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1 Abstract

The Riemann Zeta function is defined as

() =532, &, Re(s)>1

The Zeta function is holomorphicin the complex plane except for a simple pole at
s = 1. The trivial zeros of ((s) are —2,—4, —6, .... [ts non trivial zeros lie in

the critical strip 0 < Re(s) < 1.

The Riemann Hypothesis states that all the non trivial zeros lie on the critical line
Re(s) =1/2.

In this article we disprove the Riemann Hypothesis.



2 Proof

We give the proof by contradction.
Let us assume that the Riemann Hypothesis is true.
Riemann Hypothesis is equivalent to the integral

equation (see [3, p.136, Corollary 8.7])
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Take a € Rwith1/2 < a < 1, Riemann's { function has no zeros in

Re(s) > a if and only if [see 1,p .499 , Theorem 7.27]
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Since we have assumed Riemann Hypothesis is true

so setting a = 1/2

Riemann's  function has no zerosin Re(s) > 1/2 or the Riemann Hypothesis is true
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Substitute , t=-u
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By Schwarz Reflection principle , ((5) = ((s)
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Adding equations (2) and (4),
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Putting the value of J from (3) and I from (1),
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From (see[7, Equation (42) and (91)]),
¢'(1/2) = —3.92264613... and ((1/2) = —1.46035450880...

Putting these values of ('(1/2) and ((1/2) in Equation (5),

—3.92264613 o
—2x1.46035450880 2>0.

—3.92264613
—5.9207000197 — 2 > 0

1.343045507 — 2 > 0

— 0.6569541493 > 0

which is a contradiction.

So, our assumption that Riemann Hypothesis is true is wrong.

Thus, we have disproved the Riemann Hypothesis.
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