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Abstract 

In 1876, Edouard Lucas showed that if  𝑛 is a positive integer and if an integer 𝑏 exists such that 𝑏𝑛−1 ≡

1 (mod 𝑛) and 𝑏(𝑛−1)/𝑞 ≢ 1 (mod 𝑛) for all prime divisors 𝑞 of 𝑛 − 1, then 𝑛 is prime, a result known 

as Lucas’s converse of Fermat’s little theorem. In this paper we will show that if  𝑛 is of the form 𝑎𝑝𝑘 +

1 where 𝑝 is prime,  𝑎 < 𝑝, and 𝑘 ≥ 1, then we only need to use a single prime divisor 𝑞 = 𝑝 of 𝑛 − 1 to 

determine the primality of 𝑛. Precisely, we will show that if an integer 𝑏 exists such that 𝑏𝑛−1 ≡

1 (mod 𝑛) and 𝑏(𝑛−1)/𝑝 ≢ 1 (mod 𝑛), then 𝑛 is prime. We will also use the results of this paper to show 

that there are no composite integers 𝑛 of the form 𝑎𝑝 + 1 or 𝑎𝑝 where 𝑝 is prime and 𝑎 < 𝑝 such that 

𝜙(𝑛) | 𝑛 − 1. We then prove a conditional deterministic primality test for integers of the form 𝑎𝑚 + 1, 

where  𝑎 and 𝑚 are positive integers, 𝑎 < 𝑝, 𝑝 is the least prime divisor of 𝑚. Finally, we will generalize 

Lucas’s converse of Fermat’s little theorem for all positive integers 𝑛 of the form 𝑎𝑚 + 1, (𝑎, 𝑚) = 1, 

with the property that 𝑚 | 𝜙(𝑛) if and only if 𝑛 is prime. 

Keywords Primality and Compositeness Tests, Pseudoprimes, Carmichael numbers, Lehmer 

Totient Problem. 

1. Introduction 

The problem of distinguishing primes from composite integers has been a subject of study for many 

centuries up to date. A number of tests have been established, some of these tests such as Lucas’s 

converse of Fermat’s little theorem, Pocklington primality test, Proth’s test,  Lucas Lehmer test among 

others can determine whether a number is prime with absolute certainty while others such as Fermat’s 

Primality test, Miller-Rabin test report an input number is composite or a probable prime. The previous 

tests depend on the factorization of 𝑛 − 1 or 𝑛 + 1 to determine the primality of 𝑛. In this paper we 

develop another deterministic test for integers 𝑛 of the form 𝑎𝑝𝑘 + 1 with a partially known 𝑛 − 1 

factorization. We will put in much effort in determining which positive integers 𝑛 of the form 𝑎𝑝𝑘 + 1  

does the divisibility relation 𝑝𝑘  | 𝜙(𝑛)  hold from which the primality test will be deduced easily using 

the properties of order of an integer. We state this basic property we will need in our study. 

 

Definition.  Let  𝑎 and 𝑛 be relatively prime integers, 𝑛 > 1. The order of 𝑎 modulo 𝑛 denoted by 

ord𝑛𝑎 is the least positive integer 𝑥 such that 𝑎𝑥 ≡ 1 (mod 𝑛). [1] 

Theorem 1.1 Let 𝒂 and 𝒏 be relatively prime integers, 𝒏 > 𝟏, then a positive integer 𝒙 is a 

solution of the congruence 𝒂𝒙 ≡ 𝟏 (𝐦𝐨𝐝 𝒏) if and only if 𝐨𝐫𝐝𝒏𝒂 | 𝒙. In particular 𝐨𝐫𝐝𝒏𝒂 |  𝝓(𝒏). 
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2. Primes of the form 𝒂𝒑 + 𝟏 

In this section we prove the primality of integers of the form 𝑎𝑝𝑘 + 1 with 𝑘 = 1. Later we will 

generalize the test for higher powers of 𝑝. 

Lemma 2.1 Let 𝒏 = 𝒂𝒑 + 𝒓, where 𝒂 and 𝒓 are positive integers, 𝒓 < 𝒑, 𝒑 is prime with 𝒑 > 𝒂. 

If  𝒑 | 𝝓(𝒏) then 𝒏 = 𝒓𝒒 for some prime 𝒒.  

Proof. Let 𝑛 = 𝑚 𝑝1
𝑎1  where 𝑝1 is the largest prime divisor of 𝑛 , 𝑝1 ∤ 𝑚 , 𝑎1 ≥ 1 and 𝑚 ≥ 1. We will 

show that 𝑎1 = 1 and 𝑚 = 𝑟. If  𝑚 = 1, then 𝜙(𝑛) = 𝑝1
𝑎1−1(𝑝1 − 1) .  

If 𝑚 > 1, let 𝑚 = 𝑝2
𝑎2  𝑝3

𝑎3 … 𝑝𝑘
𝑎𝑘 be the prime power factorization of 𝑚.  

𝜙(𝑛) = 𝑝1
𝑎1−1 (𝑝1 − 1) 𝑝2

𝑎2−1 (𝑝2 − 1) … 𝑝𝑘
𝑎𝑘−1 (𝑝𝑘 − 1).  In either case 𝑝 | 𝜙(𝑛) implies  𝑝 | 𝑝𝑖 or 

𝑝 | 𝑝𝑖 − 1 for some 𝑖 = 1, 2, …, 𝑘  hence 𝑝 ≤ 𝑝𝑖 ≤ 𝑝1. If 𝑝 = 𝑝1 then 𝑝 | 𝑛 − 𝑎𝑝 = 𝑟 which is not 

possible because 1 ≤ 𝑟 < 𝑝 hence we must have 𝑝 < 𝑝1.  From the inequalities 𝑟 < 𝑝, 𝑎 < 𝑝 and 𝑝 < 𝑝1, 

we have 𝑛 = 𝑎𝑝 + 𝑟 < 𝑝(𝑎 + 1) ≤ 𝑝2 < 𝑝1
2, 𝑛 < 𝑝2 < 𝑝1

2 hence 𝑎1 = 1, 𝑛 = 𝑚𝑝1. Also, we must 

have 𝑚 < 𝑝, if  𝑚 ≥ 𝑝 then 𝑛 = 𝑚𝑝1 > 𝑝2, a contradiction.  𝑝 | 𝜙(𝑛) implies 𝑝 | (𝑝1 − 1) or 𝑝 | 𝜙(𝑚). 

The latter is not possible because 𝜙(𝑚) ≤ 𝑚 − 1 < 𝑝 hence 𝑝 | (𝑝1 − 1).  𝑝1 = 𝑝𝑡 + 1 for some integer 

𝑡. 𝑛 = 𝑚𝑝1 = 𝑚(𝑝𝑡 + 1) = 𝑎𝑝 + 𝑟.  Factoring out 𝑝, we have  𝑝(𝑎 − 𝑚𝑡) = 𝑚 − 𝑟.  𝑝 | 𝑚 − 𝑟  and 

since 1 ≤ 𝑟 < 𝑝, and 1 ≤ 𝑚 < 𝑝 we conclude that 𝑚 = 𝑟.  𝑛 = 𝑚𝑝1 = 𝑟𝑝1 completing the proof. 

When 𝑟 = 1 in lemma 2.1, then 𝑝 | 𝜙(𝑛) if and only if 𝑛 is prime. This fact is key in proving our 

primality test. 

Theorem 2.1 Let 𝒏 = 𝒂𝒑 + 𝟏 where 𝒂 is a positive integer and 𝒑 is a prime with 𝒑 > 𝒂. If there 

exists a positive integer 𝒃 such that 𝒃𝒏−𝟏 ≡ 𝟏 (𝐦𝐨𝐝 𝒏) and 𝒃𝒂 ≢ 𝟏(𝐦𝐨𝐝 𝒏) then 𝒏 is prime. 

Proof. We will show that if 𝑛 is composite and 𝑏𝑛−1 ≡ 1(mod 𝑛) then 𝑏𝑎 ≡ 1(mod 𝑛).   Assume 𝑛 is 

composite and 𝑏𝑛−1 ≡ 1(mod 𝑛). From Theorem 1.1, ord𝑛𝑏 | 𝜙(𝑛). Therefore if  𝑝 | ord𝑛𝑏 we have 

𝑝 | 𝜙(𝑛) and from lemma 2.1 we know 𝑛 is prime, a contradiction because 𝑛 is assumed composite hence 

we must have 𝑝 ∤ ord𝑛𝑏, equivalently (ord𝑛𝑏, 𝑝) = 1. From Theorem 1.1, we also note that  

ord𝑛𝑏 | 𝑛 − 1 = 𝑎𝑝.  ord𝑛𝑏 | 𝑎𝑝 and (ord𝑛𝑏, 𝑝) = 1 imply ord𝑛𝑏 | 𝑎 and from Theorem 1.1, 

𝑏𝑎 ≡ 1 (mod 𝑛). Consequently if  𝑏𝑛−1 ≡ 1(mod 𝑛) and 𝑏𝑎 ≢ 1(mod 𝑛) then we know 𝑛 is prime. 

Corollary 2.1 Let 𝒏 = 𝟐𝒑 + 𝟏, where 𝒑 is an odd prime. If 𝒃 is a positive integer relatively prime 

to 𝒏 and 𝒃 ≢ ±𝟏 (𝐦𝐨𝐝 𝒏) then 𝒏 is prime if and only if 𝒃𝒏−𝟏 ≡ 𝟏 (𝐦𝐨𝐝 𝒏) and 𝒃𝟐 ≢ 𝟏(𝐦𝐨𝐝 𝒏). 

Proof. Assume 𝑏𝑛−1 ≡ 1 (mod 𝑛) and 𝑏2 ≢ 1(mod 𝑛), from Theorem 2.1,  𝑛 is prime. 

For the other direction, assume 𝑛 is prime then 𝑏2 ≡ 1 (mod 𝑛) if and only if 𝑏 ≡ ±1 (mod 𝑛). 

Therefore  𝑏 ≢ ±1 (mod 𝑛) implies 𝑏2 ≢ 1(mod 𝑛). Also, from Fermat’s little theorem we have 

𝑏𝑛−1 ≡ 1 (mod 𝑛). 

Note that from Theorem 2.1, if  𝑏𝑛−1 ≡ 1 (mod 𝑛) and 𝑏𝑎 ≡ 1(mod 𝑛) then 𝑛 may or may not be prime. 

We can check the two congruences using another base, if we find that 𝑏𝑛−1 ≢ 1 (mod 𝑛) then we know 𝑛 

is composite. If  𝑏𝑛−1 ≡ 1 (mod 𝑛), we proceed to check the congruence 𝑏𝑎 ≡ 1(mod 𝑛). If it does not 

hold then we know 𝑛 is prime otherwise we repeat the process with another base. We shall show that to 

determine the primality of 𝑛 ,we need to use at most 𝑎 + 1 incongruent bases modulo 𝑛. To prove this, 

we will need the following result from the theory of power residues. 



 

Theorem 2.2. Let 𝑚 be a positive integer with a primitive root. If 𝑘 is a positive integer and 𝑎 is an 

integer relatively prime to 𝑚, then the congruence 𝑥𝑘 ≡ 𝑎(mod 𝑛) has a solution if and only if 

𝑎𝜙(𝑚)/𝑑 ≡ 1(mod 𝑚), where 𝑑 = (𝑘, 𝜙(𝑚)). Furthermore, if there are solutions of  𝑥𝑘 ≡ 𝑎(mod 𝑛), 

then there are exactly 𝑑 incongruent solutions modulo 𝑚. [1] 

Theorem 2.3 The primality of  𝒏 = 𝒂𝒑 + 𝟏 where 𝒑 is a prime and 𝒑 > 𝒂 can be determined 

using at most 𝒂 + 𝟏 incongruent bases 𝒃 modulo 𝒏 with (𝒃, 𝒏) = 𝟏. 

Proof. If 𝑛 is prime, we note that (𝑎, 𝜙(𝑛)) = (𝑎, 𝑎𝑝) = 𝑎 and since 𝑛 has a primitive root, Theorem 2.2 

tells us that  𝑏𝑎 ≡ 1(mod 𝑛) has a solution if and only if  1𝜙(𝑛) / 𝑎 = 1𝑝 ≡ 1(mod 𝑛) . This congruence 

holds trivially. Furthermore, from Theorem 2.2, 𝑏𝑎 ≡ 1(mod 𝑛) has exactly 𝑎 incongruent roots modulo 

𝑛. To determine the primality of 𝑛, we pick any 𝑎 + 1 incongruent bases and relatively to 𝑛 and check the 

two congruences 𝑏𝑛−1 ≡ 1 (mod 𝑛) and 𝑏𝑎 ≡ 1(mod 𝑛). If  𝑏𝑛−1 ≢ 1 (mod 𝑛) for any of the 𝑎 + 1 

bases, from Fermat’s little theorem 𝑛 is composite. If  𝑏𝑛−1 ≡ 1 (mod 𝑛) and 𝑏𝑎 ≢ 1(mod 𝑛) for at least 

one of the 𝑎 + 1 bases, Theorem 2.1 tells us 𝑛 is prime. If  𝑏𝑎 ≡ 1(mod 𝑛) for all the 𝑎 + 1 bases then 𝑛 

is composite because 𝑏𝑎 ≡ 1(mod 𝑛) has exactly 𝑎 incongruent solutions modulo 𝑛 if 𝑛 is prime. This 

completes the proof. 

We also note that the largest integer 𝑛 such that 𝑏𝑎 ≡ 1 (mod 𝑛) is 𝑛 = 𝑏𝑎 − 1, 𝑏 > 1. We can set the 

integer 𝑛 > 𝑏𝑎 − 1  𝑖. 𝑒  𝑛 = 𝑎𝑝 + 1 > 𝑏𝑎 − 1 , 𝑝 > (𝑏𝑎 − 2)/𝑎 . It follows that if  𝑝 > (𝑏𝑎 − 2)/𝑎, 

then 𝑏𝑎 ≢ 1 (mod 𝑛). Furthermore if 𝑏𝑛−1 ≡ 1 (mod 𝑛) and 𝑝 > 𝑎, then from Theorem 2.1 we know 𝑛 

is prime. We state this result as a corollary. 

Corollary 2.2 Let 𝒏 = 𝒂𝒑 + 𝟏 where 𝒂 is a positive integer and 𝒑 is prime with 𝒂 < 𝒑. If 𝒃 > 𝟏 is a 

positive integer relatively prime to 𝒏 and 𝒑 > (𝒃𝒂 − 𝟐)/𝒂  then 𝒃𝒏−𝟏 ≡ 𝟏 (𝐦𝐨𝐝 𝒏) if and only if 𝒏 

is prime. 

Example 2.1 Taking 𝑏 = 2 and 𝑎 = 2, we compute (𝑏𝑎 − 2)/𝑎 = (22 − 2)/2 = 1. Setting the prime 

𝑝 > 2, Corollary 2.2 tells us that if 𝑛 = 2𝑝 + 1 then  2𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) if and only if 𝑛 is prime. 

If we take 𝑏 = 2 and 𝑎 = 10, (210 − 2)/10 = 102.2. Taking 𝑝 ≥ 103 and 𝑛 = 10𝑝 + 1, we have 

2𝑛−1 ≡ 1 (mod 𝑛) if and only if 𝑛 is prime. 

Theorem 2.4 Let 𝒂 be a fixed positive integer and 𝒑 be a prime greater than 𝒂 . There are finitely 

many Fermat pseudoprimes 𝒏 of the form 𝒂𝒑 + 𝟏 to any base 𝒃 > 𝟏. 

Proof. From corollary 2.2, for a given base 𝑏, there are no pseudoprimes of the form 𝑎𝑝 + 1 for all 

primes 𝑝 > (𝑏𝑎 − 2)/𝑎, 𝑝 > 𝑎 and since there are finitely many primes 𝑝 with 𝑝 ≤ (𝑏𝑎 − 2)/𝑎, 𝑝 ≤ 𝑎, it 

follows that there are finitely many pseudoprimes to the base 𝑏. 

A direct consequence of Theorem 2.4 is that there are finitely many Carmichael numbers of the form 

𝑎𝑝 + 1 where 𝑎 is a fixed positive integer and 𝑝 is a prime greater than 𝑎. Alternatively, this can be 

proved using the concept of minimal universal exponent. Note that from Theorem 2.4, if it can be proved 

that for a given positive integer 𝑎, the congruence 𝑏𝑛−1 ≡ 1 (mod 𝑛) holds for infinitely many 𝑛 then we 

have a proof of existence of infinitely many primes of the form 𝑎𝑝 + 1. 

Before moving on we will provide another proof (the first proof) to Theorem 2.1 which is dependent on 

another basic property of congruences proved here. The first attempt of the proof of Theorem 2.1 led to 

the discovery of lemma 2.1 from which a concise proof of Theorem 2.1 was obtained. The following 



 

proof of Theorem 2.1 is not much different from that already given; some readers may wish to skip to the 

next section. 

Theorem 2.5 Let 𝒂, 𝒃, 𝒄 ≥ 𝟏, and 𝒎 ≥ 𝟏 be integers such that 𝒂 ≡ 𝒃 (𝐦𝐨𝐝 𝒎). Then 

𝒂 ≡ 𝒃 + 𝒎𝒕 (mod 𝒎𝒄) for some integer 𝒕, 𝟎 ≤ 𝒕 < 𝒄. 

Proof. 𝑎 = 𝑏 + 𝑚𝑘 for some integer 𝑘. From the division algorithm, 𝑘 = 𝑞𝑐 + 𝑡 for some integers 𝑞 and 

𝑡, 0 ≤ 𝑡 < 𝑐.  𝑎 = 𝑏 + 𝑚𝑘 = 𝑏 + 𝑚(𝑞𝑐 + 𝑡) = 𝑏 + 𝑚𝑡 + 𝑚𝑐𝑞.   𝑎 − (𝑏 + 𝑚𝑡) = 𝑚𝑐𝑞. 

𝑚𝑐 | 𝑎 − ( 𝑏 + 𝑚𝑡). In the language of congruences;  𝑎 ≡ 𝑏 + 𝑚𝑡 (mod 𝑚𝑐), 0 ≤ 𝑡 < 𝑐. 

Example 2.2   46 ≡ 1 (mod 9)   46 ≡ 10 = 1 + 9 ⋅ 1 ≡ (mod 9 ⋅ 2)  46 ≡ 19 = 1 + 9 ⋅ 2 ≡ (mod 9 ⋅ 3)  

83 ≡ 6 (mod 7)   83 ≡ 6 = 6 + 7 ⋅ 1 ≡ (mod 7 ⋅ 2)   83 ≡ 20 = 6 + 7 ⋅ 2 ≡ (mod 7 ⋅ 3) 

Theorem 2.1 Alternative Proof.    Let 𝒏 = 𝒂𝒑 + 𝟏 where 𝒂 is a positive integer and 𝒑 is a prime 

with 𝒑 > 𝒂. If there exists a positive integer 𝒃 such that 𝒃𝒏−𝟏 ≡ 𝟏 (𝐦𝐨𝐝 𝒏) and 𝒃𝒂 ≢ 𝟏(𝐦𝐨𝐝 𝒏) 

then 𝒏 is prime. 

Proof. Assume 𝑛 is composite and 𝑏𝑛−1 ≡ 1(mod 𝑛). The composite integer 𝑛 has a prime divisor 𝑞 

with 𝑞 ≤ √𝑛 = √𝑎𝑝 + 1 < √𝑝2 + 1 < 𝑝 + 1.  𝑏𝑛−1 ≡ 1(mod 𝑞). 𝑜𝑟𝑑𝑞𝑏 ≤ 𝑞 − 1 < 𝑝 hence  

𝑝 ∤ ord𝑞𝑏.  Equivalently (ord𝑞𝑏, 𝑝) = 1. ord𝑞𝑏 | 𝑛 − 1 = 𝑎𝑝 .  ord𝑞𝑏 | 𝑎  hence 𝑏𝑎 ≡ 1(𝑚𝑜𝑑 𝑞).   

From Theorem 2.5,  𝑏𝑎 ≡ 1 + 𝑞𝑡 (mod 𝑛) for some integer 𝑡. We will show that 𝑞𝑡 ≡ 0 (mod 𝑛) from 

which 𝑏𝑎 ≡ 1 (mod 𝑛) will follow.  𝑏𝑎𝑝 ≡ (1 + 𝑞𝑡)𝑝  ≡ 1 (mod 𝑛).  ord𝑛(1 + 𝑞𝑡)  |  𝑝 , 

ord𝑛(1 + 𝑞𝑡) = 1 or 𝑝 . If ord𝑛(1 + 𝑞𝑡) = 𝑝,  then 𝑝 | 𝜙(𝑛) and from lemma 2.1, we know that 𝑛 is 

prime. This is a contradiction because 𝑛 is assumed to be composite hence we must have 

ord𝑛(1 + 𝑞𝑡) = 1. (1 + 𝑞𝑡)1 ≡ 1 (mod 𝑛) , 𝑞𝑡 ≡ 0 (mod 𝑛) from which 𝑏𝑎 ≡ 1 (mod 𝑛) follows. 

Consequently if  𝑏𝑛−1 ≡ 1(mod 𝑛) and 𝑏𝑎 ≢ 1(mod 𝑛) then we know 𝑛 is prime. 

3. Some results on Lehmer’s totient problem 

Lehmer’s totient problem asks whether there are any composite integers 𝑛 such that 𝜙(𝑛) | 𝑛 − 1. Here 

we show that such composite integers are neither of the form 𝑎𝑝 + 1 nor of the form  𝑎𝑝, 𝑎 < 𝑝, 𝑝 is 

prime. 

Theorem 3.1 Let 𝒏 = 𝒂𝒑 + 𝟏, 𝒂 is a positive integer, 𝒑 is a prime and 𝒑 > 𝒂.  𝝓(𝒏) | 𝒏 − 𝟏 if and 

only if  𝒏 is prime. 

Proof.  If 𝑛 is prime, 𝜙(𝑛) | 𝑛 − 1 holds trivially because 𝜙(𝑛) = 𝑛 − 1. Assume 𝑛 is composite, from 

lemma 2.1 we have 𝑝 ∤ 𝜙(𝑛), (𝜙(𝑛), 𝑝) = 1. 𝜙(𝑛) | 𝑛 − 1 = 𝑎𝑝 and since (𝜙(𝑛), 𝑝) = 1, we must 

have 𝜙(𝑛) | 𝑎.  𝜙(𝑛) ≤ 𝑎 < √𝑎2 + 1 < √𝑎𝑝 + 1 = √𝑛  𝑖. 𝑒 𝜙(𝑛) < √𝑛 . We arrive at a contradiction by 

using the fact that if 𝑛 is composite then  𝜙(𝑛) ≥ √𝑛 except the case when 𝑛 = 6 for which it is evident 

that 𝜙(𝑛) ∤  𝑛 − 1. 

Theorem 3.2 Let 𝒏 = 𝒂𝒑, 𝒂 is a positive integer, 𝒑 is a prime and 𝒑 > 𝒂.  𝝓(𝒏) | 𝒏 − 𝟏 if and only 

if  𝒏 is prime. 

Proof.  The proof is quite straightforward; Since (𝑎, 𝑝) = 1,  𝜙(𝑛) = 𝜙(𝑎)𝜙(𝑝) = 𝜙(𝑎)(𝑝 − 1) . 

𝜙(𝑎)(𝑝 − 1) | 𝑎𝑝 − 1.  (𝑝 − 1) | 𝑎𝑝 − 1 = 𝑎(𝑝 − 1) + 𝑎 − 1 therefore 𝑝 − 1 | 𝑎 − 1. Since 𝑎 < 𝑝, we 

conclude that 𝑎 = 1, 𝑛 = 𝑎𝑝 = 𝑝. 



 

It can be shown that every positive integer 𝑛 > 1 can be written in the form 𝑎𝑝 + 𝑟,  1 ≤ 𝑎 < 𝑝, 𝑝 is 

prime, 0 ≤ 𝑟 < 𝑝. If 𝑛 is a composite integer satisfying  𝜙(𝑛) | 𝑛 − 1, Theorems 3.1 and 3.2 tell us 𝑛 

must be of the form 𝑎𝑝 + 𝑟, 2 ≤ 𝑟 < 𝑝. Furthermore if 𝑛 is a composite integer of the form 𝑎𝑝 + 𝑟,  

𝑎 < 𝑝, 𝑟 < 𝑝 and 𝜙(𝑛) | 𝑛 − 1, then 𝑝 ∤ 𝜙(𝑛). If 𝑝 | 𝜙(𝑛) then 𝑝 | 𝑛 − 1 = 𝑎𝑝 + 𝑟 − 1, 𝑝 | 𝑟 − 1, 

𝑟 = 1. 𝑛 = 𝑎𝑝 + 1. From Theorem 3.1, 𝑛 is prime, a contradiction. 

4. Generalization of Theorem 2.1 

In this section we develop the primality test presented in Theorem 2.1 for higher powers of 𝑝. Using a 

similar argument presented in the proof of lemma 2.1, it can be shown that if  𝑛 = 𝑎𝑝𝑘 + 1, where 𝑎  and 

𝑘 are positive integers, 𝑝 is a prime with 𝑝 > 𝑎 then  𝑝𝑘  | 𝜙(𝑛) if and only if 𝑛 is prime. It follows that if 

𝑛 is composite and 𝑏𝑛−1 ≡ 1(mod 𝑛), then the highest power of 𝑝 in ord𝑛𝑏 is less than 𝑝𝑘 so that 

𝑏𝑎𝑝𝑘−1
= 𝑏(𝑛−1)/𝑝 ≡ 1(mod 𝑛). Therefore if 𝑏𝑛−1 ≡ 1(mod 𝑛) and 𝑏(𝑛−1)/𝑝 ≢ 1(mod 𝑛) then 𝑛 is 

prime. The details of the proof are given below. 

Lemma 4.1    Let 𝒑, 𝒗, 𝒌𝒊, 𝒔𝒊, 𝒒𝒊 , 𝟏 ≤ 𝒊 ≤ 𝒗 be positive integers, 𝒌𝟏 ≤ 𝒌𝟐 ≤ ⋯ ≤ 𝒌𝒗,  𝒒𝒊 = 𝒔𝒊𝒑𝒌𝒊 + 𝟏, 

𝒏 = ∏ 𝒒𝒊 
𝒗
𝒊=𝟏 .  Then  𝒏 = 𝒑∑ 𝒌𝒊𝒗

𝒊=𝟏 ⋅ ∏ 𝒔𝒊
𝒗
𝒊=𝟏 + 𝑴𝒑 + 𝟏 for some integer 𝑴. Furthermore if 𝒗 ≥ 𝟐, then 

𝒏 = 𝒑∑ 𝒌𝒊𝒗
𝒊=𝟏 ⋅ ∏ 𝒔𝒊

𝒗
𝒊=𝟏 + 𝑴𝒑𝒌𝟏+𝒌𝟐 + ∑ 𝒔𝒊

𝒗
𝒊=𝟏 𝒑𝒌𝒊 + 𝟏 for some integer 𝑴. 

Proof. We will use proof by induction. First, we prove the general case 𝑣 ≥ 1; For the base case, 𝑣 = 1; 

𝑛 = ∏ 𝑞𝑖 =

1

𝑖=1

𝑠1𝑝𝑘1 + 1 = 𝑝∑ 𝑘𝑖1
𝑖=1 ⋅ ∏ 𝑠𝑖

1

𝑖=1

+ 0 ⋅ 𝑝 + 1 

Assume 𝑛 = ∏ 𝑞𝑖 = 𝑝∑ 𝑘𝑖𝑣
𝑖=1 ⋅ ∏ 𝑠𝑖

𝑣

𝑖=1

+ 𝑀𝑝 + 1 for some integer 𝑣 ≥ 1,

𝑣

𝑖=1

 

we will show the formula holds for 𝑣 + 1 

𝑛 = ∏ 𝑞𝑖

𝑣+1

𝑖=1

= (𝑠𝑣+1𝑝𝑘𝑣+1 + 1) ∏ 𝑞𝑖

𝑣

𝑖=1

= (𝑠𝑣+1𝑝𝑘𝑣+1 + 1) (𝑝∑ 𝑘𝑖𝑣
𝑖=1 ⋅ ∏ 𝑠𝑖

𝑣

𝑖=1

+ 𝑀𝑝 + 1) 

    =     𝑝∑ 𝑘𝑖𝑣+1
𝑖=1 ⋅ ∏ 𝑠𝑖 +

𝑣+1

𝑖=1

𝑀𝑝𝑠𝑣+1𝑝𝑘𝑣+1 + 𝑠𝑣+1𝑝𝑘𝑣+1 + 𝑝∑ 𝑘𝑖𝑣
𝑖=1 ⋅ ∏ 𝑠𝑖

𝑣

𝑖=1

+ 𝑀𝑝 + 1 

                                     =   𝑝∑ 𝑘𝑖𝑣+1
𝑖=1 ⋅ ∏ 𝑠𝑖 +

𝑣+1

𝑖=1

𝑝 (𝑀𝑠𝑣+1𝑝𝑘𝑣+1 + 𝑠𝑣+1𝑝𝑘𝑣+1−1 + 𝑝∑ 𝑘𝑖𝑣
𝑖=1 −1 ⋅ ∏ 𝑠𝑖 + 𝑀

𝑣

𝑖=1

) + 1 

𝑛  =   𝑝∑ 𝑘𝑖𝑣+1
𝑖=1 ⋅ ∏ 𝑠𝑖 +

𝑣+1

𝑖=1

𝑀′𝑝 + 1 

If 𝑣 ≥ 2; for the base case 𝑣 = 2 we have; 



 

𝑛 = ∏ 𝑞𝑖

2

𝑖=1

= (𝑠1𝑝𝑘1 + 1)(𝑠2𝑝𝑘2 + 1) = 𝑠1𝑠2𝑝𝑘1+𝑘2 + 𝑠1𝑝𝑘1 + 𝑠2𝑝𝑘2 + 1

= 𝑝∑ 𝑘𝑖2
𝑖=1 ⋅ ∏ 𝑠𝑖

2

𝑖=1

+ 0 ⋅ 𝑝𝑘1+𝑘2 + ∑ 𝑠𝑖

2

𝑖=1

𝑝𝑘𝑖 + 1 

Now assume it holds for some 𝑣 ≥ 2 , 1 ≤ 𝑘1 ≤ 𝑘2 ≤ ⋯ ≤ 𝑘𝑣; 

𝑛 = ∏ 𝑞𝑖 

𝑣

𝑖=1

= 𝑝∑ 𝑘𝑖𝑣
𝑖=1 ⋅ ∏ 𝑠𝑖

𝑣

𝑖=1

+ 𝑀𝑝𝑘1+𝑘2 + ∑ 𝑠𝑖

𝑣

𝑖=1

𝑝𝑘𝑖 + 1 

For 𝑣 + 1,   1 ≤ 𝑘1 ≤ 𝑘2 ≤ ⋯ ≤ 𝑘𝑣 ≤ 𝑘𝑣+1; 

𝑛 = ∏ 𝑞𝑖 =

𝑣+1

𝑖=1

(𝑠𝑣+1𝑝𝑘𝑣+1 + 1) ∏ 𝑞𝑖 

𝑣

𝑖=1

= (𝑠𝑣+1𝑝𝑘𝑣+1 + 1) (𝑝∑ 𝑘𝑖𝑣
𝑖=1 ∏ 𝑠𝑖

𝑣

𝑖=1

+ 𝑀𝑝𝑘1+𝑘2 + ∑ 𝑠𝑖

𝑣

𝑖=1

𝑝𝑘𝑖 + 1) 

     =  𝑝∑ 𝑘𝑖𝑣+1
𝑖=1 ⋅ ∏ 𝑠𝑖

𝑣+1

𝑖=1

+ 𝑠𝑣+1𝑝𝑘𝑣+1𝑀𝑝𝑘1+𝑘2 + ∑ 𝑠𝑣+1𝑠𝑖

𝑣

𝑖=1

𝑝𝑘𝑖+𝑘𝑣+1 + 𝑠𝑣+1𝑝𝑘𝑣+1 +  𝑝∑ 𝑘𝑖𝑣
𝑖=1 ⋅ ∏ 𝑠𝑖

𝑣

𝑖=1

    

+ 𝑀𝑝𝑘1+𝑘2 + ∑ 𝑠𝑖

𝑣

𝑖=1

𝑝𝑘𝑖 + 1 

= 𝑝∑ 𝑘𝑖𝑣+1
𝑖=1 ⋅ ∏ 𝑠𝑖

𝑣+1

𝑖=1

+ 𝑝𝑘1+𝑘2 (𝑀𝑠𝑣+1𝑝𝑘𝑣+1 + ∑ 𝑠𝑣+1𝑠𝑖

𝑣

𝑖=1

𝑝𝑘𝑖+𝑘𝑣+1−(𝑘1+𝑘2) + 𝑝∑ 𝑘𝑖−(𝑘1+𝑘2)𝑣
𝑖=1 ∏ 𝑠𝑖 + 𝑀

𝑣

𝑖=1

) 

                                          + ∑ 𝑠𝑖

𝑣+1

𝑖=1

𝑝𝑘𝑖 + 1;      𝑘𝑖 + 𝑘𝑣+1 ≥ 𝑘1 + 𝑘2 , ∑ 𝑘𝑖 ≥ 𝑘1 + 𝑘2

𝑣

𝑖=1

 

                                      𝑛  =   𝑝∑ 𝑘𝑖𝑣+1
𝑖=1 ⋅ ∏ 𝑠𝑖

𝑣+1

𝑖=1

+ 𝑀′𝑝𝑘1+𝑘2 + ∑ 𝑠𝑖

𝑣+1

𝑖=1

𝑝𝑘𝑖 + 1 

 

Lemma 4.2. Let 𝒏 = 𝒂𝒑𝒌 + 𝟏, 𝒂 and 𝒌 are positive integers, 𝒑 is an odd prime and 𝒂 < 𝒑. If  

𝒑𝒌 | 𝝓(𝒏) then 𝒏 is prime. 

Proof. Let 𝑛 = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑣
𝑎𝑣  be the prime power factorization of  𝑛,  𝑣 ≥ 1  

𝜙(𝑛) =  𝑝1
𝑎1−1 (𝑝1 − 1) 𝑝2

𝑎2−1 (𝑝2 − 1) … 𝑝𝑣
𝑎𝑣−1 (𝑝𝑣 − 1) 

𝑝𝑘  | 𝑝1
𝑎1−1 (𝑝1 − 1) 𝑝2

𝑎2−1 (𝑝2 − 1) … 𝑝𝑣
𝑎𝑣−1 (𝑝𝑣 − 1). Note that 𝑝 ∤ 𝑝𝑖 for all 𝑖.  If 𝑝 | 𝑝𝑖  then 𝑝 | 𝑛, 

𝑝 | 𝑛 − 𝑎𝑝𝑘 = 1, which is not possible. Therefore 𝑝𝑘  |(𝑝1 − 1)(𝑝2 − 1) … (𝑝𝑣 − 1).  

For every 𝑖 = 1, 2, … , 𝑣,  𝑝 | 𝑝𝑖 − 1 or 𝑝 ∤ 𝑝𝑖 − 1. We can group the primes 𝑝𝑖 into two sets 𝐴 and 𝐵 

where A is the set of all primes  𝑝𝑖 for which 𝑝 | 𝑝𝑖 − 1, 𝐵 contains all primes 𝑝𝑖 for which 𝑝 ∤ 𝑝𝑖 − 1. 

Set A is non empty while set 𝐵 may or may not be empty.  𝐴 = {𝑞1, 𝑞2, … , 𝑞𝑢}, 1 ≤ 𝑢 ≤ 𝑣. If 𝐵 is non 

empty,  𝐵 = {𝑞𝑢+1, 𝑞𝑢+2, … , 𝑞𝑣}.  Therefore 𝑛 = 𝑄𝑞1
𝑏1𝑞2

𝑏2 … 𝑞𝑢
𝑏𝑢.  If set 𝐵 is empty, 𝑄 = 1 otherwise 

𝑄 > 1. Let the highest power of 𝑝 that divides 𝑞𝑖 − 1 be 𝑝𝑘𝑖, 𝑖 = 1, 2, … , 𝑢       1 ≤ 𝑘𝑖 ≤ 𝑘.  

Note that 𝜙(𝑛) ≤ 𝑎𝑝𝑘 < 𝑝 ⋅ 𝑝𝑘 = 𝑝𝑘+1  therefore 𝑝𝑘+1 ∤ 𝜙(𝑛). It follows that  𝑘1 + 𝑘2 + ⋯ + 𝑘𝑢 = 𝑘. 

Assume  𝑘1 ≤ 𝑘2 ≤ ⋯ ≤ 𝑘𝑢.  𝑞𝑖 = 𝑠𝑖 ⋅ 𝑝𝑘𝑖 + 1. We must have 𝑠𝑖 > 1 otherwise if 𝑠𝑖 = 1, 𝑞𝑖 > 2 is even.   



 

𝑛 = 𝑄𝑞1
𝑏1𝑞2

𝑏2 … 𝑞𝑢
𝑏𝑢 = 𝑄𝑞1

𝑏1−1𝑞2
𝑏2−1 … 𝑞𝑢

𝑏𝑢−1𝑞1𝑞2 … 𝑞𝑢 = 𝑄′𝑞1𝑞2 … 𝑞𝑢.  𝑄′ ≥ 1. 

𝑛 = 𝑄′ ⋅ ∏ 𝑞𝑖

𝑢

𝑖=1

= 𝑄′ ⋅ ∏(𝑠𝑖 ⋅ 𝑝𝑘𝑖 + 1

𝑢

𝑖=1

) = 𝑄′ (𝑝𝑘 ⋅ ∏ 𝑠𝑖

𝑢

𝑖=1

+ 𝑀𝑝 + 1) 

for some integer 𝑀, the last equality obtained from lemma 4.1 

𝑛 = 𝑄′ (𝑝𝑘 ⋅ ∏ 𝑠𝑖

𝑢

𝑖=1

+ 𝑀𝑝 + 1) = 𝑎𝑝𝑘 + 1 

Factoring out 𝑝; 

𝑝 (𝑎𝑝𝑘−1 − 𝑄′𝑝𝑘−1 ⋅ ∏ 𝑠𝑖

𝑢

𝑖=1

− 𝑄′𝑀) = 𝑄′ − 1 

𝑝 | 𝑄′ − 1 . If  𝑄′ > 1, then 𝑝 ≤  𝑄′ − 1 < 𝑄′  

𝑛 = 𝑄′ (𝑝𝑘 ⋅ ∏ 𝑠𝑖

𝑢

𝑖=1

+ 𝑀𝑝 + 1) > 𝑄′𝑝𝑘 > 𝑝 ⋅ 𝑝𝑘 = 𝑝𝑘+1 , 

a contradiction because  𝑛 = 𝑎𝑝𝑘 + 1 < 𝑝𝑘(𝑎 + 1) ≤ 𝑝𝑘+1 hence we must have 𝑄′ = 1. 𝑄′ = 1 implies 

set 𝐵 is empty and 𝑛 is square free hence 𝑢 = 𝑣.  

If 𝑣 = 1, then 𝑛 = 𝑞1 is prime. If  𝑘 = 1, then 𝑘1 + 𝑘2 + ⋯ + 𝑘𝑣 = 1, 𝑣 = 1 and 𝑛 is prime. 

Assume 𝑘 ≥ 2 and 𝑣 ≥ 2.  From lemma 4.1; 

𝑛 = 𝑝𝑘 ⋅ ∏ 𝑠𝑖

𝑣

𝑖=1

+ 𝑀𝑝𝑘1+𝑘2 + ∑ 𝑠𝑖

𝑣

𝑖=1

𝑝𝑘𝑖 + 1 = 𝑎𝑝𝑘 + 1 

𝑎𝑝𝑘 = 𝑝𝑘 ⋅ ∏ 𝑠𝑖

𝑣

𝑖=1

+ 𝑀𝑝𝑘1+𝑘2 + ∑ 𝑠𝑖

𝑣

𝑖=1

𝑝𝑘𝑖 

There’s a positive integer ℎ such that 𝑘1 = 𝑘2 = ⋯ = 𝑘ℎ <  𝑘ℎ+1 ≤  𝑘ℎ+2 ≤  … ≤ 𝑘𝑣,    1 ≤  ℎ ≤  𝑣. 

Dividing all terms by 𝑝𝑘1 we have;  

𝑎𝑝𝑘2+⋯+𝑘𝑣 = 𝑝𝑘2+⋯+𝑘𝑣 ⋅ ∏ 𝑠𝑖

𝑣

𝑖=1

+ 𝑀𝑝𝑘2 + 𝑠1 + 𝑠2 + ⋯ + 𝑠ℎ + 𝑠ℎ+1𝑝𝑘ℎ+1−𝑘1 + ⋯ + 𝑠𝑣𝑝𝑘𝑣−𝑘1 

𝑝 | 𝑠1 + 𝑠2 + ⋯ + 𝑠ℎ      𝑝 ≤ 𝑠1 + 𝑠2 + ⋯ + 𝑠ℎ < ∏ 𝑠𝑖

𝑣

𝑖=1

 

𝑛 = 𝑝𝑘 ⋅ ∏ 𝑠𝑖

𝑣

𝑖=1

+ 𝑀𝑝𝑘1+𝑘2 + ∑ 𝑠𝑖

𝑣

𝑖=1

𝑝𝑘𝑖 + 1 > 𝑝𝑘 ⋅ ∏ 𝑠𝑖

𝑣

𝑖=1

> 𝑝𝑘 ⋅ 𝑝 = 𝑝𝑘+1 , 

a contradiction therefore 𝑣 = 1, 𝑛 = 𝑞1. 

Theorem 4.1 Let 𝒏 = 𝒂𝑝𝑘 + 𝟏, 𝒂 and 𝒌 are positive integers, 𝒑 is an odd prime, 𝒂 < 𝒑. If there 

exists a positive integer 𝒃 such that 𝒃𝒏−𝟏 ≡ 𝟏 (𝐦𝐨𝐝 𝒏) and 𝒃(𝒏−𝟏)/𝒑 ≢ 𝟏(𝐦𝐨𝐝 𝒏) then 𝒏 is prime. 



 

Proof. Assume 𝑛 is composite and  𝑏𝑛−1 ≡ 1 (mod 𝑛). From Theorem 1.1,  ord𝑛𝑏 | 𝑛 − 1 = 𝑎𝑝𝑘. 

Since  (𝑎, 𝑝𝑘) = 1, we have ord𝑛𝑏 = 𝑑1𝑑2, 𝑑1 | 𝑎,  𝑑2 | 𝑝𝑘,  𝑑2 =  𝑝𝑡.  From lemma 4.2, we must have  

0 ≤ 𝑡 ≤ 𝑘 − 1 hence  𝑑2 |  𝑝𝑘−1.  ord𝑛𝑏 = 𝑑1𝑑2 | 𝑎 ⋅ 𝑝𝑘−1 . It follows from Theorem 1.1 that 𝑏(𝑛−1)/𝑝 =

𝑏𝒂𝑝𝑘−1
≡ 1 (mod 𝑛). Consequently if 𝑏𝑛−1 ≡ 1 (mod 𝑛) and 𝑏(𝑛−1)/𝑝 ≢ 1(mod 𝑛) then we know 𝑛 is 

prime. 

Example 4.1. Suppose we want to test whether 564899 = 82 ⋅ 832 + 1 is prime. Using modular 

exponentiation, it can be verified that 282 ⋅ 832
≡ 1 (mod 564899) and 282 ⋅ 83 ≢ 1 (mod 564899). 

Therefore, from Theorem 4.1, 564899 is prime. 

The Mersenne number 𝑀21701 is prime, [2]. With the help of the Maple engine and Theorem 4.1, it can 

be shown that the first five prime numbers of the form (104500 + 𝑘) ⋅ 𝑀21701 + 1, 𝑘 ≥ 0, occur at 

𝑘 = 5318, 48362, 56690, 61206, 71340. Verifying each of these numbers takes less than 15 seconds 

on an HP ProBook 640 G1 i5 processor. The test is very efficient, however, testing a number with over a 

million decimal digits is limited by the memory capacity of the machine. 

Experimental Observations 

Numerical evidence suggests that there are no composite integers  𝑛 = 𝑎𝑝𝑘 + 1, 𝑎 < 𝑝𝑘/2, 𝑝 is prime 

such that 𝑝𝑘  | 𝜙(𝑛). If this is true for all composite integers 𝑛, then the upper bound of 𝑎 in Theorem 

4.1 can be significantly improved from 𝑝 to 𝑝𝑘/2 for higher values of 𝑘. If 𝑎 < 𝑝𝑘, there some composites 

for which 𝑝𝑘  | 𝜙(𝑛) e.g. 4699 = 37 ⋅ 127 = 58 ⋅ 34 + 1. Are these composites infinitely many for a 

given prime 𝑝?  Furthermore if 𝑝𝑘  | 𝜙(𝑛) and 𝑛 is composite, then 𝑛 has prime factor 𝑞 of the form 𝑡𝑝 +

1, 𝑞 ≤ √𝑛 . If this is true for all 𝑛, then trial division can be combined with the Fermat test to prove the 

primality of 𝑛. If 𝑛 has no prime divisor of the form 𝑡𝑝 + 1 ≤ √𝑛  then we know 𝑝𝑘  ∤ 𝜙(𝑛) if 𝑛  is 

composite and Theorem 4.1 applies. 

Are there any Fermat pseudoprimes 𝑛 = 𝑎𝑝𝑘 + 1, 𝑎 < 𝑝𝑘 and 𝑝𝑘  | 𝜙(𝑛). Indeed, these pseudoprimes 

exist, however, they are rare. If 𝑝 = 2, and 𝑘 = 20, we have only one pseudoprime to the base 2, 

53282340865 = 50814 ⋅ 220 + 1 compared to 78543 primes. If  𝑝 = 3, and 𝑘 = 13, there are no 

pseudoprimes to the base 2. Theorem 4.1 can thus be used as a probabilistic primality test for integers of 

the form 𝑎𝑝𝑘 + 1, 𝑎 < 𝑝𝑘, 𝑝 is prime. 

The first five Fermat pseudoprimes of the form 𝑎𝑝𝑘 + 1 , 𝑎 < 𝑝, to base 2 include; 11305 = 72 ⋅ 157 +

1, 13741 = 60 ⋅ 229 + 1, 13981 = 60 ⋅ 233 + 1, 18705 = 112 ⋅ 167 + 1, 23377 = 48 ⋅ 487 + 1 and 

to base 3;  286 = 15 ⋅ 19 + 1, 671 = 10 ⋅ 67 + 1, 949 = 12 ⋅ 79 + 1, 11011 = 30 ⋅ 367 + 1, 15203 =

22 ⋅ 691 + 1 and the first four Carmichael numbers; 63973 = 36 ⋅ 1777 + 1 , 101101 = 300 ⋅ 337 +

1, 126217 = 72 ⋅ 1753 + 1 , 278545 = 336 ⋅ 829 + 1. For all these pseudoprimes 𝑘 = 1. 

Are there any Fermat pseudoprimes 𝑛 of the form 𝑎𝑝𝑘 + 1 with 𝑎 < 𝑝, 𝑘 ≥ 2 and 𝑝 is prime?  If they 

exist, they must be extremely rare. There are no counterexamples to the base 2 for all 𝑛 < 107. 

For every positive integer 𝑛, is there a prime of the form 𝑎𝑛 + 1, 𝑎 ≤ 𝑛?  When 𝑛 = 1, 3, 5, there’s only 

one value of  𝑎 ≤ 𝑛 for each 𝑛 so that 𝑎𝑛 + 1 is prime. When 𝑛 = 31, there are three values of 𝑎 ≤ 𝑛 that 

make 𝑎𝑛 + 1 prime; 𝑎 = 10, 12, 22. As 𝑛 grows, numerical evidence shows that the number of solutions 

𝑎 such that 𝑎𝑛 + 1  is prime also grows. 



 

Let 𝑛 = 4𝑝𝑡 + 1,  𝑡 ≥ 1,  𝑝 > 4 is prime. Define the sequence 𝑟1 = 4, 𝑟𝑘+1 ≡ 𝑟𝑘
2 − 2(mod 𝑛), 𝑘 ≥ 1,  

0 ≤ 𝑟𝑘 < 𝑛 then 𝑛 is prime if and only if there exists an integer 𝑗, 1 < 𝑗 < 𝑛,  such that 𝑟𝑗 ≡ 4 (mod 𝑛). 

Generalization of lemma 4.2 

Generalization of Lemma 4.2 would provide a primality test for testing a broader set of integers. Lemma 

4.2 says that if 𝑛 is a positive integer of the form 𝑎𝑝𝑘 + 1, 𝑎 and 𝑘 are positive integers, 𝑝 is an odd 

prime, 𝑎 < 𝑝 and 𝑝𝑘  | 𝜙(𝑛) then 𝑛 is prime. How best can this lemma be generalized for integers of the 

form 𝑎𝑚 + 1 such that for a given positive integer 𝑚, 𝑎 is as large as possible and if  𝑚 | 𝜙(𝑛 ) then 𝑛 is 

prime? Motivated by the upper bound of 𝑎 in lemma 4.2, the first guess is 𝑎 < rad(𝑚). However, this 

guess is put down with the counterexample 946 = 2 ⋅ 11 ⋅ 43 = 27 ⋅ 35 + 1, where 𝑎 = 27, 𝑚 = 35, 

rad(𝑚) = 35. There are many counterexamples to this initial guess. Another guess would be 𝑎 < 𝑝, 

where 𝑝 is the largest prime divisor of 𝑚. This too fails with the counterexamples 34716 = 22 ⋅ 3 ⋅ 11 ⋅

263 = 53 ⋅ 5 ⋅ 131 + 1, 𝑎 = 53, 𝑚 = 5 ⋅ 131, 𝑝 = 131  and 25272495 = 32 ⋅ 5 ⋅ 79 ⋅ 7109 = 1094 ⋅

13 ⋅ 1777 + 1 where 𝑎 = 1094, 𝑚 = 13 ⋅ 1777, 𝑝 = 1777. There are many counterexamples to this 

guess as well. The last guess is 𝑎 < 𝑝 where 𝑝 is the least prime divisor of 𝑚. The author has not yet 

found any counterexamples to this guess. The author is still working on its proof. 

Conjecture 4.1    Let 𝒏 = 𝒂𝒎 + 𝟏, where 𝒂 and 𝒎 are positive integers and let 𝒑 be the least prime 

divisor of 𝒎. If 𝒂 < 𝒑 and  𝒎 | 𝝓(𝒏) then 𝒏 is prime. 

In general, if 𝑛 = 𝑎𝑚 + 1, ( 𝑎, 𝑚) = 1 and we know beforehand that 𝑚 | 𝜙(𝑛) if and only if 𝑛 is prime, 

then the factorization of 𝑎 is not necessary in determining the primality of  𝑛 using Lucas’s converse of 

Fermat’s little theorem. The following theorem demonstrates this fact. 

Theorem 4.2  Let 𝒏 = 𝒂𝒎 + 𝟏, where 𝒂 and 𝒎 > 𝟏 are relatively prime positive integers such 

that 𝒏 is prime whenever  𝒎 | 𝝓(𝒏). If there exists a positive integer 𝒃 such that 𝒃𝒏−𝟏 ≡ 𝟏 (𝐦𝐨𝐝 𝒏) 

and 𝒃(𝒏−𝟏)/𝒒 ≢ 𝟏(𝐦𝐨𝐝 𝒏) for all prime divisors 𝒒 of 𝒎 then 𝒏 is prime.  

Proof. Assume 𝑛 is composite and 𝑏𝑛−1 ≡ 1 (mod 𝑛). From Theorem 1.1,  ord𝑛𝑏 | 𝑛 − 1 = 𝑎𝑚. Since 

(𝑎, 𝑚) = 1, ord𝑛𝑏 = 𝑑1𝑑2, 𝑑1 | 𝑎 and 𝑑2 | 𝑚. Let 𝑚 = 𝑞1
𝑎1𝑞2

𝑎2 … 𝑞𝑘
𝑎𝑘 be the prime power 

factorization of 𝑚 then 𝑑2 = 𝑞1
𝑏1𝑞2

𝑏2 … 𝑞𝑘
𝑏𝑘, 0 ≤ 𝑏𝑖 ≤ 𝑎𝑖. If 𝑏𝑖 = 𝑎𝑖 for all 𝑖, then 𝑑2 = 𝑚. From 

Theorem 1.1, ord𝑛𝑏 |  𝜙(𝑛) and since 𝑚 = 𝑑2 | ord𝑛𝑏, we have 𝑚 | 𝜙(𝑛), a contradiction. Therefore, 

there’s an integer 𝑗, 1 ≤ 𝑗 ≤ 𝑘, such that 𝑏𝑗 ≤ 𝑎𝑗 − 1.  It follows that 𝑞𝑗
𝑏𝑗  | 𝑞𝑗

𝑎𝑗−1, 

𝑑2 = 𝑞1
𝑏1𝑞2

𝑏2 … 𝑞𝑗
𝑏𝑗 … 𝑞𝑘

𝑏𝑘   |  𝑞1
𝑎1𝑞2

𝑎2 … 𝑞𝑗
𝑎𝑗−1 … 𝑞𝑘

𝑎𝑘. 

ord𝑛𝑏 = 𝑑1𝑑2 | 𝑎 ⋅  𝑞1
𝑎1𝑞2

𝑎2 … 𝑞𝑗
𝑎𝑗−1 … 𝑞𝑘

𝑏𝑘 = (𝑛 − 1)/𝑞𝑗. From Theorem 1.1, 

𝑏(𝑛−1)/𝑞𝑗 ≡ 1 (mod 𝑛). 

Therefore if  𝑏𝑛−1 ≡ 1 (mod 𝑛) and 𝑏(𝑛−1)/𝑞 ≢ 1(mod 𝑛) for all prime divisors 𝑞 of 𝑚 then 𝑛 is prime. 

Note that using the fact that 𝑛 − 1 | 𝜙(𝑛) if and only if 𝑛 is prime, Lucas’s converse of Fermat’s little 

theorem follows directly from Theorem 4.2. Assuming conjecture 4.1 is true, then Theorem 4.2 can be 

used to test all integers of the form 𝑎𝑚 + 1 with 𝑎 less than the least prime divisor of 𝑚.  

From computation results, if  𝑛 = 𝑎(𝑎 + 1) + 1, 𝑎 ≡ 5 (mod 6) and 𝑎 | 𝜙(𝑛) then 𝑛 is prime for all 𝑎 <

108 except when 𝑎 = 9736265 in which case 𝑛 is composite. From theorem 4.2, if   𝑎 < 108, 𝑎 ≠

9736265,  𝑏𝑛−1 ≡ 1 (mod 𝑛) and 𝑏(𝑛−1)/𝑞 ≢ 1(mod 𝑛) for all prime divisors 𝑞 of  𝑎, then 𝑛 is prime.  



 

This result is however not much useful compared to Lemma 4.2 since we had to first test the primality of 

𝑛. More research on forms of positive integers 𝑛 = 𝑎𝑚 + 1 for which 𝑚 | 𝜙(𝑛) if and only if 𝑛 is prime 

will be very useful for testing their primality using Theorem 4.2. The author is still working on these 

forms of integers. It can easily be shown that if 𝑚 is prime then 𝑚 | 𝜙(𝑛) if and only if  𝑎 ≡ 𝑏(mod 𝑞) 

for some prime 𝑞 = 𝑏𝑚 + 1, 𝑎 ≥ 𝑏.  If 𝑎 = 𝑏, 𝑛 is prime otherwise 𝑛 is composite. If 𝑚 is an odd prime, 

we have 𝑏 ≥ 2 therefore for all 𝑎 ≤ 2𝑚 we have 𝑚 | 𝜙(𝑛) if and only if 𝑛 is prime. 

For any comments or suggestions on this article, contact the author on ariko@cedat.mak.ac.ug or 

philemonariko@gmail.com 
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