Erdös-Straus Conjecture is Tenable

Zhang Tianshu

Nanhai West Oil Administrative Bureau Zhanjiang city, Guangdong province, China Email: chinazhangtianshu@126.com xinshijizhang@hotmail.com

Abstract

First, divide all integers ≥ 2 in 8 kinds, then, formulates each of 7 kinds therein into a sum of 3 unit fractions. For unsolved one kind, again divide it in 3 genera, then, formulates each of 2 genera therein into a sum of 3 unit fractions. For unsolved one genus, further divide it in 5 sorts, then, formulates each of 3 sorts therein into a sum of 3 unit fractions. For unsolved two sorts i.e. 4/(49+120c) and 4/(121+120c) where $c \geq 0$, the author has to depend on logical deduction to prove them.

AMS subject classification: 11D72, 11D45, 11P81

Keywords: Erdös-Straus conjecture, Diophantine equation, unit fraction.

Contents

References......P₁₃

1. Introduction

Erdös-Straus conjecture relates to Egyptian fractions. In 1948, Paul Erdös conjectured that for any integer n \geq 2, there are invariably 4/n=1/x+1/y+ 1/z, where x, y and z are positive integers, [1].

Later, Ernst G. Straus further conjectured that the equation's solutions x, y and z satisfy $x\neq y$, $y\neq z$ and $z\neq x$, because there are convertible 1/2r+1/2r=1/(r+1)+1/r(r+1) and 1/(2r+1)+1/(2r+1)=1/(r+1)+1/(r+1)(2r+1), where $r\geq 1$, [2].

Thus, the Erdös conjecture and the Straus conjecture are equivalent from each other, and they are called the Erdös-Straus conjecture collectively. As a general rule, the Erdös-Straus conjecture states that for every integer $n\geq 2$, there are positive integers x, y and z, such that 4/n=1/x+1/y+1/z. Yet, the conjecture is yet both unproved and un-negated hitherto, [3].

2. Divide integers≥2 in 8 kinds and formulate 7 kinds therein

First, divide integers≥2 into 8 kinds, i.e. 8k+1, 8k+2, 8k+3, 8k+4, 8k+5,										
$8k+6$, $8k+7$ and $8k+8$, where $k\geq 0$, and that arrange them as follows orderly:										
Κ,	8k+1,	8k+2,	8k+3,	8k+4,	8k+5,	8k+6,	8k+7,	8k+8		
0,	1),	2,	3,	4,	5,	6,	7,	8,		
1,	9,	10,		12,	13,	14,	15,	16,		
2,	17,	18,	19,	20,	21,	22,	23,	24,		
3,	25,	26,	27,	28,	29,	30,	31,	32,		
,	,	,	,	,	,	,	,	,		

Excepting n=8k+1, formulate each of other 7 kinds as listed below:

24 Apr 2020 20:27:45 EDT 2 Algebra+NT+Comb+Logi Version 1 - Submitted to Proc. Amer. Math. Soc.

- (1) For n=8k+2, there are 4/(8k+2)=1/(4k+1)+1/(4k+2)+1/(4k+1)(4k+2);
- (2) For n=8k+3, there are 4/(8k+3)=1/(2k+2)+1/(2k+1)(2k+2)+1/(2k+1)(2k+3);
- (3) For n=8k+4, there are 4/(8k+4)=1/(2k+3)+1/(2k+2)(2k+3)+1/(2k+1)(2k+2);
- (4) For n=8k+5, there are 4/(8k+5)=1/(2k+2)+1/(8k+5)(2k+2)+1/(8k+5)(k+1);
- (5) For n=8k+6, there are 4/(8k+6)=1/(4k+3)+1/(4k+4)+1/(4k+3)(4k+4);
- (6) For n=8k+7, there are 4/(8k+7)=1/(2k+3)+1/(2k+2)(2k+3)+1/(2k+2)(8k+7);

(7) For n=8k+8, there are 4/(8k+8)=1/(2k+4)+1/(2k+2)(2k+3)+1/(2k+3)(2k+4).

By this token, n as above 7 kinds of integers be suitable to the conjecture.

3. Divide the unsolved kind in 3 genera and formulate 2 genera therein

For n=8k+1 with k \geq 1, divide it by the modulus 3 into 3 genera to get (1) the remainder 0; (2) the remainder 1; (3) the remainder 2.

Excepting the genus (2), formulate each of other 2 genera as listed below:

(8) For n=8k+1 by the modulus 3 to the remainder 0, i.e. let k=3t+1 with t \geq 0, there are 4/(8k+1)=1/(8k+1)/3+1/(8k+2)+1/(8k+1)(8K+2) with k \geq 1, of course, (8k+1)/3 at here is an integer.

(9) For n=8k+1 by the modulus 3 to the remainder 2, i.e. let k=3t+2 with t ≥ 0 , there are 4/(8k+1)=1/(8k+2)/3+1/(8k+1)+1/(8k+1)(8k+2)/3 with k ≥ 2 , of course, (8k+2)/3 at here is an integer.

4. Divide the unsolved genus in 5 sorts and formulate 3 sorts therein For the unsolved genus 8k+1 by the modulus 3 to the remainder 1, i.e. let k=3t with $t\geq 1$, divide it into 5 sorts, i.e. 25+120c, 49+120c, 73+120c, 97+120c and 121+120c, where $c\geq 0$. They are listed as the follows.

С,	25+120c,	49+120c,	73+120c,	97+120c,	121+120c,
0,	25,	49,	73,	97,	121,
1,	145,	169,	193,	217,	241,
2,	205,	289,	313,	337,	361,
••••	••••	••••	,	••••,	••••,

Excepting n as 49+120c and 121+120c, formulate each of other 3 sorts below:

(10) For n=25+120c, there are 4/(25+120c)=1/(25+120c)+1/(50+240c)+1/(10+48c);
(11) For n=73+120c, there are 4/(73+120c)=1/(73+120c)(10+15c)+1/(20+30c)+1/(73+120c)(4+6c);

(12) For n=97+120c, there are 4/(97+120c)=1/(25+30c)+1/(97+120c)(50+60c)+1/(97+120c)(10+12c).

For each of listed above 12 equalities that express 4/n into a sum of 3 unit fractions, please, each of readers self to make a check respectively.

5. Proving the sort 4/(49+120c)=1/x+1/y+1/z by logical deduction

For a proof of the sort 4/49+120c, it means that when c is equal to each of positive integers plus 0, there are 4/(49+120c)=1/x+1/y+1/z.

4/(49+120c) can be substituted by infinitely more a sum of 2 fractions:

$$4/(49+120c)$$

$$= 1/(13+30c) + 3/(13+30c)(49+120c)$$

$$= 1/(14+30c) + 7/(14+30c)(49+120c)$$

$$= 1/(15+30c) + 11/(15+30c)(49+120c)$$

$$= 1/(16+30c) + 15/(16+30c)(49+120c)$$
...
$$= 1/(13+\alpha+30c) + (3+4\alpha)/(13+\alpha+30c)(49+120c), \text{ where } \alpha \ge 0 \text{ and } c \ge 0$$

24 Apr 2020 20:27:45 EDT $_4$ Version 1 - Submitted to Proc. Amer. Math. Soc.

Algebra+NT+Comb+Logi

As listed above, it is observed that we can first let $1/(13+\alpha+30c)=1/x$, after that, prove $(3+4\alpha)/(13+\alpha+30c)(49+120c)=1/y+1/z$.

. . .

Proof: When c=0, the fraction 4/(49+120c) is exactly 4/49, then there are $4/49=1/14+1/99+1/(98\times99)$.

When c=1, the fraction 4/(49+120c) is exactly 4/169, then there are $4/169=1/52 + 1/(2\times169) + 1/(2^2\times169)$.

This shows that when c=0 and 1, 4/(49+120c) has been expressed into two of sum of 3 unit fractions.

Thereinafter, let us analyze and prove $(3+4\alpha)/(13+\alpha+30c)(49+120c)=1/y+1/z$ by c=2k and 2k+1, one after another, where k≥1.

The numerator $3+4\alpha$ except for itself as an integer, others can be turned into the sum of two integers, i.e. $1+(2+4\alpha)$, $2+(1+4\alpha)$, $3+(4\alpha)$, $(1+\alpha)+(2+3\alpha)$, $(2+\alpha)+(1+3\alpha)$, $(3+\alpha)+3\alpha$, $(3+2\alpha)+2\alpha$ and $(2+2\alpha)+(1+2\alpha)$.

For the denominator $(13+\alpha+30c)(49+120c)$, actually, merely need to convert $13+\alpha+30c$, and that can continue to have 49+120c.

For $13+\alpha+30c$ after evaluations of α , because begin with each constant i.e. 13, 14, 15...p..., there is $a \ge 0$ in like wise, so $13+\alpha+30c$ can be converted to p+a+30c where $a \ge 0$, $c \ge 0$, and $p \ge 13$.

Such being the case, so let c=2k, then the fraction $(3+4\alpha)/(p+a+30c)$ is exactly $(3+4\alpha)/(p+a+60k)$; again let c=2k+1, then the fraction $(3+4\alpha)/(p+a+30c)$ is exactly $(3+4\alpha)/(p+a+30+60k)$, where k≥1.

In fractions $(3+4\alpha)/(p+a+60k)$ and $(3+4\alpha)/(p+a+30+60k)$, the denominator 24 Apr 2020 20:27:45 EDT 5 Algebra+NT+Comb+Logi Version 1 - Submitted to Proc. Amer. Math. Soc. p+a+60k can be any integer \geq 73, and the denominator p+a+30+60k can be any integer \geq 103. Also, for the numerator 3+4 α , either it is an integer or the sum of two integers as listed above.

In any case, not only each numerator as listed above is smaller than a corresponding denominator p+a+60k or p+a+30+60k, but also p+a+60k and p+a+30+60k contain respectively integers of the whole multiple of $3+4\alpha$ and either of two integers which divide $3+4\alpha$ into.

Therefore, $(3+4\alpha)/(p+a+60k)$ can be expressed into a sum of two unit fractions, and $(3+4\alpha)/(p+a+30+60k)$ can be expressed into a sum of two unit fractions too, in which case c is equal to every integer >1.

If 3+4 α serve as an integer, and from this get an unit fraction, then can multiply the denominator by 2 to make a sum of two identical unit fractions, again convert the sum into a sum of two each other's-distinct unit fractions by the formula 1/2r+1/2r=1/(r+1)+1/r(r+1).

Let a sum of two unit fractions which express $(3+4\alpha)/(p+a+60k)$ is written into $1/\mu+1/\nu$, again let a sum of two unit fractions which express $(3+4\alpha)/(p+a+30+60k)$ is written into $1/\phi+1/\psi$.

In $1/\mu+1/\nu$ and $1/\phi+1/\psi$, multiply every denominator by 49+120c, then get $1/\mu+1/\nu=1/y+1/z$ and $1/\phi+1/\psi=1/y+1/z$.

To sum up, it is not difficult to get $4/(49+120c)=1/(13+\alpha+30c)+1/y+1/z$. Furthermore tidy up $1/(13+\alpha+30c)+1/y+1/z$, and uniform different letters which express same values, then get 4/(49+120c)=1/x+1/y+1/z. 6. Proving the sort 4/(121+120c)=1/x+1/y+1/z by logical deduction For a proof of the sort 4/(121+120c), it means that when c is equal to each of positive integers plus 0, there are 4/(49+120c)=1/x+1/y+1/z. 4/(121+120c) can be substituted by infinitely more a sum of 2 fractions: 4/(121+120c) = 1/(31+30c) + 3/(31+30c)(121+120c), = 1/(32+30c) + 7/(32+30c)(121+120c), = 1/(33+30c) + 11/(33+30c)(121+120c), = 1/(34+30c) + 15/(34+30c)(121+120c),... $= 1/(31+\alpha+30c) + (3+4\alpha)/(31+\alpha+30c)(121+120c),$ where $\alpha \ge 0$ and $c \ge 0$

As listed above, it is observed that we can first let $1/(31+\alpha+30c)=1/x$, after that, prove $(3+4\alpha)/(31+\alpha+30c)(121+120c)=1/y+1/z$.

Proof When c=0, the fraction 4/(121+120c) is exactly 4/121, then there are $4/121=1/(3\times11)+1/(3\times11^2+1)+1/(3\times11^2)(3\times11^2+1)$;

When c=1, the fraction 4/(121+120c) is exactly 4/241, then there are $4/241=1/(3^2\times7)+1/(2\times3\times241)+1/(2\times3^2\times7\times241)$.

This shows that when c=0 and 1, 4/(121+120c) has been expressed into two of sum of 3 unit fractions.

Thereinafter, let us analyze and prove $(3+4\alpha)/(31+\alpha+30c)(121+120c)=$ 1/y+1/z by c=2k and 2k+1, one after another, where k≥1.

The numerator $3+4\alpha$ except for itself as an integer, others can be turned

into the sum of two integers, i.e. $1+(2+4\alpha)$, $2+(1+4\alpha)$, $3+(4\alpha)$, $(1+\alpha)+(2+3\alpha)$, $(2+\alpha)+(1+3\alpha)$, $(3+\alpha)+3\alpha$, $(3+2\alpha)+2\alpha$ and $(2+2\alpha)+(1+2\alpha)$. For the denominator $(31+\alpha+30c)(121+120c)$, actually, merely need to convert $31+\alpha+30c$, and that can continue to have 121+120c.

For $31+\alpha+30c$ after evaluations of α , because begin with each constant i.e. 31, 32, 33...q..., there is $a \ge 0$ in like wise, so $31+\alpha+30c$ can be converted to q+a+30c where $a \ge 0$, $c \ge 0$, and $q \ge 31$.

Such being the case, so let c=2k, then the fraction $(3+4\alpha)/(q+a+30c)$ is exactly $(3+4\alpha)/(q+a+60k)$; again let c=2k+1, then the fraction $(3+4\alpha)/(q+a+30c)$ is exactly $(3+4\alpha)/(q+a+30+60k)$, where k≥1.

In fractions $(3+4\alpha)/(q+a+60k)$ and $(3+4\alpha)/(q+a+30+60k)$, the denominator q+a+60k can be any integer ≥ 91 , and the denominator p+a+30+60k can be any integer ≥ 121 . Also for the numerator $3+4\alpha$, either it is an integer or the sum of two integers as listed above.

In any case, not only each numerator as listed above is smaller than a corresponding denominator q+a+60k or q+a+30+60k, but also q+a+60k and q+a+30+60k contain respectively integers of the whole multiple of $3+4\alpha$ and either of two integers which divide $3+4\alpha$ into.

Therefore, $(3+4\alpha)/(q+a+60k)$ can be expressed into a sum of two unit fractions, and $(3+4\alpha)/(q+a+30+60k)$ can be expressed into a sum of two unit fractions too, in which case c is equal to every integer >1.

If $3+4\alpha$ serve as an integer, and from this get an unit fraction, then can

multiply the denominator by 2 to make a sum of two identical unit fractions, again convert the sum into a sum of two each other's-distinct unit fractions by the formula 1/2r+1/2r=1/(r+1)+1/r(r+1).

Let a sum of two unit fractions which express $(3+4\alpha)/(q+a+60k)$ is written into $1/\beta+1/\xi$, again let a sum of two unit fractions which express $(3+4\alpha)/(p+a+30+60k)$ is written into $1/\eta+1/\delta$.

In $1/\beta+1/\xi$ and $1/\eta+1/\delta$, multiply every denominator by 121+120c, then get $1/\beta+1/\xi=1/y+1/z$ and $1/\eta+1/\delta=1/y+1/z$.

To sum up, it is not difficult to get $4/(121+120c)=1/(31+\alpha+30c)+1/y+1/z$. Furthermore tidy up $1/(31+\alpha+30c)+1/y+1/z$, and uniform different letters which express same values, then get 4/(121+120c)=1/x+1/y+1/z.

Overall, the author has proved that the Erdös-Straus conjecture is tenable.

References

[1] J. W. Sander, On 4/x=1/x+1/y+1/z and Iwaniec' Half Dimensional Sieve; Journal of Number Theory, Volume 46, Issue 2, February 1994, Pages 123-136; https://www.sciencedirect.com/science/article/pii/S0022314X84710080?via%3Dihub

[2] Wolfram Mathworld, the web's most extensive mathematics resource; https://mathworld.wolfram.com/Erdos-StrausConjecture.html

[3] Konstantine Zelator, An ancient Egyptian problem: the diophantine equation 4/n=1/x+1/y+1/z, n>or=2; arXiv: 0912.2458; https://arxiv.org/search/?query=on+4%2Fn%3D1%2Fx%2B1%2Fy%2B1%2Fz&searchtype=title &source=header