Erdös-Straus Conjecture is Tenable

Zhang Tianshu
Nanhai West Oil Administrative Bureau
Zhanjiang city, Guangdong province, China
Email: chinazhangtianshu@126.com
xinshijizhang@hotmail.com

Abstract

First, divide all integers ≥ 2 in 8 kinds, then, formulates each of 7 kinds therein into a sum of 3 unit fractions. For unsolved one kind, again divide it in 3 genera, then, formulates each of 2 genera therein into a sum of 3 unit fractions. For unsolved one genus, further divide it in 5 sorts, then, formulates each of 3 sorts therein into a sum of 3 unit fractions. For unsolved two sorts i.e. $4 /(49+120 \mathrm{c})$ and $4 /(121+120 \mathrm{c})$ where $\mathrm{c} \geq 0$, the author has to depend on logical deduction to prove them.

AMS subject classification: 11D72, 11D45, 11P81
Keywords: Erdös-Straus conjecture, Diophantine equation, unit fraction.

Contents

\qquad

1. Introduction. P_{2}
2. Divide integers ≥ 2 in 8 kinds and formulate 7 kinds therein.............. P_{2}
3. Divide the unsolved kind in 3 genera and formulate 2 genera therein.... P_{3}
4. Divide the unsolved genus in 5 sorts and formulate 3 sorts therein........ P_{3}
5. Proving the sort $4 /(49+120 c)=1 / x+1 / y+1 / z$ by logical deduction..... P_{4}
6. Proving the sort $4 /(121+120 c)=1 / x+1 / y+1 / z$ by logical deduction... P_{10}
\qquadReferences

1. Introduction

Erdös-Straus conjecture relates to Egyptian fractions. In 1948, Paul Erdös conjectured that for any integer $n \geq 2$, there are invariably $4 / n=1 / x+1 / y+$ $1 / \mathrm{z}$, where x, y and z are positive integers, [1].

Later, Ernst G. Straus further conjectured that the equation's solutions x, y and z satisfy $\mathrm{x} \neq \mathrm{y}, \mathrm{y} \neq \mathrm{z}$ and $\mathrm{z} \neq \mathrm{x}$, because there are convertible $1 / 2 \mathrm{r}+1 / 2 \mathrm{r}=$ $1 /(\mathrm{r}+1)+1 / \mathrm{r}(\mathrm{r}+1)$ and $1 /(2 \mathrm{r}+1)+1 /(2 \mathrm{r}+1)=1 /(\mathrm{r}+1)+1 /(\mathrm{r}+1)(2 \mathrm{r}+1)$, where $\mathrm{r} \geq 1,[2]$.

Thus, the Erdös conjecture and the Straus conjecture are equivalent from each other, and they are called the Erdös-Straus conjecture collectively. As a general rule, the Erdös-Straus conjecture states that for every integer $n \geq 2$, there are positive integers x, y and z, such that $4 / n=1 / x+1 / y+1 / z$. Yet, the conjecture is yet both unproved and un-negated hitherto, [3].

2. Divide integers $\geq \mathbf{2}$ in $\mathbf{8}$ kinds and formulate $\mathbf{7}$ kinds therein

First, divide integers ≥ 2 into 8 kinds, i.e. $8 k+1,8 k+2,8 k+3,8 k+4,8 k+5$, $8 \mathrm{k}+6,8 \mathrm{k}+7$ and $8 \mathrm{k}+8$, where $\mathrm{k} \geq 0$, and that arrange them as follows orderly:
$\mathrm{K}, \quad 8 \mathrm{k}+1, \quad 8 \mathrm{k}+2, \quad 8 \mathrm{k}+3, \quad 8 \mathrm{k}+4, \quad 8 \mathrm{k}+5, \quad 8 \mathrm{k}+6, \quad 8 \mathrm{k}+7, \quad 8 \mathrm{k}+8$

0,	1	1	2,	3,	4,	5,	6,
1,	9,	10,	11,	12,	13,	14,	15,
2,	17,	18,	19,	20,	21,	22,	23,
3,	25,	26,	27,	28,	29,	30,	31,
				24,			
\ldots,							

Excepting $\mathrm{n}=8 \mathrm{k}+1$, formulate each of other 7 kinds as listed below:
(1) For $\mathrm{n}=8 \mathrm{k}+2$, there are $4 /(8 \mathrm{k}+2)=1 /(4 \mathrm{k}+1)+1 /(4 \mathrm{k}+2)+1 /(4 \mathrm{k}+1)(4 \mathrm{k}+2)$;
(2) For $\mathrm{n}=8 \mathrm{k}+3$, there are $4 /(8 \mathrm{k}+3)=1 /(2 \mathrm{k}+2)+1 /(2 \mathrm{k}+1)(2 \mathrm{k}+2)+1 /(2 \mathrm{k}+1)(2 \mathrm{k}+3)$;
(3) For $n=8 k+4$, there are $4 /(8 k+4)=1 /(2 k+3)+1 /(2 k+2)(2 k+3)+1 /(2 k+1)(2 k+2)$;
(4) For $n=8 k+5$, there are $4 /(8 k+5)=1 /(2 k+2)+1 /(8 k+5)(2 k+2)+1 /(8 k+5)(k+1)$;
(5) For $\mathrm{n}=8 \mathrm{k}+6$, there are $4 /(8 \mathrm{k}+6)=1 /(4 \mathrm{k}+3)+1 /(4 \mathrm{k}+4)+1 /(4 \mathrm{k}+3)(4 \mathrm{k}+4)$;
(6) For $\mathrm{n}=8 \mathrm{k}+7$, there are $4 /(8 \mathrm{k}+7)=1 /(2 \mathrm{k}+3)+1 /(2 \mathrm{k}+2)(2 \mathrm{k}+3)+1 /(2 \mathrm{k}+2)(8 \mathrm{k}+7)$;
(7) For $n=8 k+8$, there are $4 /(8 k+8)=1 /(2 k+4)+1 /(2 k+2)(2 k+3)+1 /(2 k+3)(2 k+4)$.

By this token, n as above 7 kinds of integers be suitable to the conjecture.

3. Divide the unsolved kind in 3 genera and formulate 2 genera therein

For $n=8 k+1$ with $k \geq 1$, divide it by the modulus 3 into 3 genera to get (1) the remainder 0 ; (2) the remainder 1 ; (3) the remainder 2.

Excepting the genus (2), formulate each of other 2 genera as listed below:
(8) For $n=8 k+1$ by the modulus 3 to the remainder 0 , i.e. let $k=3 t+1$ with $t \geq 0$, there are $4 /(8 k+1)=1 /(8 k+1) / 3+1 /(8 k+2)+1 /(8 k+1)(8 K+2)$ with $k \geq 1$, of course, $(8 \mathrm{k}+1) / 3$ at here is an integer.
(9) For $n=8 k+1$ by the modulus 3 to the remainder 2, i.e. let $k=3 t+2$ with $\mathrm{t} \geq 0$, there are $4 /(8 \mathrm{k}+1)=1 /(8 \mathrm{k}+2) / 3+1 /(8 \mathrm{k}+1)+1 /(8 \mathrm{k}+1)(8 \mathrm{k}+2) / 3$ with $\mathrm{k} \geq 2$, of course, $(8 \mathrm{k}+2) / 3$ at here is an integer.

4. Divide the unsolved genus in 5 sorts and formulate $\mathbf{3}$ sorts therein

For the unsolved genus $8 \mathrm{k}+1$ by the modulus 3 to the remainder 1, i.e. let $\mathrm{k}=3 \mathrm{t}$ with $\mathrm{t} \geq 1$, divide it into 5 sorts, i.e. $25+120 \mathrm{c}, 49+120 \mathrm{c}, 73+120 \mathrm{c}$, $97+120 \mathrm{c}$ and $121+120 \mathrm{c}$, where $\mathrm{c} \geq 0$. They are listed as the follows.

C, $25+120 \mathrm{c}, \quad 49+120 \mathrm{c}, \quad 73+120 \mathrm{c}, \quad 97+120 \mathrm{c}, \quad 121+120 \mathrm{c}$,

0,	25,	49,	73,	97,	121,
1,	145,	169,	193,	217,	241,
2,	205,	289,	313,	337,	361,
\ldots,	\ldots,	\ldots,	\ldots,	\ldots,	\ldots,

Excepting n as $49+120 \mathrm{c}$ and $121+120 \mathrm{c}$, formulate each of other 3 sorts below:
(10)For $n=25+120$ c, there are $4 /(25+120 c)=1 /(25+120 c)+1 /(50+240 c)+1 /(10+48 c)$;
(11) For $n=73+120 c$, there are $4 /(73+120 c)=1 /(73+120 c)(10+15 c)+1 /(20+30 c)+$ 1/(73+120c)(4+6c);
(12) For $n=97+120 \mathrm{c}$, there $\operatorname{are} 4 /(97+120 \mathrm{c})=1 /(25+30 \mathrm{c})+1 /(97+120 \mathrm{c})(50+60 \mathrm{c})+$ $1 /(97+120 c)(10+12 c)$.

For each of listed above 12 equalities that express $4 / n$ into a sum of 3 unit fractions, please, each of readers self to make a check respectively.

5. Proving the sort $4 /(49+120 c)=1 / x+1 / y+1 / z$ by logical deduction

For a proof of the sort $4 / 49+120 \mathrm{c}$, it means that when c is equal to each of positive integers plus 0 , there are $4 /(49+120 c)=1 / x+1 / y+1 / z$.
$4 /(49+120 c)$ can be substituted by infinitely more a sum of 2 fractions:
$4 /(49+120 c)$
$=1 /(13+30 c)+3 /(13+30 c)(49+120 c)$
$=1 /(14+30 c)+7 /(14+30 c)(49+120 c)$
$=1 /(15+30 c)+11 /(15+30 c)(49+120 c)$
$=1 /(16+30 c)+15 /(16+30 c)(49+120 c)$
$=1 /(13+\alpha+30 c)+(3+4 \alpha) /(13+\alpha+30 c)(49+120 c)$, where $\alpha \geqslant 0$ and $c \geqslant 0$

As listed above, it is observed that we can first let $1 /(13+\alpha+30 c)=1 / x$, after that, prove $(3+4 \alpha) /(13+\alpha+30 c)(49+120 c)=1 / y+1 / z$.

Proof. When c=0, the fraction $4 /(49+120 c)$ is exactly $4 / 49$, then there are $4 / 49=1 / 14+1 / 99+1 /(98 \times 99)$.

When $c=1$, the fraction $4 /(49+120 c)$ is exactly $4 / 169$, then there are $4 / 169=1 / 52+1 /(2 \times 169)+1 /\left(2^{2} \times 169\right)$.

This shows that when $\mathrm{c}=0$ and $1,4 /(49+120 \mathrm{c})$ has been expressed into two of sum of 3 unit fractions.

Thereinafter, let us analyze and prove $(3+4 \alpha) /(13+\alpha+30 c)(49+120 c)=1 / y+$ $1 / \mathrm{z}$ by $\mathrm{c}=2 \mathrm{k}$ and $2 \mathrm{k}+1$, one after another, where $\mathrm{k} \geq 1$.

The numerator $3+4 \alpha$ except for itself as an integer, others can be turned into the sum of two integers, i.e. $1+(2+4 \alpha), 2+(1+4 \alpha), 3+(4 \alpha)$, $(1+\alpha)+(2+3 \alpha),(2+\alpha)+(1+3 \alpha),(3+\alpha)+3 \alpha,(3+2 \alpha)+2 \alpha$ and $(2+2 \alpha)+(1+2 \alpha)$. For the denominator $(13+\alpha+30 c)(49+120 c)$, actually, merely need to convert $13+\alpha+30$ c, and that can continue to have $49+120$ c.

For $13+\alpha+30 \mathrm{c}$ after evaluations of α, because begin with each constant i.e.
$13,14,15 \ldots$ p..., there is $\mathrm{a} \geqslant 0$ in like wise, so $13+\alpha+30 \mathrm{c}$ can be converted to $p+a+30 c$ where $a \geqslant 0, c \geq 0$, and $p \geq 13$.

Such being the case, so let $c=2 k$, then the fraction $(3+4 \alpha) /(p+a+30 c)$ is exactly $(3+4 \alpha) /(p+a+60 k)$; again let $c=2 k+1$, then the fraction $(3+4 \alpha) /(p+a+30 c)$ is exactly $(3+4 \alpha) /(p+a+30+60 k)$, where $k \geq 1$.

In fractions $(3+4 \alpha) /(p+a+60 k)$ and $(3+4 \alpha) /(p+a+30+60 k)$, the denominator
$p+a+60 k$ can be any integer ≥ 73, and the denominator $p+a+30+60 k$ can be any integer ≥ 103. Also, for the numerator $3+4 \alpha$, either it is an integer or the sum of two integers as listed above.

In any case, not only each numerator as listed above is smaller than a corresponding denominator $\mathrm{p}+\mathrm{a}+60 \mathrm{k}$ or $\mathrm{p}+\mathrm{a}+30+60 \mathrm{k}$, but also $\mathrm{p}+\mathrm{a}+60 \mathrm{k}$ and $\mathrm{p}+\mathrm{a}+30+60 \mathrm{k}$ contain respectively integers of the whole multiple of $3+4 \alpha$ and either of two integers which divide $3+4 \alpha$ into.

Therefore, $(3+4 \alpha) /(p+a+60 k)$ can be expressed into a sum of two unit fractions, and $(3+4 \alpha) /(p+a+30+60 \mathrm{k})$ can be expressed into a sum of two unit fractions too, in which case c is equal to every integer >1.

If $3+4 \alpha$ serve as an integer, and from this get an unit fraction, then can multiply the denominator by 2 to make a sum of two identical unit fractions, again convert the sum into a sum of two each other's-distinct unit fractions by the formula $1 / 2 \mathrm{r}+1 / 2 \mathrm{r}=1 /(\mathrm{r}+1)+1 / \mathrm{r}(\mathrm{r}+1)$.

Let a sum of two unit fractions which express $(3+4 \alpha) /(p+a+60 k)$ is written into $1 / \mu+1 / \nu$, again let a sum of two unit fractions which express $(3+4 \alpha) /(p+a+30+60 k)$ is written into $1 / \varphi+1 / \psi$.

In $1 / \mu+1 / \nu$ and $1 / \varphi^{+1} / \psi$, multiply every denominator by $49+120 \mathrm{c}$, then get $1 / \mu+1 / \nu=1 / y+1 / z$ and $1 / \varphi+1 / \psi=1 / y+1 / z$.

To sum up, it is not difficult to get $4 /(49+120 c)=1 /(13+\alpha+30 c)+1 / y+1 / z$. Furthermore tidy up $1 /(13+\alpha+30 c)+1 / y+1 / z$, and uniform different letters which express same values, then get $4 /(49+120 c)=1 / x+1 / y+1 / z$.

6. Proving the sort $4 /(121+120 c)=1 / x+1 / y+1 / z$ by logical deduction

 For a proof of the sort $4 /(121+120 c)$, it means that when c is equal to each of positive integers plus 0 , there are $4 /(49+120 c)=1 / x+1 / y+1 / z$.$4 /(121+120 \mathrm{c})$ can be substituted by infinitely more a sum of 2 fractions:
4/(121+120c)
$=1 /(31+30 c)+3 /(31+30 c)(121+120 c)$,
$=1 /(32+30 \mathrm{c})+7 /(32+30 \mathrm{c})(121+120 \mathrm{c})$,
$=1 /(33+30 c)+11 /(33+30 c)(121+120 c)$,
$=1 /(34+30 c)+15 /(34+30 c)(121+120 c)$,
$=1 /(31+\alpha+30 \mathrm{c})+(3+4 \alpha) /(31+\alpha+30 c)(121+120 \mathrm{c})$, where $\alpha \geq 0$ and $\mathrm{c} \geq 0$.

As listed above, it is observed that we can first let $1 /(31+\alpha+30 c)=1 / x$, after that, prove $(3+4 \alpha) /(31+\alpha+30 c)(121+120 c)=1 / y+1 / z$.

Proof. When $\mathrm{c}=0$, the fraction $4 /(121+120 \mathrm{c})$ is exactly $4 / 121$, then there are $4 / 121=1 /(3 \times 11)+1 /\left(3 \times 11^{2}+1\right)+1 /\left(3 \times 11^{2}\right)\left(3 \times 11^{2}+1\right)$;

When $\mathrm{c}=1$, the fraction $4 /(121+120 \mathrm{c})$ is exactly $4 / 241$, then there are $4 / 241=1 /\left(3^{2} \times 7\right)+1 /(2 \times 3 \times 241)+1 /\left(2 \times 3^{2} \times 7 \times 241\right)$.

This shows that when $\mathrm{c}=0$ and $1,4 /(121+120 \mathrm{c})$ has been expressed into two of sum of 3 unit fractions.

Thereinafter, let us analyze and prove $(3+4 \alpha) /(31+\alpha+30 c)(121+120 c)=$ $1 / \mathrm{y}+1 / \mathrm{z}$ by $\mathrm{c}=2 \mathrm{k}$ and $2 \mathrm{k}+1$, one after another, where $\mathrm{k} \geq 1$.

The numerator $3+4 \alpha$ except for itself as an integer, others can be turned
into the sum of two integers, i.e. $1+(2+4 \alpha), 2+(1+4 \alpha), 3+(4 \alpha)$, $(1+\alpha)+(2+3 \alpha),(2+\alpha)+(1+3 \alpha),(3+\alpha)+3 \alpha,(3+2 \alpha)+2 \alpha$ and $(2+2 \alpha)+(1+2 \alpha)$.

For the denominator $(31+\alpha+30 c)(121+120 c)$, actually, merely need to convert $31+\alpha+30$ c, and that can continue to have $121+120$ c.

For $31+\alpha+30 \mathrm{c}$ after evaluations of α, because begin with each constant i.e.
$31,32,33 \ldots \mathrm{q} \ldots$, there is $\mathrm{a} \geqslant 0$ in like wise, so $31+\alpha+30 \mathrm{c}$ can be converted to $\mathrm{q}+\mathrm{a}+30 \mathrm{c}$ where $\mathrm{a} \geqslant 0, \mathrm{c} \geq 0$, and $\mathrm{q} \geq 31$.

Such being the case, so let $c=2 k$, then the fraction $(3+4 \alpha) /(q+a+30 c)$ is exactly $(3+4 \alpha) /(q+a+60 k)$; again let $c=2 k+1$, then the fraction $(3+4 \alpha) /(\mathrm{q}+\mathrm{a}+30 \mathrm{c})$ is exactly $(3+4 \alpha) /(\mathrm{q}+\mathrm{a}+30+60 \mathrm{k})$, where $\mathrm{k} \geq 1$.

In fractions $(3+4 \alpha) /(q+a+60 k)$ and $(3+4 \alpha) /(q+a+30+60 k)$, the denominator $q+a+60 k$ can be any integer ≥ 91, and the denominator $p+a+30+60 k$ can be any integer ≥ 121. Also for the numerator $3+4 \alpha$, either it is an integer or the sum of two integers as listed above.

In any case, not only each numerator as listed above is smaller than a corresponding denominator $\mathrm{q}+\mathrm{a}+60 \mathrm{k}$ or $\mathrm{q}+\mathrm{a}+30+60 \mathrm{k}$, but also $\mathrm{q}+\mathrm{a}+60 \mathrm{k}$ and $q+a+30+60 k$ contain respectively integers of the whole multiple of $3+4 \alpha$ and either of two integers which divide $3+4 \alpha$ into.

Therefore, $(3+4 \alpha) /(q+a+60 k)$ can be expressed into a sum of two unit fractions, and $(3+4 \alpha) /(q+a+30+60 k)$ can be expressed into a sum of two unit fractions too, in which case c is equal to every integer >1.

If $3+4 \alpha$ serve as an integer, and from this get an unit fraction, then can
multiply the denominator by 2 to make a sum of two identical unit fractions, again convert the sum into a sum of two each other's-distinct unit fractions by the formula $1 / 2 \mathrm{r}+1 / 2 \mathrm{r}=1 /(\mathrm{r}+1)+1 / \mathrm{r}(\mathrm{r}+1)$.

Let a sum of two unit fractions which express $(3+4 \alpha) /(q+a+60 k)$ is written into $1 / \beta+1 / \xi$, again let a sum of two unit fractions which express $(3+4 \alpha) /(p+a+30+60 k)$ is written into $1 / \eta+1 / \delta$.

In $1 / \beta+1 / \xi$ and $1 / \eta+1 / \delta$, multiply every denominator by $121+120 \mathrm{c}$, then get $1 / \beta+1 / \xi=1 / y+1 / z$ and $1 / \eta+1 / \delta=1 / y+1 / z$.

To sum up, it is not difficult to get $4 /(121+120 c)=1 /(31+\alpha+30 c)+1 / y+1 / z$. Furthermore tidy up $1 /(31+\alpha+30 c)+1 / y+1 / z$, and uniform different letters which express same values, then get $4 /(121+120 c)=1 / x+1 / y+1 / z$.

Overall, the author has proved that the Erdös-Straus conjecture is tenable.

References

[1] J. W. Sander, On $4 / x=1 / x+1 / y+1 / z$ and Iwaniec' Half Dimensional Sieve; Journal of Number Theory, Volume 46, Issue 2, February 1994, Pages 123-136;
https://www.sciencedirect.com/science/article/pii/S0022314X84710080?via\%3Dihub
[2] Wolfram Mathworld, the web's most extensive mathematics resource; https://mathworld.wolfram.com/Erdos-StrausConjecture.html
[3] Konstantine Zelator, An ancient Egyptian problem: the diophantine equation $4 / \mathrm{n}=1 / \mathrm{x}+1 / \mathrm{y}+1 / \mathrm{z}, \mathrm{n}>$ or $=2$; arXiv: 0912.2458 ;
https://arxiv.org/search/?query=on+4\%2Fn\%3D1\%2Fx\%2B1\%2Fy\%2B1\%2Fz\&searchtype=title \&source=header

