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A proof of Fermat Last Theorem (FLT) is proposed. FLT was formulated by Fermat in 1637, and 
proved by A. Wiles in 1995. Here, a simpler proof is considered. It is based mostly on new concepts. 
The proposed methods and ideas can be used for studying other problems in number theory. The 
initial equation x^n + y^n = z^n is considered not in natural, but in integer numbers. It is subdivided 
into four equations based on parity of terms and their powers. Then, each such equation is studied 
separately. The first equation is presented as a binomial expansion of its terms. The second one is 
considered using presentations of pairs of odd numbers with a successively increasing factor of 2^r. 
The third equation is equivalent to the first one with regard to absence of solution. The fourth 
equation uses presentation of pairs of odd numbers with a factor of four, and transformation to the 
second power. All four equations have no solution in integer numbers. Thus, the original FLT 
equation has no solution too. 
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1. Introduction  
One of the reasons that FLT still attracts people is that the known solution [1], in their view, is too 
complicated for the problem. Earlier, a general approach for analysis of Diophantine equations, and 
FLT equation in particular, was proposed in [2]. Here, it is presented with some additions.  
 
2. FLT sub-equations  
Let us consider an equation. 

aaa zyx =+                   (1) 
The power a is a natural number 3≥a . Unlike in the original FLT equation, here, x, y, z belong to 
the set of integer numbers Z. Combinations with zero values are not considered as solutions. We 
assume that variables x, y, z have no common divisor. Indeed, if they have such a divisor d, both 
parts of equation can be divided by ad , so that the new variables dxx /1 = , dyy /1 = , dzz /1 =  
will have no common divisor. We will call such a solution, without a common divisor, a primitive 
solution. From the formulas above, it is clear that any non-primitive solution can be reduced to a 
primitive solution by dividing by the greatest common divisor. The reverse is also true, that is any 
non-primitive solution can be obtained from a primitive solution by multiplying the primitive 
solution by a certain number. So, it is suffice to consider primitive solutions only.  
 Values x, y, z in (1) cannot be all even. Indeed, if this is so, this means that the solution is not 
primitive. By dividing it by the greatest common divisor, it can be reduced to a primitive solution. 
Obviously, x, y, z cannot be all odd. So, the only possible combinations left are when x and y are 
both odd, then z is even, or when one of the variables, x or y, is even, and the other is odd. In this 
case, z is odd. Thus, equation (1) can be subdivided into the following cases, which cover all 
permissible permutations of equation's parameters. 
1. na 2= ;   12 += kx ; 12 += py . Then, z is even, mz 2= . 
2. 12 += na ;  12 += px ; my 2= .   Then, z is odd, 12 += kz . 
3. 12 += na ;  12 += kx ; 12 += py . Then, z is even, mz 2= . 
4. na 2= ;   12 += px ; my 2= .   Then, z is odd, 12 += kz . 
 
3. Case 1 
Let us assume that (1) has a solution for the following terms. 

nnn mpk 222 )2()12()12( =+++               (2) 
Binomial expansion of the left part of (2) is as follows. 
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Transforming (3), we obtain 
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The lowest power of terms 2k and 2p in the sum is 2)22(2 =−− nn . In other words, all summands 
in the sum are even, having a factor of two in a degree of two or greater. The second term has a 
factor of four. Let us divide both parts of (4) by two. We obtain. 
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The first two summands in the left part of (5) are even. So, the left part presents the sum of two even 
terms and the number one. Thus, the left part is odd.  
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 Since we consider the values of 42 ≥n , the power 3)12( ≥−n , so that the right part is even. So, 
(5) presents an equality of the odd and even integer numbers, which is impossible. Thus, the initial 
assumption that (2) has a solution is invalid. So, it has no solution in integer numbers, since the 
parity of the right and left parts of (5) does not depend on algebraic signs of variables. 
 
4. Cases 2 and 3 
We will need several Lemmas for these cases. 
 
4.1. Presentation of numbers in a binary form 
 
 Lemma 1: Each non-negative integer number n can be presented in a form  

i

r

i

i Kn ∑
=

=
0

2                   (6) 

where }1,0{=iK .  
 
Proof: Effectively, this Lemma states the fact that any number can be written in a binary 
presentation. If more details are needed, paper [2] provides them. 
 
From Lemma 1, the following Corollary follows. 

Corollary 1: Any negative integer number n can be presented as i

r

i

i Bn ∑
=

=
0

2 , where }0,1{−=iB . 

 
4.2. Presentation of equation (1) for cases 2 and 3  
For the case 3, we have 12 += na ; 12 1 += kx ; 12 1 += py . Then, (1) transforms to 

1212
1

12
1 )2()12()12( +++ =+++ nnn mpk             (7) 

For the case 2, the power 12 += na ; 12 += px ; my 2= . Then, z is odd, 12 += kz .  
121212 )12()2()12( +++ +=++ nnn kmp  

It can be rewritten in a form 
121212 )2()12()12( +++ =+−+ nnn mpk             (8) 

We can present m as 12 mm μ= , where 0≥μ , and 1m  is an odd number. Then, (8) transforms to 
NNNN mpk 1

)1(2)12()12( +=+−+ μ               (9) 
where 12 += nN .  
 Note that the value )1( += μNrt  is a threshold one. If we divide both parts of the equation by 

r2 , then for trr <  the right part is even, for trr =  it is odd, and for trr >  it is rational. 
 In the following, we will use a presentation of pairs of odd numbers with a factor of r2 , where 

1≥r , whose properties are considered below.  
 
4.3. Presentation of pairs of odd numbers with a factor of 2r 
Let us consider an infinite set of pairs of odd integer numbers { )12( +k , )12( +p }, where k and p are 
integers. Each set { )12( +k } and { )12( +p } can be accordingly presented with a factor of four as 
sets { )14( +t , )34( +t } and { )14( +s , )34( +s }, where t and s are integers, )( ∞<<−∞ t , 

)( ∞<<−∞ s . Table 1 shows four possible pairs of odd numbers, expressed with a factor of four, 
composed from these terms. Note that such a presentation produces a complete set of pairs of odd 
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integer numbers, since we considered all possible combinations of parities of k and p. (The 
completeness will be proved later for a general case of presentation with a factor r2 ). 
 We can continue presentations of pairs of odd numbers using a successively increasing factor of 

r2 . Initial pairs for the next presentation level with a factor of 32  are pairs in cells (2,1)-(2,4). Table 
2 shows the presentation with a factor of 32 for two pairs from cells (2,3), (2,4) in Table 1. Note that 
index '3' corresponds to power r=3 in a presentation factor r2 . Such correspondence of the index to 
the power of two in a presentation factor will be used throughout the paper. 
 
Table 1. All possible pairs of odd numbers, expressed with a factor of four. 
 

 0 1 2 3 4 
1 
 

k 
p 

2t2 
2s2+1

2t2+1
2s2 

2t2 
2s2 

2t2+1 
2s2+1

2 2k+1
2p+1

4t2+1 
4s2+3 

4t2+3 
4s2+1

4t2+1 
4s2+1

4t2+3 
4s2+3

 
Table 2. Pairs of odd numbers, expressed with a factor of 32 , corresponding to initial pairs  
[ 14 2 +t , 14 2 +s ], [ 34 2 +t , 34 2 +s ]. 
  

 0 1 2 3 4 
1 t2 

s2 
2t3 
2s3+1

2t3+1
2s3 

2t3 
2s3 

2t3+1 
2s3+1

2 4t2+1 
4s2+1

8t3+1 
8s3+5 

8t3+5 
8s3+1

8t3+1 
8s3+1

8t3+5 
8s3+5

3 4t2+3 
4s2+3

8t3+3 
8s3+7 

8t3+7 
8s3+3

8t3+3 
8s3+3

8t3+7 
8s3+7

 
4.3.1. The concept of the proof 
Each pair of terms in Tables 1 and 2, and in subsequent presentations, defines an infinite set of pairs 
of odd numbers. All such pairs of terms at every single presentation level produce the whole set of 
pairs of odd numbers. (In the following, unless it is stated otherwise or explicitly said, the alone term 
"pair" will mean a pair of terms, defined through parameters t and s (or k and p for the first level).) 
The infinite sets, defined by pairs, are unique and do not intersect (this will be proved later). At each 
presentation level, equation (8) has no solution for a certain fraction of pairs. Such "no solution" 
fractions accumulate through subsequent presentation levels, producing a greater and greater total 
fraction of pairs of terms, for which (8) has no solution. In the limit, this total "no solution" fraction 
becomes equal to one, which would mean that (8) has no solution for all possible pairs of odd 
numbers. Why one can make such an inference, associating the total fraction with a whole set of 
pairs of odd numbers, will be discussed at the end of Case 2, once we get acquainted with the proof 
specifics. 
 At this point, it is very important to understand that we deal with deterministic objects, which 
are pairs of terms and associated with them particular values of "no solution" and "uncertain" 
fractions. Absolutely no notion of probability is involved in this proof. Finding the aforementioned 
limit would mean that all concrete (but not probabilistic!) values of fractions, uniquely associated 
with the appropriate sets of pairs of terms, are summed up to the value of one in infinity. Why this is 
so important? The reason is that if one would resort to probabilistic approach, say using the notion 
of asymptotic density [3,4], it could be still possible to obtain the value of one in the limit for the 



Shestopaloff Yuri K. Proof of Fermat Last Theorem based on successive presentations of pairs of odd numbers. 
(Version 5). http://doi.org/10.5281/zenodo.3838277 Copyright © Shestopaloff Yu. K. 17 Feb. 2020   5

total asymptotic density, even if for one pair - from infinity - (8) has a solution. The only way to 
cope with such an issue is to use only deterministic countable values, and finding the required total 
value (in our case, this will be the total "no solution" fraction) for all these deterministic values. Of 
course, certain conditions to be fulfilled for such a summation to be valid. (This paragraph was 
added to address a Reviewer's comment.)  
 At the first presentation level, with a factor of 22 , we begin with the whole set of all possible 
pairs of odd integer numbers, represented by a pair of terms [ )12( +k , )12( +p ], k and p are integers. 
Equations, corresponding to a half of pairs of terms from this set, have no solution. Then, the half of 
pairs, for which equations have no solution, is set aside (the "no solution" fraction nsf2 ). The 
remaining pairs compose an "uncertain" fraction, for which solution is uncertain. The "uncertain" 
fraction is equal to 2/11 22 =−= nsu ff .  The following example illustrates the approach. (The actual 
algorithm is different, but the general idea is similar.)  
 Equation (8) can be transformed as a difference of two numbers in odd powers. 

∑
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+− =++−
n

i

niin mpkpk
2

0

122 )2()12()12()(2             

Dividing both parts by two, one obtains 

∑
=

− =++−
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22 )2()12()12()(             

Here, the sum is odd as an odd quantity of odd numbers. If the factor )( pk −  is odd, then the left 
part is odd, while the right part is even (since n > 0). This means that there is no solution in this case. 
The value of )( pk −  is odd when one of the terms is odd and the other is even, which are the values 
of k and p in cells (1,1), (1,2) in Table 1, corresponding to pairs [ 14 +t , 34 +s ] and [ 34 +t , 14 +s ]. 
The change of algebraic signs of k and p does not change the parity of the left part. So, the result is 
valid for integer numbers k and p. When 0)( =− pk , the left part is zero, while the right part is an 
integer, so that there is no solution in this case. 
 When )( pk −  is even, both parts of equation are even, and solution is uncertain. This 
corresponds to values of k and p in cells (1,3), (1,4) in Table 1, with corresponding pairs of terms 
[ 14 +t , 14 +s ] and [ 34 +t , 34 +s ]. These "uncertain" pairs should be used as initial pairs for the next 
presentation level with a factor of 32  (Table 2).  
 At the presentation level with r=3, we again find that a half of pairs (the ones in bold in Table 2) 
correspond to a "no solution" fraction, which is found as 4/12/123 =×= uns ff . The fraction of 
remaining uncertain pairs is accordingly 4/14/12/1323 =−=−= nsuu fff . Therefore, two 
presentation levels produce the following total fraction of pairs, for which (15) has no solution, 

4/34/12/1323 =+=+= nsnsNS ffF . The "uncertain" fraction 4/14/313 =−=uf , gives initial pairs for 
the next presentation level (with r=4), and so forth, until in infinity the "no solution" fraction 
accumulates to one. (The real situation with the "no solution" fractions is slightly more complicated, 
since such fractions can be greater than 1/2, when equations, corresponding to certain pairs of terms, 
have no solution for all pairs of terms, and such a branch is closed. However, the total "no solution" 
fraction is still equal to one in the limit.) Fig. 1 illustrates the concept in more detail.  
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Fig. 1. Graphical presentation of how the "No solution" fraction accumulates through presentation 
levels, and the appropriate decrease of "Uncertain" fraction. The value of r=rt=N(µ+1) is a threshold 
value, where transition begins from even right parts of equations to integer or rational ones.  
  
4.3.2. Properties of presentations of pairs of odd number with a factor of r2  
 
 Lemma 2: Successive presentations of odd numbers with a factor of r2 cannot contain a free 
coefficient greater or equal to r2 . 
 
Proof: Presentations of odd numbers with factors 22  and 32 satisfy this requirement. Let us assume 
that this is true for a presentation level r, that is the free coefficient v in a term )2( vtr

r +  satisfies 
the condition rv 2< . At a presentation level (r + 1), this term is presented as )22( 1

1 vt r
r

r +++
+  or 

)2( 1
1 vtr

r ++
+ . In the latter term, the condition is already fulfilled. In the first term, 

12222 +=+<+ rrrr v , since rv 2<  is true for level r by assumption. So, assuming that the 
condition is fulfilled at the level r, we obtained that it is also fulfilled at the level (r + 1). According 
to principle of mathematical induction, this means the validity of the assumption. This proves the 
Lemma.  
 
The number of pairs of terms grows for successive complete presentations in a geometrical 
progression with a common ratio of four, since each initial pair produces four new pairs at the next 
presentation level. (Each new pair corresponds to one of the four possible parity combinations of 
input parameters, like 2t , 2s  in Table 2, whose parity is expressed through 3t , 3s .)  

1/2  (Here and below, this number 
presents the "no solution" fraction

r=3

. . . 

"No solution "fractions "Uncertain" fractions 

1/22 

1/2 

1/22 

1/23 1/23 

  1/2r-1 

  

r=rt=N(µ+1). The last level, where the second 
summand in the right part of (14) is an integer. 

r=4 

  1/2r r=rt+1. The pairs with equal free coefficients 
become the "no solution" group.  

1/2r+1 

r=2 

r=rt+2. Starting from this level, each pair is 
considered separately. All pairs, except 
completed branches, are "uncertain" pairs.     

                

. . . . .

. . . . .

. . . . .

. . . . .

Until the level r=rt+1, pairs with unequal free 
coefficients form the "no solution" group 

    

r=rt+3. At this level, pairs 
are divided into "no 
solution" and "uncertain" 
groups. 
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 For the following, we need to prove that (a) such a presentation produces the whole set of pairs 
of odd numbers at each level; (b) the presentation is unique, that is two different pairs of odd 
numbers cannot produce the same pair of odd numbers at higher levels of presentation.  
 
 Lemma 3: Successive presentations of pairs of odd numbers with a factor of r2 , 2≥r , produce 
the same set of pairs of odd numbers at each presentation level. Such presentations are unique, that 
is two different pairs of odd numbers from the previous levels cannot correspond to the same pair of 
odd numbers at higher presentation levels. 
 
Proof: The equivalency of sets of pairs of odd numbers at each presentation level r follows from the 
fact that each next presentation level (r+1) is obtained prom the previous one through branching of 
each initial pair (from level r) into all four possible combinations of parities of parameters tr and sr, 
so that there are no any other possible combinations of parities. This means that any pair of terms 
from level r is fully represented at level (r+1), although in the form of four pairs of terms. Indeed, 
the initial term )2( vtr

r +  can be presented at level (r+1) only in two forms (for even and odd values 
of t), that is as vtvt r

r
r

r +=+ +
+

+ 1
1

1 2)2(2 , or vtvt r
r

r
r

r ++=++ +
+

+ 22)12(2 1
1

1 . Similarly, the term 
)2( wsr

r +  can also be represented in the same two forms only. So, only four combinations of pairs 
of terms, containing both t and s parameters, are possible. These combinations are unique, because 
the combinations of free coefficients are unique, which are as follows: [v,w], [ vr +2 ,w] , [v, 

wr +2 ], [ vr +2 , wr +2 ]. Consequently, no intersection of thus defined sets of pairs of odd numbers 
is possible.  
 The reverse is also true, that is four pairs of terms at presentation level (r+1) converge to one 
initial pair of terms at lower level r. Indeed, two terms with parameter t converge to the same term 

)2( vtr
r + . 

vtvtvt r
r

r
r

r
r +=+=+ ++
+ 2)2(22 11
1              (10) 

vtvtvt r
r

r
rr

r
r +=++=++ +

+
+

+ 2)12(222 1
1

1
1            (11) 

where }.12,2{ 11 += ++ rrr ttt  
Note that the same convergence to a single term can be obtained for a general case of presenting two 
terms at level (r+1) using Lemma 1, and then transforming them to level r.  
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For a positive number, }1,0{=rK , and we obtain }12,2{ 11 += ++ rrr ttt , that is the same set of integer 
numbers, on which rt  was defined originally. The same is true for negative numbers. 
 Similarly, one can convert two possible terms with parameter s at level (r+1) to a single term 
with parameter s at level r. So, four pairs of terms at level (r+1), indeed, converge to one pair of 
terms [ vtr

r +2 , wsr
r +2 ] at level r. Therefore, such transformations from level r to level (r+1) and 

backward include all possible, while non-intersecting, pairs of terms. This means that presentations 
of pairs of odd numbers at these two levels are equivalent, that is for each pair of odd numbers at 
level r there is one and only one pair of odd numbers at level (r+1).  
 
4.4. Datasets of integer numbers with a factor of four, symmetrical relative to zero 
 
 Lemma 4: The dataset Z1 ={ 14 +s }, defined on the set of integer numbers )( ∞<<−∞ s  is 
symmetrical to the dataset Z3 ={ )34( 1 +s }, )( 1 ∞<<−∞ s  relative to zero, meaning that for each 



Shestopaloff Yuri K. Proof of Fermat Last Theorem based on successive presentations of pairs of odd numbers. 
(Version 5). http://doi.org/10.5281/zenodo.3838277 Copyright © Shestopaloff Yu. K. 17 Feb. 2020   8

number w in Z1 there is one and only one number (-w) in the dataset Z3 , and vice versa (meaning 
the swap of datasets).  
 
Proof: Let us consider )1(1 +−= ss . Then, we can write the following for Z3. 

)14()14()3)1(4()34( 1 +−=−−=+−−=+ ssss  
Assuming 11 −−= ss , we obtain for Z1. 

)34()1)1(4()14( 1 +−=+−−=+ sss  
or )14()34( 1 +−=+ ss  
Since the above transformations are one-to-one, it means one-to-one relationship between any 
number in one dataset and its algebraic opposite in another dataset. Note that values of s and 1s  have 
the same ranges of definition, so that they are interchangeable in the above expressions. This proves 
the Lemma. 
 
Fig. 2 illustrates the algebraically opposite numbers in two datasets. 

 
Fig. 2. Symmetrical subsets of odd integer numbers, expressed with a factor of four.  
 
The symmetry of obtained sets can be illustrated by congruencies. Indeed, )4(mod114 ≡+s , while 
the congruency for the matching value )4(mod3)34( 1 −≡−− s  transforms to )4(mod1)14( 1 ≡+− s , so 
that both values are congruent to number one. 
 The following corollary follows from Lemma 4. 
 
 Corollary 2: Dataset Z1 ={ 14 +s }, )( ∞<<−∞ s  can be substituted by dataset  
-Z3 ={ )34( 1 +− s }, )( 1 ∞<<−∞ s , and vice versa.  
 
4.5. Properties of equations, corresponding to pairs of odd numbers with a factor of r2  
This section introduces an equation, to which all equations, corresponding to pairs of odd numbers, 
can be transformed, and explores its properties. 
 
 Lemma 5: Let us consider an equation 

NNN
r

rN
r

r mwsvt 1
)1(2)2()2( +=+−+ μ             (13) 

where rt  and rs  are integers; N=2n+1; 1m  is odd; v, w are positive odd (possibly equal) numbers, 
obtained through successive presentations of pairs of odd numbers. Then, for any 3≥r , such 
equations can be transformed to the following form 

trrNr
rrrr mcAAst −+=− 2/2/)( 1               (14) 

where ∑
−

=

−− ++=
1

0

1 )2()2(
N

i

i
r

riN
r

r
r wsvtA is an odd integer; c is an integer; )1( += μNrt . 

 
Proof: Equation (13) is equation (8), rewritten for a presentation with a factor of r2 . 

0 4 8 - 4- 8 (4s+1) 

(4s+3)(4s1+1) 

(4s1+3) 
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The sum in (15) is odd, because it presents the sum of odd number of odd values. Let us denote it  
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Since v and w are odd, their difference is even. Also, in successive presentation of odd numbers, 
according to Lemma 3, rv 2< , rw 2< . Since both values are positive, their absolute difference is 
also less than r2 . According to Lemma 1 and Corollary 1, (v - w) can be presented as a sum of 
powers of two with coefficients, having the same algebraic sign. Since rwv 2<− , such a sum 

cannot contain a summand with a power greater than 12 −r , when all coefficients iK  have the same 
algebraic sign. 

NN
ri
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Then, (16) can be rewritten as follows. 
NN
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⎞
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⎝
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−=− ∑ μ            (17) 

Let us denote i

r

i

i Kc ∑
−

=

−=
1

1
2 . Since vwc −= , when vw =  (that is free coefficients are equal), 0=c . 

When vw ≠ , the value of 0≠c . Dividing both parts of (17) by r2 , and taking into account that 
)1( += μNrt , we obtain  

trrNr
rrrr mcAAst −+=− 2/2/)( 1              (18) 

 This proves the Lemma.  
 
 Lemma 6: If 0≠c  in (18), then r

rcA 2/  is a rational number. 
 
Proof: It was indicated in Lemma 5 that when free coefficients w and v are unequal, 0≠c . 

According to Lemma 1, we can always use a presentation i

r

i

i K∑
−

=

1

1
2  with the range of values 

}1,0{=iK , 11 −≤≤ ri , when 0>c , and }0,1{−=iK  when 0<c . Then 

22)12/()12(222 1
1

1

1

1
−=−−=≤= −

−

=

−

=
∑∑ rr
r

i

i
i

r

i

i Kc           (19) 

(Here, we substituted the sum of a geometrical progression with a common ratio of two and the first 
term of two.)  Accordingly 

)2/11(2/ 1−−≤ r
r

r
r AcA                (20) 

Dividing inequality (20) by a positive number rA , one obtains 

)2/11(2/ 1−−≤ rrc                 (21) 

Thus, rc 2/  is a rational number. The term rA  is an odd number, which, consequently, contains no 
dividers of two. In turn, this means that r

rcA 2/  is a rational number. This proves the Lemma. 
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 Lemma 7: Equation (13) has no solution for pairs with unequal free coefficients when 
)1( +≤ μNr , while solution is uncertain for pairs with equal free coefficients. 

 
Proof: For trNr =+≤ )1(μ , the term Nrr mt

12 −  in (13) is an integer. According to Lemma 6, the 
summand r

rcA 2/  is rational for pairs with unequal free coefficients. So, the right part of (13) is 
rational. On the other hand, the left part is an integer when 0)( ≠− rr st . This means that (13) has no 
solution in this case. When 0)( =− rr st , (13) presents equality of zero (in the left part), and of a 
rational number, which is impossible too. So, (13) has no solution for pairs with unequal free 
coefficients. 
 When free coefficients are equal, c = 0, and (13) transforms to  

Nrr
rrr mAst t

12)( −=−                 (22) 
For trr < , the right part is even, for trr =  it is odd. The left part can be odd, or even, or zero. So, the 
solution of this equation is uncertain. Consequently, the pairs, whose terms have equal free 
coefficients, should be used as initial pairs of terms for the next presentation level. 
 This proves the Lemma. 
 
Now, we should establish relationships between the sizes of groups, corresponding to pairs of terms 
with equal and unequal free coefficients, and the parity of the term )( rr st −  in (13).  
 
 Lemma 8: When initial pairs of terms, obtained from the r-level of presentation, have equal free 
coefficients, the number of pairs of terms with equal and unequal free coefficients at the next 
presentation level (r+1) is the same and is equal to 1/2 of the whole set of pairs at level (r+1). The 
group of pairs with equal free coefficients correspond to even values of )( rr st − , while pairs with 
unequal free coefficients correspond to odd )( rr st − , so that it is equivalent subdividing the pairs 
based on parity of )( rr st − , or on the basis of equal and unequal free coefficients. 
 
Proof: It follows from Table 1 that for 22 =r  the quantities of pairs of terms with equal and unequal 
free coefficients are equal. Consequently, each group constitutes a half of all pairs of terms. Odd 
values of )(

22 rr st −  correspond to pairs at level r = 3 with unequal free coefficients. Accordingly, 
even values of )(

22 rr st −  correspond to pairs of terms with equal free coefficients. Let us assume that 
the same is true for an initial pair of terms with equal free coefficients at the greater level r, 2≥r . 
The presentation for all possible parity combinations of tr and sr at level (r+1) is shown in Table 3 
for one generic pair with equal free coefficients.   
 It follows from Table 3 that the number of pairs with equal and unequal free coefficients is the 
same, and is equal to 1/2 of quantity of all pairs. Unequal free coefficients correspond to odd values 
of )( rr st − , while even values )( rr st −  correspond to pairs with equal free coefficients. So, we 
obtained the same results as for 2=r . Since the rest of initial pairs of terms have the same form (in 
all of them free coefficients are equal), depending on the parity of )( rr st − , they also produce a half 
of pairs with equal free coefficients, and a half with unequal ones. According to principle of 
mathematical induction, this means that the found properties are valid for any presentation level 

2≥r . This proves the Lemma. 
 
Table 3. Presentation with a factor 2r for a pair with equal free coefficients. 
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 0 1 2 3 4 
1 
 

tr 
sr 

2tr+1 
2s r+1+1 

2tr+1+1 
2s r+1 

2t r+1 
2s r+1 

2t r+1+1 
2s r+1+1 

2 2rtr+vi 
2rsr+ vi 

2r+1tr+1+ vi 
2r+1sr+1+2r + vi

2r+1tr+1+2r +vi
2r+1s r+1+ vi 

2r+1t r+1+ vi 
2r+1s r+1+ vi

2r+1t r+1+2r + vi 
2r+1s r+1+2r +vi 

 
 Corollary 3: Consider successive presentations of pairs of odd numbers with pairs of terms 
having a factor of r2 , which use initial pairs of terms with equal free coefficients from the previous 
level, beginning with one pair of terms. Then, the number of initial pairs of terms at level r is equal 
to 12 −r .  
 
Proof: For a factor of two, we have one pair of terms; for a factor of 22  there are two pairs of terms 
with equal free coefficients (Table 1); for a factor of 32 there are 22  such pairs (Table 2), and so 
forth. The total number of pairs of terms increases by four times for the next presentation level 
(since each initial pair produces four new pairs, one per parity combination of rr st , ). From this 
amount, a half of pairs correspond to pairs with equal free coefficients, according to Lemma 8. The 
value of 12 −r  reflects on the fact that at each presentation level the number of pairs with equal free 
coefficients doubles. This proves the Corollary.  
 
 Corollary 4: For )1( +=≤ μNrr t , the fraction of pairs of terms, for which equation (8) has no 
solution for a presentation level r, is equal to  

1)2/1( −= r
rf                   (23)  

 
Proof: It was shown in Lemma 7 that in this case (13) has no solution for pairs with unequal free 
coefficients, while, according to Lemma 8, these pairs constitute half of all pairs of terms at a given 
presentation level. Thus, (23) is true for 2=r . Let us assume that Lemma is valid for the value of 

2>r . According to Lemma 7, for trr ≤ , the corresponding equations have no solution for pairs of 
terms with unequal free coefficients, so that initial pairs for the next level are always pairs with 
equal free coefficients. Then, the fraction ruf  of pairs, for which solution is uncertain, is the same, 
as the fraction of "no solution" pairs, that is 1)2/1( −= r

ruf . This fraction contains initial pairs for the 
presentation level (r+1). At this level, all pairs are again divided into two equal groups of "no 
solution" and "uncertain" pairs, so that the "no solution" fraction is 

rr
rur ff )2/1(2/)2/1()2/1( 1

1 ==×= −
+ , 

which is formula (23) for the level (r+1). According to principle of mathematical induction, this 
means validity of (23). This proves the Corollary. 
 
 Lemma 9: At each next presentation level (r+1), the number of pairs, corresponding to odd and 
even values of )( rr st − , are equal.  
 
Proof: Suppose we have 1+rp  initial pairs at a presentation level (r+1). Each initial pair of terms 
produces four pairs at level (r+1), one pair per each possible parity combination of terms rr st , , 
listed in the first row of Table 3. These parity combinations do not depend, whether the initial pairs 
have equal or unequal free terms, and also do not depend on the value of r compared to tr . Two of 
these parity combinations (in cells (1,1), (1,2) in Table 3) produce odd values of )( rr st − , namely 
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when rr st ,  are equal to [ 12 +rt , 12 1 ++rs ], [ 12 1 ++rt , 12 +rs ]. Two other combinations, in cells (1,3), 
(1,4), produce even values of )( rr st −  for pairs [ 12 +rt , 12 +rs ], [ 12 1 ++rt , 12 1 ++rs ]. So, the number of 
pairs, for which )( rr st −  is odd is equal to 12 +rp . The number of pairs, for which )( rr st −  is even, is 
also 12 +rp . So, quantities of pairs of terms, corresponding to odd and even values of )( rr st − , are 
equal. This proves the Lemma. 
 
Note: At the presentation level (r+1), odd values )( rr st −  cannot be zero, given the presentation of 

rt  and rs  through t r+1 and s r+1 in Table 3. Even values of )( rr st −  can be zero. However, from the 
perspective of solution, such a zero term can be transformed to a non-zero even term (such a 
transition is addressed by Lemma 10). 
 
4.6. Finding fraction of "no solution" pairs for presentation levels with )1( +=≤ μNrr t  
We found so far that for )1( +=≤ μNrr t the following is true:  
(a) Initial pairs of terms with equal free coefficients, taken from level r, produce equal number of 
pairs of terms with equal and unequal free coefficients at a presentation level (r+1), Lemma 8;  
(b) Corresponding to pairs of terms equations have no solution for pairs with unequal free 
coefficients, while solution is uncertain for pairs with equal free coefficients, Lemma 7; 
(c) Each presentation level adds a "no solution" fraction of pairs of terms equal to 1)2/1( −= r

rf .  
 
So, each previous level supplies to the next presentation level "uncertain" pairs of terms, which 
constitutes half of all pairs of the previous level. These initial pairs have equal free coefficients. This 
allows finding a "no solution" fraction of pairs of terms from successive presentations with a factor 
of r2 . Since each level adds 1/2 of pairs to a "no solution" fraction, the total such fraction rF  is 
equal to a sum of geometrical progression with a common ratio 2/1=q , and the first term 2/12 =f  
(the "no solution" fraction at level r=2). Fig. 1 illustrates this consideration.  
 So, we can write 

)1/()1( 1
2

2

2
2

2

qqfqffF r
r

i

i
r

i
ir −−=== −

=

−

=
∑∑             (24) 

For example, for r=5, 16/15=rF . Note that if such a progression is valid to infinity, the total 
fraction in the limit would be 

1)2/1/()2/1()1/(lim 2 ==−=∞→ qfFrr             (25) 
(Here, the limit is understood as an ordinary Cauchy's limit.) In other words, equation (8) would not 
have a solution for all possible pairs of terms. However, in order to obtain such a result, one needs to 
confirm that such a progression is true for )1( +=> μNrr t .  
 
4.7. Transcending the threshold level trr =  
Presentation level )1( +tr   
Table 4 shows pairs of terms for level )1( +tr . The number of initial pairs is defined by Corollary 3, 
and is equal to tr2  for this level. For pairs with equal free coefficients (columns 3 and 4 in Table 4), 
(13) transform to 

2/)( 1,111
N

ijrrr mAst
ttt

=− +++                (26) 
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 The right part of (26) is rational ( 1m  is an odd number). The left part is an integer. So, (26) has 
no solution for pairs with equal free coefficients (and, consequently, for even )(

tt rr st − , according to 
Lemmas 8 and 9). When 0)( =−

tt rr st , the left part is zero, while the right part is rational. So, (26) 
has no solution too. This group of pairs of terms constitutes 1/2 of all pairs (Lemma 9), so that the 
common ratio remains equal to 1/2, and formula (24) stays valid.  
 
Table 4. Pairs presented with a factor of 12 +tr . It is assumed that trr = . 

 0 1 2 3 4 
 tr 

sr 
2tr+1 
2s r+1+1 

2t r+1+1 
2s r+1 

2t r+1 
2s r+1 

2t r+1+1 
2s r+1+1 

1 
12 rr

r vt +  

12 rr
r vs +  

11
12 rr

r vt ++
+  

11
1 22 r

r
r

r vs +++
+  

11
1 22 r

r
r

r vt +++
+  

11
12 rr

r vs ++
+  

11
12 rr

r vt ++
+  

11
12 rr

r vs ++
+  

11
1 22 r

r
r

r vt +++
+  

11
1 22 r

r
r

r vs +++
+  

2 
22 rr

r vt +  

22 rr
r vs +  

21
12 rr

r vt ++
+  

21
1 22 r

r
r

r vs +++
+

21
1 22 r

r
r

r vt +++
+

21
12 rr

r vs ++
+  

21
12 rr

r vt ++
+  

21
12 rr

r vs ++
+

21
1 22 r

r
r

r vt +++
+  

21
1 22 r

r
r

r vs +++
+

…      
r2  rRr

r vt +2  

rRr
r vs +2  

rRr
r vt ++
+

1
12  

rR
r

r
r vs +++
+ 22 1
1

rR
r

r
r vt +++
+ 22 1
1

rRr
r vs ++
+

1
12  

rRr
r vt ++
+

1
12  

rRr
r vs ++
+

1
12

rR
r

r
r vt +++
+ 22 1
1  

rR
r

r
r vs +++
+ 22 1
1

 
 For pairs with unequal free coefficients (and consequently odd )(

tt rr st − , Lemma 9), (13) 
transforms to 

2/2/)( 1,1,111
Nr

jrjrrr mcAAst t

tttt
+=− ++++             (27) 

The right part can be rational, an integer or zero. Since the sums jrA ,1+  are all odd, parity of the left 
part in (27) is defined by the term )( 11 ++ −

tt rr st , which can be odd, even or zero. So, solution of (27) 
for odd )(

tt rr st −  is uncertain, and such pairs should be used as initial pairs of terms for the next 
presentation level )2( +tr . As it was mentioned (a note after Lemma 9), for odd )(

tt rr st − , the term 
0)( 11 ≠− ++ tt rr st .  

 Recall that before the level )1( +tr , the pairs with unequal free coefficients had no solution, 
while (26) has no solution for even )( 11 ++ −

tt rr st , corresponding to pairs with equal free coefficients. 
In this regard, the level )1( +tr  reverses the groups of pairs. The "uncertain" group of pairs is now 
composed of pairs with unequal free coefficients (and accordingly with odd )(

tt rr st − ). These pairs 
of terms (in columns 1 and 2 in Table 4) should be used as initial pairs at the next presentation level 

)2( +tr .  
 
Transition in the presentation level )2( +tr  
Level )1( +tr supplied initial pairs of terms with unequal free coefficients. This means that we do not 
have anymore distinct groups with equal and unequal free coefficients at level )2( +tr , as before, 
since the initial pairs with unequal free coefficients produce mostly pairs with unequal free 
coefficients, with occasional inclusion of pairs with equal ones. Previously, we have seen that the 
parity of parameter )( rr st −  defined the absence or uncertainty of solution. However, beginning 
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from level )2( +tr , this parameter lost association with groups of pairs of terms with equal and 
unequal free coefficients. This is due to the fact that the right part of equation (27) can be an integer, 
a rational number, or zero per pair basis, and so we should consider the use of parameter )( rr st −  
this way. We will still have a half of "no solution" and a half of "uncertain" pairs of terms, but only 
for a block of four pairs, corresponding to each initial pair. This is the assembly of such "uncertain" 
pairs from each block, which goes to the next level. Table 5 shows pairs of terms for level )2( +tr .  
 
Table 5. Pairs of terms with a factor of 22 +tr , obtained from initial pairs in Table 4, for which 

)( rr st −  is odd. First two rows correspond to cells (1,1), (1,2) in Table 4. It is assumed that trr = . 
 0 1 2 
 tr+1 

sr+1 
2tr+2 
2s r+2+1 

2t r+2+1 
2s r+2 

1 
11

12 rr
r vt ++
+  

11
1 22 r

r
r

r vs +++
+  

12
22 rr

r vt ++
+  

1
1

2
2 222 r

rr
r

r vs +++ +
+

+  
1

1
2

2 22 r
r

r
r vt ++ +

+
+  

12
2 22 r

r
r

r vs +++
+  

2 
1

1 22 r
r

r
r vt +++  

11
12 rr

r vs ++
+  

12
2 22 r

r
r

r vt +++
+  

12
2 22 r

r
r

r vs +++
+  

1
1

2
2 222 r

rr
r

r vt +++ +
+

+  

12
22 rr

r vs ++
+  

. . . . . . . . . . . . 
12 +r  . . . . . . . . . 

 
Table 5 continued 

3 4 
2t r+2 
2s r+2 

2t r+2+1 
2s r+2+1 

12
22 rr

r vt ++
+  

12
2 22 r

r
r

r vs +++
+  

1
1

2
2 22 r

r
r

r vt ++ +
+

+  

1
1

2
2 222 r

rr
r

r vs +++ +
+

+  

12
2 22 r

r
r

r vt +++
+  

12
22 rr

r vs ++
+  

1
1

2
2 222 r

rr
r

r vt +++ +
+

+  

1
1

2
2 22 r

r
r

r vs ++ +
+

+  
. . . . . . 
. . . . . . 

 
When r=(rt+2), (13) transforms to 

4/2/)( 1
2

,2,222
Nr

ijrijrrr mcAAst t

ttt
+=− +

++++             (28) 
where index 'ij' denotes the cell number. The right part of (28) can be rational, an integer, or zero. 
When the left part is an integer (the case, when it's zero, will be considered later), (28) has no 
solution for any )( 22 ++ −

tt rr st  for the rational or zero right part, and, consequently, this branch is 
completed. (Compared to continuing branches, the completed branch delivers double fraction of 
pairs, for which (8) has no solution, since in this case two equal "no solution" and "uncertain" 
fractions compose one "no solution" fraction.) If the right part is an integer, (28) has no solution 
when )( 22 ++ −

tt rr st  has the opposite parity, and the solution is uncertain for another parity of 
)( 22 ++ −

tt rr st . The number of combinations of parameters 2+tr
t  and 2+tr

s , corresponding to each parity, 
is equal to two from four in this case, and so we still have equal division between the "no solution" 
and "uncertain" pairs of terms. However, at this level, we have no distinction between the odd and 
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even values of 2+tr
t  and 2+tr

s  in the same way, as before, when there was an association with equal 
and unequal free coefficients. Such distinction can be done only at the next presentation level 

)3( +tr . All pairs at level 2+tr  correspond to "uncertain" equations, except for the cases when the 
pair's branch is completed. 
 The case of 0)( 22 =− ++ tt rr st  is also an "uncertain" one, since there is a possibility that two terms 
in the right part are equal in absolute values and have the opposite algebraic signs. 
 Note that values ijrt

A ,2+  are different, so that the right parts of corresponding equations, 
transformed to a form (13), may have dissimilar parities (as well as may be rational or zeros) for 
different pairs. (The right part can be an integer, provided 0≠c  in (13), otherwise the right part is 
equal to trrNm −2/1 , which is always rational for trr > , so that such a branch is completed.) This is 
why, starting from this level, one should consider each pair of terms separately (Fig. 1). (In fact, it is 
possible to show that at level )2( +tr , when 0≠c , integer right parts of these equations have the 
same parity. However, this is not necessarily true for the next levels, so we use the same generic 
approach for this level and above.)  
 With regard to accumulation of a total "no solution" fraction, we have the same common ratio 
of 1/2, although it is obtained differently - not per group, as previously, but per pair, and then such 
"per pair" fractions are summed up, in order to obtain the total "no solution" fraction. We will 
consider this assembling process in detail later.  
 
So, we found that the corresponding equations for pairs of terms in both groups (meaning groups of 
pairs, having either even or odd values of )( 22 ++ −

tt rr st ) converge to equations, which have no 
solution for one parity of )( 22 ++ −

tt rr st , and accordingly for one half of pairs of terms (according to 
Lemma 9), while solution is uncertain for the other parity, corresponding to the second half of pairs. 
So, the common ratio for a geometric progression, defining fractions of "no solution" pairs, will 
remain equal to 1/2. However, because we can specify particular pairs, corresponding to odd or even 

)( 22 ++ −
tt rr st , at the next level only, this common ratio accordingly should be assigned to a 

presentation level, where such a specification actually happens; in this case, this is the next level 
)3( +tr . At level 2+tr , all equations, corresponding to initial pairs, have the same form (13), and 

consequently, the same "uncertain" status. All pairs (except for completed ones) are "uncertain" 
pairs.  
 
Presentation level )3( +tr  
We will need the following Lemma to address zero values of 0)( =− rr st  in equation (13). Note 
that 0)( =− rr st  only when both parameters are equal (and, of course, have the same parity), 
including when both are equal to zero. When )( rr st −  is odd (parameters have different parity), 

0)( ≠− rr st . 
 
 Lemma 10: Equation (13), that is trrNr

rrrr mcAAst −+=− 2/2/)( 1 , is equivalent to equation 
trrNr

rrrr mcAAst −+=− 2/2/)( 111  in terms of parities of both parts, with the substitutions att rr 21 −=  
and bss rr 21 −= , where a and b are integers. If the second equation has no solution based on parity 
or rationality considerations, then the first equation also has no solution, and vice versa. 
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Proof: According to the notion of presentation of odd numbers with a factor of r2 , the terms rt  and 

rs  are integers, having ranges of definition )( ∞<<−∞ rt  and )( ∞<<−∞ rs . The only property, 
which is of importance with regard to such a presentation, is that these parameters should be defined 
on the whole set of integer numbers, in order to include all possible numbers, corresponding to a 
particular presentation; for instance, the term )2( rr

r vt +  should produce the whole set of the 
appropriate "stroboscopic" numbers in the range ),( ∞−∞ , located at the distance r2  from each 
other. As long as this condition is fulfilled, that is such a set can be reproduced, we can make an 
equivalent substitution for parameters rt , rs . For instance, the substitution att rr 21 −=  is an 
equivalent one. Indeed, it preserves the range of definition )( 1 ∞<<−∞ rt , and accordingly produces 
all numbers, which parameter rt  produces (only with a shift of )22( ra×−  for the same values of rt  
and rt1 ). However, this shift makes no difference with regard to the range of produced numbers, 
since our range ),( ∞−∞  is infinite in both directions. On the other hand, when 0)( =− rr st , we have 

0)( 1 ≠− rr st , and vice versa. So, for 0)( =− rr st , such a substitution produces an equation with a 
non-zero left part.  
 Substituting  att rr 21 −=  into (13), one obtains the equation 

trrNr
rrrrr mcAaAAst −++=− 2/2/2)( 11             (29) 

When 0)( =− rr st , we have 02)( 1 ≠=− ast rr . Also, the appearance of the even term raA2 does not 
change the parity of the right part, nor the substitution att rr 21 −=  changes the parity of the left part 
(if it is not zero; if it is zero, the substitution still provides an even increment). Thus, with regard to 
parities, (13) and (29), indeed, are equivalent equations. 
 If the equivalent equation (29) has no solution, then the original equation (13) has no solution 
too. The proof is as follows. Let us assume that (29) has no solution, while (13) has a solution, so 
that  

trrNr
rrrr mcAAst −+=− 2/2/)( 1  

Adding raA2  to the left and right parts of this equation, one obtains an equivalent equation, which 
also should have a solution. 

trrNr
rrrrr mcAaAAsat −++=−+ 2/2/2)2( 1             

According to the substitution, att rr 21 −= , so that rr tat 12 =+ , and the obtained equation transforms 
to (29), which should also have a solution. However, according to our assumption, it has no solution. 
The obtained contradiction means that the assumption that (13) has a solution is invalid, and, in fact, 
it has no solution.  
 Similarly, we can assume that (29) has a solution, while (13) does not, and show that then (13) 
should have a solution, which would contradict to the initial assumption.  
 Although we proved the equivalency of equations with regard to their solution properties in a 
general case, we need such equivalency only for the case when the left part of equivalent equations 
is zero (because 0)( =− rr st  or 0)( 1 =− rr st ). The proposed substitution then makes the left part of 
the equivalent equation a non-zero value, and the inference about the absence of solution or its 
uncertainty can be made based on parities of the left and right parts. Certainly, one can do an 
analogous substitution for rs , or both parameters. This proves the Lemma. 
 
Table 6 shows an example of pairs of terms for the presentation level )3( +tr . Four initial pairs are 
from cells (1,1)-(1,4) in Table 5. If (28) has no solution for even )( 22 ++ −

tt rr st , then these are pairs 
(1,3), (1,4) in Table 6, which satisfy this condition. Accordingly, pairs (1,1) and (1,2), for which 
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)( 22 ++ −
tt rr st  is odd, are "uncertain" pairs, which should be used as initial pairs for the next, )4( +tr , 

level. If, on the contrary, (28) has no solution for odd )( 22 ++ −
tt rr st , then (1,1) and (1,2) are the "no 

solution" pairs, while (1,3), (1,4) become "uncertain" pairs, which should be used as initial pairs of 
terms for the next level. This way, all new pairs, four per each initial pair, are divided into two 
halves as before, so that the common ratio of geometrical progression remains equal to 1/2. The case 

0)( 22 =− ++ tt rr st  is addressed by Lemma 10 through equivalent equations. 
 In the same way, as we considered one pair above, we should consider the rest of initial pairs in 
Table 6 and find out, which two pairs should be used as initial pairs for the next level. Then, the 
same procedure should be repeated for each initial pair at level )3( +tr . 
 Then, the cycle is repeated for the next two levels )4( +tr  and )5( +tr , and so forth, to infinity, 
since there are no anymore threshold values of r, at which the right part could change the parity (if 
it's an integer), and the corresponding equations their form and properties. The following Lemma 
generalizes the discovered order. 
 
Table 6. Pairs of terms with a factor of 32 +tr . Initial pairs are (1,1)-(1,4) from Table 5. It is assumed 
that trr = . 

 0 1 2 
 2+rt  

2+rs  
32 +rt  

12 3 ++rs  
12 3 ++rt  

32 +rs  
1 

12
22 rr

r vt ++
+  

1
1

2
2 222 r

rr
r

r vs +++ +
+

+  
13

32 rr
r vt ++
+  

1
12

3
3 2222 r

rrr
r

r vs ++++ ++
+

+  
1

2
3

3 22 r
r

r
r vt ++ +

+
+  

1
1

3
3 222 r

rr
r

r vs +++ +
+

+  
2 

1
1

2
2 22 r

r
r

r vt ++ +
+

+  

12
2 22 r

r
r

r vs +++
+  

1
1

3
3 22 r

r
r

r vt ++ +
+

+  

1
2

3
3 222 r

rr
r

r vs +++ +
+

+  
1

12
3

3 222 r
rr

r
r vt +++ ++

+
+  

13
3 22 r

r
r

r vs +++
+  

3 
12

22 rr
r vt ++
+  

12
2 22 r

r
r

r vs +++
+  

23
32 rr

r vt ++
+  

2
2

3
3 222 r

rr
r

r vs +++ +
+

+  
1

2
3

3 22 r
r

r
r vt ++ +

+
+  

13
3 22 r

r
r

r vs +++
+  

4 
1

1
2

2 22 r
r

r
r vt ++ +

+
+  

1
1

2
2 222 r

rr
r

r vs +++ +
+

+  
2

1
3

3 22 r
r

r
r vt ++ +

+
+  

2
12

3
3 2222 r

rrr
r

r vs ++++ ++
+

+
1

12
3

3 222 r
rr

r
r vt +++ ++

+
+  

11
1

3
3 222 r

rr
r

r vs +
+

+
+ +++

 
Table 6 continued 

3 4 
32 +rt  

32 +rs  
12 3 ++rt  
12 3 ++rs  

13
32 rr

r vt ++
+  

1
1

3
3 222 r

rr
r

r vs +++ +
+

+
1

2
3

3 22 r
r

r
r vt ++ +

+
+  

1
12

3
3 2222 r

rrr
r

r vs ++++ ++
+

+  

1
1

3
3 22 r

r
r

r vt ++ +
+

+  

13
3 22 r

r
r

r vs +++
+  

1
12

3
3 222 r

rr
r

r vt +++ ++
+

+  

1
2

3
3 222 r

rr
r

r vs +++ +
+

+  

13
32 rr

r vt ++
+  

13
3 22 r

r
r

r vs +++
+  

1
2

3
3 22 r

r
r

r vt ++ +
+

+  

1
2

3
3 222 r

rr
r

r vs +++ +
+

+  

1
1

3
3 22 r

r
r

r vt ++ +
+

+  1
12

3
3 222 r

rr
r

r vt +++ ++
+

+  
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1
1

3
3 222 r

rr
r

r vs +++ +
+

+
1

12
3

3 2222 r
rrr

r
r vs ++++ ++

+
+  

 
 Lemma 11: From the presentation level )2( +tr , the "no solution" fraction is accumulated 
across two sequential levels, and then the pattern repeats for each two successive levels, to infinity. 
Some branches can be completed at level )2( +tr , but otherwise this level provides no explicit 
division into the "no solution" and "uncertain" groups, as it was the case for the previous levels. 
Except for the pairs, corresponding to completed branches, the pairs become initial "uncertain" 
pairs of terms for the next presentation level. At level )3( +tr , all new pairs are divided into the "no 
solution" and "uncertain" groups (according to odd or even parity of )( rr st −  in equation (13)). The 
"uncertain" pairs become initial pairs for the next presentation level, and the two-level cycle repeats 
to infinity. 
 
Proof: Previously, we have seen that the Lemma is true for the paired levels )2( +tr  and )3( +tr . Let 
us assume that Lemma is true for the previous )1( −+ drt  level, which then supplies initial 
"uncertain" pairs of terms for the level )( drt + . We need to prove that Lemma is true for the next 
two levels )( drt +  and )1( ++ drt . Initial pairs may have equal and unequal free coefficients.  
 Let us consider an equation for a pair with free coefficients v and w. 

NNN
dr

drN
dr

dr mwsvt
t

t

t

t
1

)1(2)2()2( +
+

+
+

+ =+−+ μ            (30) 
where 2≥d . 
According to Lemma 5, it can be transformed to an equation 

dNdr
drdrdrdr mcAAst t

tttt
2/2/)( 1+=− +

++++             (31) 

where ∑
−

=
+

+−−
+

+
+ ++=

1

0

1 )2()2(
N

i

i
dr

driN
dr

dr
dr wsvtA

t

t

t

t

t
, N = 2n + 1.         

The right part of (31) can be an integer, rational or zero. The left part is an integer (if 
0)( =− ++ drdr tt

st , the left part can be transformed to an integer, using Lemma 10). When the right 
part is rational, (31) has no solution for any drt

t +  and drt
s + , and the branch is completed. If the right 

part is even or odd, (31) has no solution when )( drdr tt
st ++ −  has the opposite parity. Solution is 

uncertain for the other parity of )( drdr tt
st ++ − , since both parts of (31) have the same parity in this 

case. However, at this level, we cannot specify particular parity of )( drdr tt
st ++ − , which should be 

done at the next presentation level )1( ++ drt . When c = 0, (31) has no solution, since the right part 
is a rational number, while the left part is an integer or zero, and so the branch is completed.  
 
Table 7. New pairs of terms for the initial pair [ vt dr

dr
t

t ++
+2 , ws dr

dr
t

t ++
+2 ]  at the presentation level 

)1( ++ drt  with a factor of 12 ++drt .  
 0 1 2 
0 drt

t +  

drt
s +  

12 ++drt
t  

12 1 +++drt
s  

12 1 +++drt
t  

12 ++drt
s  

1 vt dr
dr

t

t ++
+2  

ws dr
dr

t

t ++
+2  

vt dr
dr

t

t +++
++

1
12  

ws dr
dr

dr t

t

t ++ +
++

++ 22 1
1

vt dr
dr

dr t

t

t ++ +
++

++ 22 1
1  

ws dr
dr

t

t +++
++

1
12  
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Table 7 continued 
3 4 

32 +rt  

32 +rs  
12 3 ++rt  
12 3 ++rs  

vt dr
dr

t

t +++
++

1
12  

ws dr
dr

t

t +++
++

1
12  

vt dr
dr

dr t

t

t ++ +
++

++ 22 1
1  

ws dr
dr

dr t

t

t ++ +
++

++ 22 1
1  

 
Even if the branch is completed for some pair, we still can assume that it is "uncertain", and use it as 
an initial pair at the next presentation level. There, the new pairs, corresponding to this initial pair, 
are then divided into the "no solution" and "uncertain" groups. The fraction of the former goes to the 
total "no solution" fraction, while the latter is used as initial pairs for the next level, besides other 
uncertain pairs. (Such an arrangement, without completed branches, is more convenient for 
calculation of the total "no solution" fraction.) 
 Table 7 shows new pairs for the next presentation level for the initial pair from (30). At this 
level, we can choose the needed parities of pair's terms drt

t + , drt
s + , expressed through 1++drt

t , 1++drt
s , 

in order for (31) to have no solution. For instance, if (31) has no solution for even )( drdr tt
st ++ − , then 

the "no solution" pairs are (1,3), (1,4). Accordingly, solution is uncertain for pairs (1,1), (1,2), since 
both parts of (31) have the same parity in this case. Consequently, these pairs should be used as 
initial "uncertain" pairs for the next presentation level. 
 We can see from Table 7 that when a pair of an actually completed branch is used as an 
"uncertain" pair for the next level, it produces no new pairs with some specific features, which could 
prevent their corresponding equations to be transformed into a form (31). We still obtain pairs of 
terms, satisfying conditions of Lemma 5, to which the same equation (13) is applicable. For 
instance, when v = w, then c = 0 in (31), and so the branch is completed. However, if we use it as an 
initial pair for the next presentation level )1( ++ drt , then we are free to choose new pairs, 
corresponding to either even or odd values of )( drdr tt

st ++ − , since the corresponding equations have 
no solution for both scenarios. Then, the pairs with the opposite parity )( drdr tt

st ++ −  will proceed to 
the next level as uncertain initial pairs. As before, such a division produces two equal groups of pairs 
of terms, and so the common ratio of the geometrical progression remains equal to 1/2. 
 So, with the assumption that Lemma is true for the previous level, we confirmed the same 
pattern earlier discovered for the coupled levels [ )2( +tr , )3( +tr ]. According to principle of 
mathematical induction, this means that Lemma is true for any 2≥d . This proves the Lemma. 
 
In this Lemma, we also studied the useful property, considering completed branches as non-
completed ones. This property is formulated below as a Corollary.  
 
 Corollary 5: Pairs of terms, corresponding to completed branches, can be considered as 
regular "uncertain" pairs, which can be passed to the next level as initial pairs, so that such a 
branch is actually assigned a non-completed status.  
 
 Lemma 12: At presentation levels above )1( +tr , and in the absence of completed branches, the 
number of pairs of terms in "no solution" and "uncertain" groups are equal, when such a division 
takes place. 
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Proof: According to Lemma 11 and Corollary 5, all pairs, both regular ones, with "no solution" and 
"uncertain" components, and the pairs, which could be completed, but continue to participate in the 
next levels as non-completed pairs, can be presented in a form of Table 7. The solution properties of 
equations, corresponding to pairs in Table 7, are defined by equation (13), or more particular, by 
equations in a form (31), whose solution properties depend on the term )( drdr tt

st ++ − . (Unless the 
right part is rational, in which case equation has no solution for all parities, and the branch is 
completed. However, according to Corollary 5, we can still consider such a pair as a regular non-
completed pair.) 
 The division of four pairs into two equal "no solution" and "uncertain" groups is based solely on 
the parity of )( drdr tt

st ++ − , as Lemma 11 showed, with one parity corresponding to a "no solution" 
group, and with the opposite parity corresponding to "uncertain" group. The number of pairs, 
corresponding to one parity, is therefore equal to π2 , where π  is the number of initial pairs, number 
two is the number of parity combinations of drt

t + , drt
s + , producing the same parity of )( drdr tt

st ++ − , 
see Table 7. For the opposite parity of )( drdr tt

st ++ − , the number of produced pairs is also π2 . Thus, 
the number of pairs in "no solution" and "uncertain" groups is the same. This proves the Lemma. 
 
4.8. Calculating the total "no solution" fraction 
Using Corollary 5, we consider all levels as if they have no completed branches. Then, according to 
Lemmas 8 and 9, until the level )2( +tr , all levels have two equal groups of pair combinations. One 
corresponds to a "no solution" fraction, and the other to "uncertain" fraction, so that the common 
ratio q = 1/2. Substituting these values into (24), one obtains 

tt

t

rrr
r qqfF )2/1(1)2/1/())2/1(1(2/1)1/()1( 111

21 −=−=−−= −+−
+        (32) 

The "no solution" fraction for the level )1( +tr  is defined by (23) as follows (the last term of a 
geometrical progression), taking into account that 2/12 =f . 

tt

t

rr
r qff )2/1(21

21 == −+
+                (33) 

Since in the absence of completed branches the "no solution" and "uncertain" fractions are equal, 
according to Lemma 9, the "uncertain" fraction of pairs, which is passed to the level )2( +tr , is the 
same as the "no solution" fraction (33). This "uncertain" fraction, according to Lemma 12, is equally 
divided into "no solution" and "uncertain" fractions at each second level, beginning from level 

)3( +tr , so that the first term of the geometrical progression, representing the "no solution" fraction 
of two following coupled levels, is  

)2/1(13 ×= ++ tt rr ff                 (34) 
Then, each next two levels add a half of the previous "uncertain" fraction", which is equal to "no 
solution" fraction. Let }12,2{ += LLD , ...2,1=L  This way, )( Drt +  defines the levels' numbers for 

)2( +≥ trr . Levels, at which pairs are divided into two groups, are levels )3( +tr , )5( +tr , …, 
)12( ++ Lrt , so that the total "no solution" fraction, obtained by summation of "no solution" 

fractions of all levels above the )1( +tr  level, is equal to 

))2/1(1()2/1()2/1()2/1(])2/1...()2/1()2/1(2/1[)2/1(
1

32
,2

Lr
L

i

irLr
Dr

ttt

t
F −==+++= ∑

=
+  (35) 

when 12 += LD , and  

))2/1(1()2/1()2/1()2/1(])2/1...()2/1()2/1(2/1[)2/1( 1
1

1

132
,2

−
−

=

−
+ −==+++= ∑ Lr

L

i

irLr
Dr

ttt

t
F  
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when LD 2= .                 (36) 
In the last case, the division into the "no solution" and "uncertain" groups did not happen yet at the 
first level of coupled levels, since it occurs at the second level of the couple, as it was earlier 
discussed. This is why the power is (L - 1), but not L. 
 The total "no solution" fraction, accordingly, is defined as DrrDr ttt

FFF ,211 ++++ += . For 
12 += LD , we have 

LrLrrr
DrrDr

tttt

ttt
FFF ++

++++ −=−+−=+= )2/1(1)2/1()2/1()2/1(1,211       (37) 
It follows form (37) that in the limit 

1))2/1(1(limlim 1 =−= +
∞>−++∞>−

Lr
LDrL

t

t
F              (38) 

The same is true for (36). So, when we consider all branches as non-completed, in the limit, equation 
(8) has no solution for all possible pairs of terms, defining the whole set of pairs of odd integer 
numbers. Of course, it may look awkward, considering completed branches as non-completed, but, 
as Lemma 11 and Corollary 5 showed, this is a legitimate procedure. 
 
Accounting for completed branches. Let us assume that level r has k completed branches, to which 
the "no solution" fraction rkf  corresponds. Let us assume that these branches were not completed, 
and consider the pairs of terms, corresponding to these branches, as regular ones, with "no solution" 
and "uncertain" components, to infinity. In other words, we assume that there are no more completed 
branches in the following presentations of these k pairs, to infinity. (In real situation, if there are 
such pairs, we can also consider them as non-completed pairs, according to Corollary 5.) In this 
scenario, the fraction rkf  would be divided equally (Lemma 12) between the "no solution" and 
"uncertain" fractions on each subsequent level (or on the second level in coupled levels beyond the 
value of )1( += trr ), so that the total "no solution" fraction, accumulated at level L, is defined as 
follows. 

])2/1(1[)2/1(
1

L
rk

L

i

i
rkLr ffF −== ∑

=
+              (39) 

In the limit, (39) transforms to  
rk

L
rkLDrL ffF =−= ∞>−+∞>− ])2/1(1[limlim             (40) 

So, in the limit, we obtained in (40) exactly the same "no solution" fraction, which was taken by k 
completed branches. Since, according to (38), in the scenarios with non-completed branches the total 
"no solution" fraction is equal to one, the result (40) means that accounting for completed branches, 
in the limit, produces the same "no solution" fraction of one.  
 
The correspondence between the total "no solution" fraction of one and the whole set of pairs of odd 
integer numbers 
Now, we can revisit the note (second paragraph) in the subsection 4.3.1. (The concept of the proof). 
It stated the principle difference between considering deterministic objects, the pairs of terms for 
different presentation levels and associated with them values of "no solution" fractions, and 
summing up probabilistic values, such as asymptotic densities. The question is, does the total 
fraction of one, found as the limit of sum of "no solution" fractions, mean that the whole set of pairs 
of odd numbers has no solution?  
 Suppose we could prove that (8) has no solution for all pairs of terms, corresponding to one 
presentation level, say for the first one with a pair of terms [ )12( +k , )12( +p ]. The "no solution" 
fraction is equal to one for this one level. Would it mean that (8) has no solution for all possible 
pairs of odd numbers? The answer is "yes", because all pairs of terms at one presentation level 
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generate all possible pairs of odd numbers. There is no question about this, since this is what "not 
having a solution" for a regular equation mean. Now, suppose we could prove that (8) has no 
solution for the first half of all pairs of terms at presentation level r, and for a half of pairs of terms 
at another presentation level R, corresponding to "uncertain" pairs from level r. Would it mean that 
(8) has no solution for all possible pairs of odd integer numbers? The answer is also "yes", because 
that half of pairs of terms from level R can be uniquely transformed to the second half of pairs at 
level r, using formulas (10) - (12), and the result of Lemma 3 that each pair of terms produces a 
unique subset of pairs of odd integer numbers, which do not intersect with subsets produced by other 
pairs of terms from the same level. This way, we again obtain that (8) has no solution for all pairs of 
terms at level r, and consequently for the whole set of pairs of odd numbers.  
 When we assemble "no solution" fractions from all presentation levels, we essentially do the 
same. The original pair of terms from the first presentation level just was uniquely distributed across 
all presentation levels. All "no solution" pairs of terms at different levels can be transformed back to 
the first level, preserving uniqueness of the subsets of pairs of odd numbers each such pair of terms 
represents. The only specific is that in the last case we deal with infinite set of pairs of terms, but 
that makes no difference. We still deal with deterministic countable objects. This, accordingly, 
makes the obtained result (the total fraction of one) also deterministic value. It is due to this 
determinism, that it is legitimate making the following inference: Because the "no solution" fractions 
accumulate to one, (8) has no solution for the whole set of pairs of odd numbers.  
 However, a similar inference cannot be made, if one resorts to probabilistic notions, such as 
asymptotic densities, and obtains that the sum of appropriate asymptotic densities tends to one in the 
limit (assuming that the asymptotic density of the whole set of pairs of odd numbers is one). The 
reason is that in this case the mere definition of asymptotic density still allows to have finite number 
of solutions from infinity.  
 
4.9. Cases 2 and 3 as equivalent equations 
For the case 3, we have 12 += na ; 12 1 += kx ; 12 1 += py . Then, (1) transforms to (7). 

1212
1

12
1 )2()12()12( +++ =+++ nnn mpk             (41) 

Using an approach, similar to one for equation (8), it is possible to prove that it has no solution. The 
shorter way could be to show the equivalency of (8) and (41) in terms of solution properties. Then, 
since (8), as it was found, has no solution, that would mean that (41) has no solution too.  
 The notion of equivalent equations. It means that for each set of input variables for one equation 
there is one and only one matching set of corresponding input variables for the other equation, such 
that the terms in both equations are the same. For instance, with regard to equations (8) and (41), 
defined on the set of integer numbers, their equivalency would mean that for any combination of 
terms )12( +k , )12( +p , m2  in (8) there is only one combination of  terms )12( 1 +k , )12( 1 +p , 12m  
in (41), such, that )12()12( 1 +=+ kk , )12()12( 1 +−=+ pp , 1mm = , so that with such a substitution 
equation (8) becomes equation (41). Similarly, the substitution )12()12( 1 +=+ kk , 

)12()12( 1 +−=+ pp , mm =1  in (41) produces equation (8). It was proved that (8) has no solution in 
integer numbers, so that it has no solution for any combination of these terms. However, on the set 
of all possible pairs of odd numbers, on which both equations are defined, these are equivalent 
equations, as it will be shown. Then, since (8) has no solution, (41) will have no solution too.  
 
 Lemma 13: Equation (8) is equivalent to equation (41) on the set of integer numbers. If one of 
these equations has no solution in integer numbers, then the other equation also has no solution. 
 
Proof: Since the odd power does not change the algebraic sign, we can rewrite (8) as follows. 
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121212 )2()12()12( +++ =−−++ nnn mpk             (42) 
k, p and k1, p1 in (8), (41) are integers defined on the range ),( +∞−∞ . So, we can do a 
substitution 11 −−= pp . 

1212
1

12
1 )2()12()12( +++ =+++ nnn mpk             (43) 

where k=k1. In this transformation, the range of parameters and equations' terms remains the same, 
that is )( ∞<<−∞ p , )( 1 ∞<<−∞ p , and so ))12(( ∞<+<−∞ p   ))12(( 1 ∞<+<−∞ p . Thus, equation 
(42), which is (8), became equation (43). The substitution 11 −−= pp  is an equivalent one, because 
(i) it does not change the range of the substituted parameter, neither it changes the ranges of the 
terms, defined by these parameters; (ii) this is a one-to-one substitution. 
 Similarly, we can obtain equation (8) from (41), using substitution 11 −−= pp  in (41). 

121212
1 )2()1)1(2()12( +++ =+−−++ nnn mpk            (44) 

This transforms into equation (8). 
121212 )2()12()12( +++ =+−+ nnn mpk              (45) 

where k1= k. 
 Thus, (8) and (41), indeed, are equivalent equations.  
 Now, we should prove that if one of these equations has no solution, then the other equation 
also has no solution. For that, let us assume that equation (41) has no solution, while the equivalent 
equation (8) has a solution for the parameters ),,( 000 mpk , that is 

12
0

12
0

12
0 )2()12()12( +++ =+−+ nnn mpk             (46) 

Doing an equivalent substitution 110 −−= pp , one obtains 
12

0
12

1
12

0 )2()12()12( +++ =+++ nnn mpk             (47) 
Equation (47) (which is the original equation (41)), accordingly, has a solution for the parameters 

),,( 010 mpk . However, this contradicts to the assumption that (41) has no solution. So, the equivalent 
equation (8) also has no solution. Similarly, we can assume that (8) has no solution, while (41) has a 
solution, and find through similar contradiction that (41) has no solution. 
 This completes the proof of Lemma. 
 
It follows from Lemma 13 that it is suffice to prove that only one of the equations, (8) or (41), has 
no solution, in order to prove that both equations have no solution. Previously, we found that (8) has 
no solution in integer numbers. So, according to Lemma 13, (41), which presents case 3 for equation 
(1), also has no solution. 
 
5. Case 4 
In this case, na 2= ; 12 += px ; my 2= , 12 += kz . Equation (1) can be presented in two forms. 

nnn mpk 222 )2()12()12( =+−+              (48) 
nnn kmp 222 )12()2()12( +=++              (49) 

Because of the even power na 2= , we may consider (48) and (49) as defined on the set of integer 
numbers. 
 Let us consider (49). It can be rewritten as follows. 

222 ])12[(])2[(])12[( nnn kmp +=++             (50) 
We will use Theorem 1 (p. 38) from Chapter 2 in [5]. The Theorem says the following: All the 
primitive solutions of the equation 222 zyx =+ for which y is even number are given by the 
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formulae 22 NMx −= , MNy 2= , 22 NMz += , where M, N are taken to be pairs of relatively 
prime numbers, one of them even and the other odd and M greater than N.  
 All solutions of (50) are defined as follows. 

LNMp n )()12( 22 −=+ ; MNLm n 2)2( = ; LNMk n )()12( 22 +=+      (51) 
Here, in accordance with the aforementioned Theorem 1, M and N are pairs of relatively prime 
natural numbers, one of them even and the other is odd, and M > N. Substituting (51) into (50), we 
can see that by dividing both parts by 2L , it can be reduced to an equation, whose terms have no 
common divisor. So, if a solution of such an equation exists, it can be reduced to a primitive 
solution, and vice versa - any non-primitive solution can be obtained from a primitive solution. 
Thus, it is suffice to consider only primitive solutions. 
 For the primitive solution, using the first and the third formulas from (51), we can write. 

)()12( 22 NMk n +=+                (52) 
)()12( 22 NMp n −=+                (53) 

Equations (52) and (53) are independent. Indeed, there is no way to obtain one from another by 
transformations. (Formally, the independence can be proved considering the matrix rank of these 
equations in a linear representation). 
 Below, we assume that M and N are interchangeably equal to )12( +c  and )2( d , and M > N.  
  
5.1. The case of odd  n  
 
 Lemma 14: Equation  

nnn kmp 222 )12()2()12( +=++                
has no solution in integer numbers, when n is odd. 
 
Proof: Let 12 += qn . We will consider scenario 1 first, when M= )12( +c , N= )2( d   

)()12( 22 NMk n +=+                (54) 
Applying binomial expansion to the left part, one obtains. 

2212
12

0

12 41441)2)(12()2( dcckqkC iq
q

i

q
i +++=+++−+

−

=

+∑         (55) 

It transforms into  

)(4)2)(12()2( 2212
12

0

12 dcckqkC iq
q

i

q
i ++=++−+

−

=

+∑           (56) 

Dividing (56) by two, one obtains 

)(2)12()2( 222
12

0

12 dcckqkkC iq
q

i

q
i ++=++−

−

=

+∑           (57) 

The right part is even. The left part is odd when k is an odd integer, )( ∞<<−∞ k . In this case, (57) 
has no integer solution. 
 The note that k is an integer number is important. Indeed, we can make such an assumption 
because when k is negative, equation (54) has no solution for any k, since the left part of (54) in this 
case is negative, while the right part is positive.  
 Similarly, we consider equation 

)()12( 22 NMp n −=+                (58) 
2212

12

0

12 41441)2)(12()2( dccpqpC iq
q

i

q
i −++=+++−+

−

=

+∑         (59) 
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Transforming this equation and dividing both parts by two, one obtains 

)(2)12()2( 222
12

0

12 dccpqppC iq
q

i

q
i −+=++−

−

=

+∑             (60) 

This equation has no integer solution for odd integer p, since the left part is odd, and the right part is 
even in this case. Similar to k in (54), p is an integer )( ∞<<−∞ p . Indeed, when p is negative, (58) 
has no solution too, since the left part becomes negative, while the right part, due to the condition M 
> N, is positive, so that (58) has no solution for negative p.  
 Table 8 presents values of parameters for the first scenario (row 1). Odd values of k=2t+1 and 
p=2s+1 correspond to )12( +k = )34( +t  and )12( +p = )34( +s , where t and s are integers.  
 
Table 8. Values of parameters for the considered scenarios, when (54) and (58) have no solution. 
 

Scen. M N k p 2k+1 2p+1
1 2c+1 2d 2t+1 2s+1 4t+3 4s+3 
2 2d 2c+1 2t+1 2s 4t+3 4s+1 

 
Since equations (54) and (58) are independent, the obtained values of )34( +t  and )34( +s can be 
paired in equation (57) with any odd number. (When expressed with a factor of four, these are the 
numbers )14( +s  and )34( +s  for )34( +t , and )14( +t  and )34( +t  for )34( +s ). Three found 
pairs, for which (49) has no solution, are shown in Table 9 in bold. The missing pair is 
[ )14( +t , )14( +s ]. 
 
Table 9. Found pairs of odd numbers (bold) for scenario 1, for which there is no integer solution. 
 

 0 1 2 3 4 
a 
 

k 
p 

2t 
2s+1

2t+1 
2s 

2t 
2s 

2t+1 
2s+1

b 2k+1
2p+1

4t+1 
4s+3

4t+3 
4s+1

4t+1 
4s+1

4t+3 
4s+3

 
Let us consider scenario 2, when M is even and N is odd (row 2 in Table 8). Equation (54) has no 
solution for the odd integer k in this case (it is obvious that swapping M and N in (54) does not 
influence the previous result), )( ∞<<−∞ k . Equation (58) transforms as follows. 

14441)2)(12()2( 2212
12

0

12 −−−=+++−+
−

=

+∑ ccdpqpC iq
q

i

q
i         (61) 

Transforming this equation and dividing both parts by two, one obtains 

)(21)12()2( 222
12

0

12 ccdpqppC iq
q

i

q
i −−=+++−

−

=

+∑             (62) 

This equation has no integer solution for even integer p )( ∞<<−∞ p  The obtained values of odd 
integer k and even integer p correspond to numbers )34( +t  and )14( +s , where t and s are integers. 
Since these numbers are obtained independently, each can be combined in pair with any odd 
number. The resulting combinations, shown in Table 10, are in bold. This time, we obtained all 
possible combinations of odd numbers, expressed with a factor of four.  
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Table 10. Found pairs of odd numbers for scenario 2 (from Table 8), when (49) has no integer 
solution. 

 0 1 2 3 4 
a 
 

k 
p 

2t 
2s+1

2t+1 
2s 

2t 
2s 

2t+1 
2s+1

b 2k+1
2p+1

4t+1 
4s+3

4t+3 
4s+1

4t+1 
4s+1

4t+3 
4s+3

 
So, we need to prove that equation (49) has no solution for the pair of odd numbers 
[ )14( +t , )14( +s ] from scenario 1. Let us substitute the found pair [ )34( +t , )34( +s ] from Table 8, 
for which (49) has no solution, into this equation. One obtains 

nnn smt 222 )34()2()34( +=++               (63) 
Since (63) is defined on the set of integer numbers, we can use Corollary 2 and do equivalent 
substitutions of )34( +t  by ))14(( 1 +− t , and )34( +s  by ))14(( 1 +− s , where 1t  and 1s  are integers, 
thus obtaining an equivalent equation. 

nnn smt 2
1

22
1 ))14(()2())14(( +−=++−             (64) 

which, due to even power, can be rewritten as 
nnn smt 2

1
22

1 )14()2()14( +=++              (65) 
Since (63) has no solution, and (65) is equivalent to (63), this means that (65) also has no solution. 
This proves that (49) has no solution for the pair [ )14( +t , )14( +s ]. Now, we found that (49) has no 
solution for all possible pairs of odd numbers with a factor of four in Table 9, so that (49) has no 
solution for both scenarios. 
 This proves the Lemma. 
 
5.2. Even n 
 Lemma 15: Equation nnn kmp 222 )12()2()12( +=++  has no solution in integer numbers when 
n is even. 
 
Proof: Let qn 2= . Then, the above equation (which is equation (49)) can be presented as follows. 

2244 ])2[(])12[(])12[( qqq mpk =+−+             (66) 
According to Corollary 1 (p. 52) from Chapter 2 in [5], equation (66) has no solutions in natural 
numbers (because of the even power, this also means that (66) has no solution in integer numbers). 
The corollary is read as follows: There are no natural numbers a, b, c such that 244 cba =− .  
 Since qk )12( + , qp )12( +  and qm 2)2(  cannot be natural numbers, )12( +k , )12( +p  and )2( m  
cannot be natural numbers too. Indeed, if one assumes that these are natural numbers, then, raised to 
appropriate powers, such numbers have to be natural numbers too, which contradicts to the 
aforementioned Corollary.   
 So, equations (48), (49) have no solution for even n.  
 The same result can be obtained using the property that there is no Pythagorean triangle, whose 
sides are squares. Indeed, we can rewrite (66) as follows. 

444 ])12[(])2[(])12[( qqq kmp +=++             (67) 
Corollary 2 on p. 53, Chapter 2 in [5], says: There are no natural numbers x, y, z satisfying the 
equation 444 zyx =+ . This means that (66) and (67), and consequently (48) and (49) for even n, 
have no solution in natural numbers. However, because of the even power, the result is valid for 
integer numbers too. This proves the Lemma. 
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Thus, we proved that (48), (49) have no solution in integer numbers for odd and even n, that is for 
the case 4. 
 
6. Conclusion 
We found that in each of four cases, corresponding to equation (1), the appropriate equations have 
no solution in integer numbers. This means that (1) has no solution in integer numbers.  
 Introduced concepts and approaches can be applied to other problems of number theory. 
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