Riemann Hypothesis

Shekhar Suman

April 2020

Subject Classification code- 11M26
Keywords- Riemann Zeta function; Analytic Continuation; Critical strip; Critical line.

1 Abstract

The Riemann Zeta function is defined as
$\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \operatorname{Re}(s)>1$
The Zeta function is holomorphic in the complex plane except for a simple pole at $s=1$. The trivial zeros of $\zeta(s)$ are $-2,-4,-6, \ldots$. Its non trivial zeros lie in the critical strip $0<\operatorname{Re}(s)<1$. The Riemann Hypothesis states that all the non trivial zeros lie on the critical line $\operatorname{Re}(s)=1 / 2$.

In this article we disprove the Riemann Hypothesis.

2 Proof

We give the proof by contradction.
Let us assume that the Riemann Hypothesis is true.
Riemann Hypothesis is equivalent to the integral
equation (see [3, p.136, Corollary 8.7])
$\int_{-\infty}^{\infty} \frac{\log |\zeta(1 / 2+i t)|}{1+4 t^{2}} d t=0$
Let, $I=\int_{-\infty}^{\infty} \frac{\log |\zeta(1 / 2+i t)|}{1+4 t^{2}} d t$
$I=\int_{-\infty}^{\infty} \frac{\log |\zeta(1 / 2+i t)|}{1+4 t^{2}} d t=0$
Take $a \in R$ with $1 / 2 \leq a<1$, Riemann's ζ function has no zeros in
$\operatorname{Re}(s)>a$ if and only if [see 1, p.499, Theorem 7.27]
$\frac{1}{\pi} \int_{0}^{\infty} \frac{\log \left|\frac{\zeta(a+i t)}{\zeta(a)}\right|}{t^{2}}=\frac{\zeta^{\prime}(a)}{2 \zeta(a)}-\frac{1}{1-a}$
Since we have assumed Riemann Hypothesis is true
so setting $a=1 / 2$
Riemann's ζ function has no zeros in $\operatorname{Re}(s)>1 / 2$ or the Riemann Hypothesis is true
if and only if
$\frac{1}{\pi} \int_{0}^{\infty} \frac{\log \left|\frac{\zeta(1 / 2+i t)}{\zeta(1 / 2)}\right|}{t^{2}}=\frac{\zeta^{\prime}(1 / 2)}{2 \zeta(1 / 2)}-2$
Let, $J=\frac{1}{\pi} \int_{0}^{\infty} \frac{\log \left|\frac{\varsigma(1 / 2+i t)}{\varsigma(1 / 2)}\right|}{t^{2}}$
$J=\frac{1}{\pi} \int_{0}^{\infty} \frac{\log \left|\frac{\zeta(1 / 2+i t)}{\zeta(1 / 2)}\right|}{t^{2}}=\frac{\zeta^{\prime}(1 / 2)}{2 \zeta(1 / 2)}-2$

$$
\begin{aligned}
& \text { Substitute }, \mathrm{t}=-\mathrm{u} \\
\Rightarrow & d t=-d u \\
J= & \frac{1}{\pi} \int_{-\infty}^{0} \frac{\log \left|\frac{\zeta(1 / 2-i u)}{\zeta(1 / 2)}\right|}{u^{2}} d u
\end{aligned}
$$

By Schwarz Reflection principle , $\zeta(\bar{s})=\overline{\zeta(s)}$
$|\zeta(1 / 2-i u)|=|\zeta(\overline{1 / 2+i u})|=|\overline{\zeta(1 / 2+i u)}|=|\zeta(1 / 2+i u)|$
$J=\frac{1}{\pi} \int_{-\infty}^{0} \frac{\log \left|\frac{\zeta(1 / 2+i u)}{\zeta(1 / 2)}\right|}{u^{2}}$
$J=\frac{1}{\pi} \int_{-\infty}^{0} \frac{\log \left|\frac{\zeta(1 / 2+i t)}{\epsilon(1 / 2)}\right|}{t^{2}} d t$
Adding equations (2) and (4),
$2 J=\frac{1}{\pi} \int_{0}^{\infty} \frac{\log \left|\frac{\zeta(1 / 2+i t)}{\zeta(1 / 2)}\right|}{t^{2}}+\frac{1}{\pi} \int_{-\infty}^{0} \frac{\log \left|\frac{\zeta(1 / 2+i t)}{(T(12)}\right|}{t^{2}} d t$
$J=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\log \left|\frac{\varsigma(1 / 2+i t)}{\varsigma(1 / 2)}\right|}{t^{2}} d t$
$J=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\log |\zeta(1 / 2+i t)|-\log |\zeta(1 / 2)|}{t^{2}} d t$
$J=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\log |\zeta(1 / 2+i t)|}{t^{2}}-\frac{\log |\zeta(1 / 2)|}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{t^{2}} d t$
$J=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\log |\zeta(1 / 2+i t)|}{t^{2}} d t$
$t^{2}<1+4 t^{2}$
$\frac{1}{t^{2}}>\frac{1}{1+4 t^{2}}$
$J=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\log |\zeta(1 / 2+i t)|}{t^{2}}>\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\log |\zeta(1 / 2+i t)|}{1+4 t^{2}} d t$
$J>I$
Putting the value of J from (3) and I from (1),
$\frac{\zeta^{\prime}(1 / 2)}{2 \zeta(1 / 2)}-2>0$.

From (see[7, Equation (42) and (91)]),
$\zeta^{\prime}(1 / 2)=-3.92264613 \ldots$ and $\zeta(1 / 2)=-1.46035450880 \ldots$
Putting these values of $\zeta^{\prime}(1 / 2)$ and $\zeta(1 / 2)$ in Equation (5),
$\frac{-3.92264613}{-2 * 1.46035450880}-2>0$.
$\frac{-3.92264613}{-2.9207090197}-2>0$
$1.343045507-2>0$
$-0.6569541493>0$
which is a contradiction.

So, our assumption that Riemann Hypothesis is true is wrong.
Thus, we have disproved the Riemann Hypothesis.

3 References

1.Pei-Chu Hu, Chung-Chun Yang - Value Distribution Theory Related to Number Theory, Birkhauser(2006)
2. Kevin Broughan - Equivalents of the Riemann Hypothesis 1: Arithmetic Equivalents Cambridge University Press (2017).
3. Kevin Broughan - Equivalents of the Riemann Hypothesis 2: Analytic Equvalents Cambridge University Press (2017) .
4. A Monotonicity of Riemann's Xi function and a reformulation of the Riemann Hypothesis, Periodica Mathematica Hungarica - May 2010.
5. H.M Edwards - Riemann's Zeta function- Academic Press (1974).
6. Tom M. Apostol - Introduction to Analytical Number Theory (1976).
7. https://mathworld.wolfram.com/RiemannZetaFunction.html
8. E. C. Titchmarsh, D. R. Heath-Brown - The theory of the Riemann Zeta function [2nd ed] Clarendon Press; Oxford University Press (1986).

