it can be transformed to an equation 

dNdr
drdrdrdr mcAAst t

tttt
2/2/)( 1+=− +

++++             (31) 

where ∑
−

=
+

+−−
+

+
+ ++=

1

0

1 )2()2(
N

i

i
dr

driN
dr

dr
dr wsvtA

t

t

t

t

t
, N = 2n + 1.         

The right part of (31) can be an integer, rational or zero. The left part is an integer (if 0)( =− ++ drdr tt
st , 

the left part can be transformed to an integer, using Lemma 9). When the right part is rational, (31) has 
no solution for any drt

t +  and drt
s + , and the branch is completed. If the right part is even or odd, (31) has 

no solution when )( drdr tt
st ++ −  has the opposite parity. Solution is uncertain for the other parity of 

)( drdr tt
st ++ − , since both parts of (31) have the same parity in this case. However, at this level, we cannot 
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specify particular parity of )( drdr tt
st ++ − , which should be done at the next presentation level )1( ++ drt . 

When c = 0, (31) has no solution, since the right part is a rational number, while the left part is an 
integer or zero, and so the branch is completed.  
 Even if the branch, corresponding to some PPT, is completed, we still can assume that it is 
"uncertain", and use it as an initial PPT at the next presentation level. There, the new PPTs, 
corresponding to this initial one, are then divided into the "no solution" and "uncertain" groups. The 
fraction of the former goes to the total "no solution" fraction, while the latter is used as initial PPTs for 
the next level, besides other uncertain PPTs. (Such an arrangement, without completed branches, is more 
convenient for calculation of the total "no solution" fraction.) 
 
Table 7. New PPTs for the initial PPT [ vt dr

dr
t

t ++
+2 , ws dr

dr
t

t ++
+2 ]  at the presentation level )1( ++ drt  

with a factor of 12 ++drt .  
 0 1 2 3 4 
0 drt

t +  

drt
s +  

12 ++drt
t  

12 1 +++drt
s  

12 1 +++drt
t  

12 ++drt
s  

32 +rt  

32 +rs  
12 3 ++rt  
12 3 ++rs  

1 vt dr
dr

t

t ++
+2  

ws dr
dr

t

t ++
+2  

vt dr
dr

t

t +++
++

1
12  

ws dr
dr

dr t

t

t ++ +
++

++ 22 1
1  

vt dr
dr

dr t

t

t ++ +
++

++ 22 1
1

ws dr
dr

t

t +++
++

1
12  

vt dr
dr

t

t +++
++

1
12  

ws dr
dr

t

t +++
++

1
12  

vt dr
dr

dr t

t

t ++ +
++

++ 22 1
1  

ws dr
dr

dr t

t

t ++ +
++

++ 22 1
1

 
Table 7 shows new PPTs for the next presentation level for the initial PPT from (30). At this level, we 
can choose the needed parities of PPT's terms drt

t + , drt
s + , expressed through 1++drt

t , 1++drt
s , in order for 

(31) to have no solution. For instance, if (31) has no solution for even )( drdr tt
st ++ − , then the "no 

solution" PPT are (1,3), (1,4). Accordingly, solution is uncertain for PPTs (1,1), (1,2), since both parts of 
(31) have the same parity in this case. Consequently, these PPTs should be used as initial "uncertain" 
ones for the next presentation level. 
 We can see from Table 7 that when a PPT of an actually completed branch is used as an "uncertain" 
PPT for the next level, it produces no new PPTs with some specific features, which could prevent their 
corresponding equations to be transformed into a form (31). We still obtain PPTs, satisfying conditions 
of Lemma 4, to which the same equation (14) is applicable. For instance, when v = w, then c = 0 in (31), 
and so the branch is completed. However, if we use it as an initial PPT for the next presentation level 

)1( ++ drt , then we are free to choose new PPTs, corresponding to either even or odd values of 
)( drdr tt

st ++ − , since the corresponding equations have no solution for both scenarios. Then, the PPTs with 
the opposite parity )( drdr tt

st ++ −  will proceed to the next level as uncertain initial PPTs. As before, such a 
division produces two equal groups of PPTs, and so the common ratio of the geometrical progression 
remains equal to 1/2. 
 So, with the assumption that Lemma is true for the previous level, we confirmed the same pattern 
earlier discovered for the coupled levels [ )2( +tr , )3( +tr ]. According to principle of mathematical 
induction, this means that Lemma is true for any 2≥d .  
 The proof also confirmed that in the presented arrangement no new threshold values of r could 
occur, so that the arrangement, indeed, repeats itself in two-level cycles to infinity.  
 This proves the Lemma. 
 
In this Lemma, we also studied the useful property, considering completed branches as half-completed 
ones. This property is formulated below as a Corollary.  
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 Corollary 5: PPTs with the same parity of )( drdr tt
st ++ − , corresponding to completed branches, can 

be considered as regular "uncertain" PPTs, which can be passed to the next level as initial PPTs, so 
that such a branch actually could be assigned a half-completed status.  
 
 Lemma 11: At presentation levels above )1( +tr , and in the absence of completed branches, the 
number of PPTs in "no solution" and "uncertain" groups are equal, when such a division takes place. 
 
Proof: According to Lemma 10 and Corollary 5, all PPTs, both regular ones, with "no solution" and 
"uncertain" components, and the PPTs, which could be completed, but continue to participate in the next 
levels as "uncertain" PPTs, can be presented in a form of Table 7. The solution properties of equations, 
corresponding to PPTs in Table 7, are defined by equation (14), or more particular, by equations in a 
form (31), whose solution properties depend on the term )( drdr tt

st ++ − . (Unless the right part is rational, 
in which case equation has no solution for all parities, and the branch is completed. However, according 
to Corollary 5, we can still consider such PPT as a regular non-completed one.) 
 The division of four PPTs into two equal "no solution" and "uncertain" groups is based solely on the 
parity of )( drdr tt

st ++ − , as Lemma 10 showed, with one parity corresponding to a "no solution" group, 
and with the opposite parity corresponding to "uncertain" group. The number of PPTs, corresponding to 
one parity, is therefore equal to π2 , where π  is the number of initial PPTs, number two is the number 
of parity combinations of drt

t + , drt
s + , producing the same parity of )( drdr tt

st ++ − , see Table 7. For the 
opposite parity of )( drdr tt

st ++ − , the number of produced PPTs is also π2 . Thus, the number of PPTs in 
"no solution" and "uncertain" groups is the same. This proves the Lemma. 
 
4.8. Calculating the total "no solution" fraction 
Using Corollary 5, we consider all levels as if they have no completed branches. Then, according to 
Lemmas 7 and 8, until the level )2( +tr , all levels have two equal groups of PPTs. One corresponds to a 
"no solution" fraction, and the other to "uncertain" fraction, so that the common ratio q = 1/2. 
Substituting these values into (24), one obtains 

tt

t

rrr
r qqfF )2/1(1)2/1/())2/1(1(2/1)1/()1( 111

21 −=−=−−= −+−
+        (32) 

The "no solution" fraction for the level )1( +tr  is defined by (23) as follows (the last term of a 
geometrical progression), taking into account that 2/12 =f . 

tt

t

rr
r qff )2/1(21

21 == −+
+                (33) 

Since in the absence of completed branches the "no solution" and "uncertain" fractions are equal, 
according to Lemma 8, the "uncertain" fraction of PPTs, which is passed to the level )2( +tr , is the same 
as the "no solution" fraction (33). This "uncertain" fraction, according to Lemma 11, is equally divided 
into "no solution" and "uncertain" fractions at each second level, beginning from level )3( +tr , so that 
the first term of the geometrical progression, representing the "no solution" fraction of two following 
coupled levels, is  

)2/1(13 ×= ++ tt rr ff                 (34) 
Then, each next two levels add a half of the previous "uncertain" fraction", which is equal to "no 
solution" fraction. Let }12,2{ += LLD , ...2,1=L  This way, )( Drt +  defines the levels' numbers for 

)2( +≥ trr . Levels, at which PPTs are divided into two groups, are levels )3( +tr , )5( +tr , …, 
)12( ++ Lrt , so that the total "no solution" fraction, obtained by summation of "no solution" fractions of 

all levels above the )1( +tr  level, is equal to 

))2/1(1()2/1()2/1()2/1(])2/1...()2/1()2/1(2/1[)2/1(
1

32
,2

Lr
L

i

irLr
Dr

ttt

t
F −==+++= ∑

=
+  (35) 
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when 12 += LD , and  

))2/1(1()2/1()2/1()2/1(])2/1...()2/1()2/1(2/1[)2/1( 1
1

1

132
,2

−
−

=

−
+ −==+++= ∑ Lr

L

i

irLr
Dr

ttt

t
F  

when LD 2= .                 (36) 
In the last case, the division into the "no solution" and "uncertain" groups did not happen yet at the first 
level of coupled levels, since it occurs at the second level of the couple, as it was earlier discussed. This 
is why the power is (L - 1), but not L. 
 The total "no solution" fraction, accordingly, is defined as DrrDr ttt

FFF ,211 ++++ += . For 12 += LD , we 
have 

LrLrrr
DrrDr

tttt

ttt
FFF ++

++++ −=−+−=+= )2/1(1)2/1()2/1()2/1(1,211       (37) 
It follows form (37) that in the limit 

1))2/1(1(limlim 1 =−= +
∞>−++∞>−

Lr
LDrL

t

t
F              (38) 

The same is true for (36). So, when we consider all branches as non-completed, in the limit, the "no 
solution" fraction is equal to one. Of course, it may look awkward, considering completed branches as 
non-completed, but, as Lemma 10 and Corollary 5 showed, this is a legitimate procedure. 
 
Accounting for completed branches. Let level r to have k completed branches, to which the "no solution" 
fraction rkf  corresponds. Suppose, these branches were not completed. We can consider the PPTs, 
corresponding to these branches, as regular ones, with "no solution" and "uncertain" components, to 
infinity. In other words, we assume that there are no more completed branches except in level r. (In real 
situation, if there are completed PPTs above the level r, we can also consider them as non-completed 
ones, according to Corollary 5.) In this scenario, the fraction rkf  would be divided equally (Lemma 11) 
between the "no solution" and "uncertain" fractions on each subsequent level (or on the second level in 
coupled levels beyond the value of )1( += trr ). So, the total "no solution" fraction, accumulated at level 
L, is as follows. 

])2/1(1[)2/1(
1

L
rk

L

i

i
rkLr ffF −== ∑

=
+              (39) 

In the limit, (39) transforms to  
rk

L
rkLDrL ffF =−= ∞>−+∞>− ])2/1(1[limlim             (40) 

So, in the limit, we obtained in (40) exactly the same "no solution" fraction, which was taken by k 
completed branches at level r. Since, according to (38), in the scenarios with non-completed branches 
the total "no solution" fraction is equal to one, the result (40) means that accounting for completed 
branches, in the limit, produces the same "no solution" fraction of one.  
 Until this point, a renowned Mathematician Professor Heath-Brown agreed that the limit of one for 
the "no solution" fraction was found correctly (he wrote to the author, "You successfully prove that the 
proportion of "no solution" branches tends to 1."). However, he did not agree that this necessarily means 
that (1) has no solution, as the author asserted in the first version of the article. (That approach is 
described in [2], v. 10, Appendix.) Such an opinion was rather due to the author's fault to explicitly 
present a principal difference between the deterministic nature of the used approach (that is summing up 
deterministic values of the "no solution" fractions) and the stochastic basis of the asymptotic densities.  
 In order to not depend on such arguable approach, an entirely new - this time mathematically very 
much conventional and straightforward - method was implemented (section 4.9 below). It shows that 
with the increase of the presentation level any pair of odd numbers will inevitably correspond to a 
certain form of equation (8), for which this pair is not a solution. Since this is valid for any pair of odd 
integers, that would mean that (8) has no solution on the whole set of pairs of odd numbers.  
 
4.9. A "no solution" equation for any pair of odd numbers  
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Dr. A. Y. Shestopaloff suggested, and A. A. Tantsur supported the idea to present a conventional proof, 
showing that any pair of odd numbers will eventually correspond to some form of equation (8), for 
which this pair is not a solution, when the presentation level r increases. This approach is presented here. 
 Let's assume that a certain pair of odd numbers (g,h) is a solution of (8). Then, at each presentation 
level r, it can be written in the form ( ,2 0 vt r

r + ws r
r +02 ), presented by PPT [ ),2( vtr

r + )2( wsr
r + ] with 

a corresponding equation (14). In order to be a solution of (8), this pair of odd numbers should be able to 
pass through all successive presentation levels, to infinity, "within" (meaning, defined by) "uncertain" 
PPTs. Fig. 2 shows such a transition schematically.  

 
Fig. 2. Transition of a pair of odd numbers through presentation levels. Before the level 1+= trr , PPTs 
with equal FCs are composing the "uncertain" group. At level 1+= trr , PPTs with equal FCs acquire the 
"no solution" status.  
 
Since until level trr =  "uncertain" PPTs have to have equal FCs, our pair of numbers should be defined 
by such PPTs. If the transition to the next presentation level trr ≤  produces unequal FCs, then our pair 
is represented by a "no solution" PPT (Lemma 6 and Fig. 2). For instance, the pair of numbers 
( ,53623 +× 5723 +× ) is presented at the next level as ( ,51824 +× 5232 34 ++× ), so that the PPT 
[ ,52 4

4 +t 132 4
4 +s ], which defines this pair, has unequal FCs. If such a transformation happens before 

the threshold value tr , then this is a "no solution" PPT, and consequently our pair (g,h), contrary to the 
assumption, is not a solution of (8). However, if 3=tr , then the presentation 4=r  corresponds to 1+tr , 
for which "uncertain" PPTs are the ones with unequal FCs, which means that our pair preserves the 
"uncertain" status, and thus the possibility still to be a solution of (8).  
 The inequality of FCs in PPT at the level 1+tr  could come only as a result of appearance of an 
additional summand r2  in the presentation of one number, while the presentation form for the second 
number should remain the same (otherwise FCs would remain equal). Indeed, the transition from, say, 

)2( vsr
r +  to the next level 1+tr  can be done only in two ways: )2( 1

1 vsr
r ++
+  or as )22( 1

1 vs r
r

r +++
+ . 

Thus, the pair of numbers that manages to pass the threshold level and remain uncertain, should have 
unequal FCs and be represented by PPTs of the form [ )22(),2( 1

1
1

1 vsvt t

t

t

t

t r
r

r
r

r +++ +
+

+
+ ] or 

[ )2(),22( 1
1

1
1 vsvt

t

tt

t

t
r

rr
r

r +++ +
+

+
+ ]. There are no other possibilities. The same value of v in both terms is 

due to the need for our pair to pass the level trr =  in uncertain status, for which both terms have to have 
equal FCs.  

"No solution "fractions 

= 

"Uncertain" fractions 

Signs of equality and inequality  in 
boxes denote accordingly equal and 
unequal free coefficients in a 
corresponding pair's PPT 

= 

r=2 

r=3

r=rt=N(µ+1). The last level where PPTs with equal 
free coefficients form the "uncertain" group. 

. . . 

= 

≠ = r=rt+1. PPTs with equal free coefficients become 
the "no solution" group.  

≠ 

≠ 

≠ 
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 Now, we can formulate the following Lemma. 
 
 Lemma 12: With increase of presentation level r, for any pair of odd integer numbers there will be 
eventually an equivalent presentation of equation (8) at some level r, such that this pair will be an 
explicitly "no solution" pair for this equation. 
 
Proof: Let us consider equation (8) transformed to (9), which accordingly can be transformed to (14). 
We assume that the pair (g,h) is a solution of these equations for the fixed power of N. According to 

Lemmas 4 and 5, an even coefficient c in equation (14) is defined as ri

r

i

i Kc ∑
−

=

−=
1

1
2 , where }1,0{=riK  for 

c < 0, and }0,1{−=riK  for c > 0, 11 −≤≤ ri , and index 'r' in riK  denotes that it corresponds to 
presentation level r. However, in our case, for equations corresponding to PPTs at levels 1+≥ trr , the 
smallest value of index i , where the value 0≠c  appears, is 1+= tri , since unequal FCs for the first 

time appear at this level (Fig. 2). So, ri

r

ri

rir
ri

r

ri

i KKc
t

tt

t

∑∑
−

+=

−
−

+=

−=−=
1

1

1

1
222 . Substituting this value into 

equation (14), one obtains.  
tt

t

t rrNrr
ri

r

ri

ri
rrrr mKAAst −−

−

+=

− +−=− ∑ 2/2/)2()( 1

1

1

           (41) 

According to Lemma 4, ∑
−

=

−− ++=
1

0

1 )2()2(
N

i

i
r

riN
r

r
r wsvtA . However, in our case, )2( vtr

r +  and 

)2( wsr
r +  are numbers of our concrete pair, which remain the same at each presentation level, and so 

the value of rA  does not depend on r. Let denote it as rAA = . Since the numbers of our pair are fixed 
values, the right part of the original equation (9), which is NN m1

)1(2 +μ , is also a fixed value, and so is the 
value of Nm1 .  
 We want to show that the range ],[ maxmin RR  of possible values of the right part of equation (41) is 
finite for all 1+≥ trr , when ∞→r , so that the number of integers in this interval ],[ maxmin RR  is finite. 
Suppose we will manage to prove that for a given value of r the value of the right part is unique. Since 

∞→r , the number of values of the right part of (41) goes to infinity, while the number of integer 
values, which the right part can take from the interval ],[ maxmin RR , is finite - because the interval  is 
finite.  
 Since 1≤riK , we can write 

∑∑
−

+=

−
−

+=

− ≤
1

1

1

1
22

r

ri

ri
ri

r

ri

ri

t

t

t

t K  

The sum on the right is a sum of geometrical progression with a common ratio of two. 

222222 1
1

1
−=−×= −−−

−

+=

−∑ tt

t

t rrrr
r

ri

ri                

So that  

222)22(
1

1
−≤≤−− −

−

+=

−− ∑ t

t

tt rr
ri

r

ri

rirr K               

Substituting the upper limit into the right part of (41), one obtains. 
tttt rrNrrNrrrr AmAmA −−−− ++−=+−− 2/)2(2/2/)22( 11          (42) 

For the lower value 
tttt rrNrrNrrrr AmAmA −−−− −+=++−− 2/)2(2/2/)22( 11          (43) 
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The expressions in the right parts of (42) and (43) are strictly monotonic exponential functions of r. 
Indeed, the first derivatives of exponential functions trrN Am −− 2/)2( 1  and trrN Am −+ 2/)2( 1 remain 
exponential functions, which do not change the algebraic signs for all 1+≥ trr , and also cannot be 
equal to zero. (Also, 0)2( 1 ≠− AmN , since m1 is odd). This means that the functions themselves are 
strictly monotonic in this range. 
 When ∞→r , 02/)2( 1 →+ − trrN Am , 02/)2( 1 →− − trrN Am , so that the limits of (42) and (43) are 
accordingly )( A−  and A. Since we consider 1+≥ trr , the other possible boundaries are 

]2/)2([ 1 AmA N ++−  and ]2/)2([ 1 AmA N −+ , which are also finite. Thus, the boundaries of the interval 
for all possible values of the right part of (41) are finite. 

{ }]2/)2([],2/)2([,,min 11min AmAAmAAAR NN −+++−−=  
{ }]2/)2([],2/)2([,,max 11max AmAAmAAAR NN −+++−−=  

Consequently, the range of the right part of (41) is finite for all 1+≥ trr .  
 Let us denote the right part of (41) as a function )(rρ . We want to show that if 21 rr ≠ , then 

)()( 21 rr ρρ ≠  for any pair ),( 21 rr . Let us assume that )()( 21 rr ρρ = , that is  

tt

t

ttt

t

t rrNrr
ir

r

ri

rirrNrr
ir

r

ri

ri mKAmKA −−
−

+=

−−−
−

+=

− +−=+− ∑∑ 22

2

2
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1

2/2/)2(2/2/)2( 1

1

1
1

1

1
 

Without losing generality, one can assume that 12 rr > . Then, the above equality can be rewritten as 
follows. 

])2)[(2/1()2( 1

1

1
1

1

1
2

2
12

1

1
N

ir

r

ri

rirrN
ir

r

ri

ri mKAmKA
t

t

t

t +−=+− ∑∑
−

+=

−−
−

+=

−         (44) 

The left part of (44) is an integer. The term in the square brackets in the right part is odd, since the sum 
is even (Lemma 4) and Nm1  is odd. Then, the right part of (44) is rational, because an odd number has no 
dividers of two. So, contrary to the assumption, there are no such different numbers 21 rr ≠  that the 
equality (44) can be fulfilled. Consequently, the assumption is invalid. This means that for each value of 
r the value of the right part is unique, and so two values of the right part cannot correspond to the same 
integer number within the interval ],[ maxmin RR .  
 Let us denote the number of integers in this interval as RN . Then, since the number of values of the 
right part goes to infinity when ∞→r , such a value of br  always exists that for all brr >  the number of 
values of the right part will exceed RN . Since these values of the right part are unique, some of them 
have to be inevitably rational. The left part of (41) is an integer, and so the equation has no solution in 
this case. That means that, contrary to the initial assumption, the pair (g,h) is not a solution of (41), and 
consequently is not a solution of (8). (Of course, equation (41), corresponding to the pair, could take an 
explicit "no solution" form before the number of values of the right part exceeds RN . It may happen 
when both parts of (41) have different parities, or when the right part becomes rational.) 
 Since the obtained conclusions are valid for any pair of odd integers, this means that equation (14), 
and consequently (8), have no solution on the whole set of pairs of odd integer numbers. 
 This completes the proof of Lemma.  
 
Thus, Lemma 12 proved that, indeed, for any pair of odd numbers such a presentation level r always 
exists, where the corresponding to this pair equation has no solution. Therefore, such a pair is a "no 
solution" pair of equation (14), and consequently of equation (8). This means that (8) has no solution for 
any pair of odd integer numbers, and consequently has no integer solution.  
 Lemma 12 makes unnecessary the content, related to finding a limit of one of the sum of "no 
solution" fractions. However, the author prefers to keep it for future discussions.  
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4.10. Cases 2 and 3 as equivalent equations 
For the case 3, we have 12 += na ; 12 1 += kx ; 12 1 += py . Then, (1) transforms to (7): 

12
1

12
1

12
1 )2()12()12( +++ =+++ nnn mpk             (47) 

We will show the equivalency of (8) (which is 121212 )2()12()12( +++ =+−+ nnn mpk ) and (47) in terms of 
solution availability. Since (8) has no integer solution, that would mean that (47) has no solution too.  
 The notion of equivalent equations. It means that for each set of input variables for one equation 
there is one and only one matching set of corresponding input variables for the other equation, such that 
the terms in both equations are the same. For instance, with regard to equations (8) and (47), defined on 
the set of integer numbers, their equivalency would mean that for any combination of terms )12( +k , 

)12( +p , m2  in (8) there is only one combination of  terms )12( 1 +k , )12( 1 +p , 12m  in (47), such, that 
)12()12( 1 +=+ kk , )12()12( 1 +−=+ pp , 1mm = , so that with such a substitution equation (8) becomes 

equation (47). Similarly, the substitution )12()12( 1 +=+ kk , )12()12( 1 +−=+ pp , mm =1  in (47) 
produces equation (8). It was proved that (8) has no solution in integer numbers, so that it has no 
solution for any combination of these terms. However, on the set of all possible pairs of odd numbers, 
on which both equations are defined, these are equivalent equations (as the Lemma below proves). Then, 
since (8) has no solution, (47) and (7) have no solution too.  
 
 Lemma 13: Equation (8) is equivalent to equation (47) on the set of integer numbers. If one of these 
equations has no solution in integer numbers, then the other equation also has no solution. 
 
Proof: Since the odd power does not change the algebraic sign, we can rewrite (8) as follows. 

121212 )2()12()12( +++ =−−++ nnn mpk             (48) 
k, p in (8), and k1, p1 in (47) are integers defined on the range ),( +∞−∞ . So, we can do a 
substitution 11 −−= pp  in (48). This substitution is an equivalent one, because (i) it does not change the 
range of the substituted parameter, neither it changes the ranges of the terms, defined by these 
parameters; (ii) this is a one-to-one substitution. 

12
1

12
1

12
1 )2()12()12( +++ =+++ nnn mpk             (49) 

where k1=k, m1=m. In this transformation, the range of parameters and equations' terms remains the 
same, that is )( ∞<<−∞ p , )( 1 ∞<<−∞ p , and so ))12(( ∞<+<−∞ p , ))12(( 1 ∞<+<−∞ p . Thus, 
equation (48), which is (8), became equation (49).  
 Similarly, we can obtain equation (8) from (47), using substitution 11 −−= pp  in (47). 

121212
1 )2()1)1(2()12( +++ =+−−++ nnn mpk            (50) 

This transforms into equation (8). 
121212 )2()12()12( +++ =+−+ nnn mpk              (51) 

where k1= k. 
 Thus, (8) and (47), indeed, are equivalent equations.  
 Now, we should prove that if one of these equations has no solution, then the other equation also 
has no solution. For that, let us assume that equation (47) has no solution, while the equivalent equation 
(8) has a solution for the parameters ),,( 000 mpk , that is 

12
0

12
0

12
0 )2()12()12( +++ =+−+ nnn mpk             (52) 

Doing an equivalent substitution 110 −−= pp , one obtains 
12

0
12

1
12

0 )2()12()12( +++ =+++ nnn mpk             (53) 
Equation (53) (which is the original equation (47)), accordingly, has a solution for the parameters 

),,( 010 mpk . However, this contradicts to the assumption that (47) has no solution. So, the equivalent 
equation (8) also has no solution. Similarly, we can assume that (8) has no solution, while (47) has a 
solution, and find through similar contradiction that (47) has no solution. 
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 This completes the proof of Lemma. 
 
It follows from Lemma 13 that it is suffice to prove that only one of the equations, (8) or (47), has no 
solution, in order to prove that both equations have no solution. Previously, we found that (8) has no 
solution in integers numbers. So, according to Lemma 13, (47), which presents case 3 for equation (1), 
also has no solution. 
 
5. Conclusion 
We found that cases 1, 3 and 4 can be converged to case 2. We proved that the corresponding to case 2 
equation (8) has no solution in integer numbers. This means that (1) has no solution in integer numbers 
for all four cases, which proves FLT. 
 Introduced concepts and approaches can be applied to other problems of number theory. 
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