A stochastic interpretation trial on the Hans de Vries formular for the finestructure – constant $\alpha \approx \frac{1}{137.036}$.

The Hans de Vries formular :

$$\alpha = \Gamma^2 . e^{-\frac{\pi^2}{2}}$$

where
$$\Gamma = 1 + \frac{\alpha}{(2\pi)^0} \left(1 + \frac{\alpha}{(2\pi)^1} \left(1 + \frac{\alpha}{(2\pi)^2} \left(1 + \dots \right) + \frac{\alpha}{(2\pi)^2} \left(1 + \dots \right) \right) \right)$$

 $Someone\ can\ proof\ that\ the\ HdV\ formular\ is\ identical\ to$

$$\alpha = \left[\sum_{n=0}^{\infty} \frac{\alpha^n}{(2\pi)^{\binom{n}{2}}}\right]^2 .e^{-\frac{\pi^2}{2}}$$

then

$$\sqrt{\alpha} = \left(1 + \frac{\alpha}{(2\pi)^0} + \frac{\alpha}{(2\pi)^0} \cdot \frac{\alpha}{(2\pi)^1} + \frac{\alpha}{(2\pi)^0} \cdot \frac{\alpha}{(2\pi)^1} \cdot \frac{\alpha}{(2\pi)^2} + \cdots \right) \cdot e^{-\frac{\pi^2}{4}}$$

$$\frac{\alpha}{(2\pi)^0}$$

 \mathbb{R}

S⁰

$$Volume(S^0) = (2\pi)^0$$

$$\frac{\alpha}{(2\pi)^1}$$

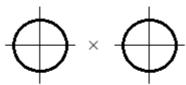
 \mathbb{C}

$$Volume(S^1) = (2\pi)^1$$



$$\frac{\alpha}{(2\pi)^2}$$

$$\mathbb{C} \times \mathbb{C} = \mathbb{H}$$



$$Volume(S^1 \times S^1) = (2\pi)^2$$

$$S^1 \times S^1$$

Let us write

$$B = \left\{ \frac{\alpha}{(2\pi)^i} \mid i = 0, 1, 2, 3, \ldots \right\} \ \mathit{Shapeprobabilities}$$

We now want to define the formular by the stochastic first moment which is the expectation value E(X).

For that we take the squareroot of the HdV formular.

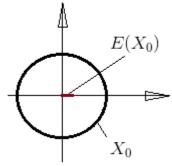
$$\sqrt{\alpha} = \Gamma . e^{-\frac{\pi^2}{4}}$$

First.The factor $e^{-\frac{\pi^2}{4}}$ can be seen as the $\sqrt{expectation \ value}$ of the wrapped normal distribution $f_{WN}(\theta,0,\pi)$

details see

 $https://en.wikipedia.org/wiki/Wrapped_normal_distribution$

 $chapter\ moments.$



We write $E(X_0) = e^{-\frac{\pi^2}{2}}$ $X_0 = \{x \mid x = e^{i\theta} , 0 \le \theta < 2\pi\}$

$$\Gamma = \left(1 + \frac{\alpha}{(2\pi)^0} + \frac{\alpha}{(2\pi)^0} \cdot \frac{\alpha}{(2\pi)^1} + \frac{\alpha}{(2\pi)^0} \cdot \frac{\alpha}{(2\pi)^1} \cdot \frac{\alpha}{(2\pi)^2} + \cdots \right)$$

To understand this factor we have to think about α as a probability that acts on different shapes (Toris as random variables).

In our case we have a hierarchy of toris \mathbb{T}^n where

$$\mathbb{T}^n = S^1 \times S^1 \times \dots \times S^1 \quad n \text{ times for } n > 0$$

Additional we define:

$$\mathbb{T}^{\{\}}$$
 is a point.
 $\mathbb{T}^0 = [0, 1]$ is a line

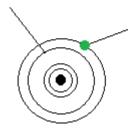
Then we can write a hierarhy

$$H=\mathbb{T}^{\{\}},\mathbb{T}^0,\mathbb{T}^1,\mathbb{T}^2,\dots$$

One factor $\frac{\alpha}{(2\pi)^n}$ can be thought as that the probability α acts on \mathbb{T}^n . The denominator is the normingfactor (torus – volume).

It is similar but not the same as thinking about the electron on the n th shell.

Before an electron reaches the n-th shell it must climb up to the n-1 th shell.



$$\Gamma = \left(1 + \frac{\alpha}{(2\pi)^0} + \frac{\alpha}{(2\pi)^0} \cdot \frac{\alpha}{(2\pi)^1} + \frac{\alpha}{(2\pi)^0} \cdot \frac{\alpha}{(2\pi)^1} \cdot \frac{\alpha}{(2\pi)^2} + \cdots \right)$$

Then for example this summand of the Γ sum can be seen as that α acts on the shell's (toris) $\mathbb{T}^{\{\}}$ and \mathbb{T}^0 and \mathbb{T}^1 and \mathbb{T}^2 .

This is like building a human tower.

Then Γ is the sum of all this possibilities.

The HdV formular uses an infinit series (sum) but it is possible to cut the series on $N \geqslant 3$ and get values for the finestructure-constant which are within the range of the CODATA value for α .

CODATA:

$$\alpha = 0,0072973525693(11)$$

 $\alpha^{-1} = 137,035999084(21)$

For example we say that the finestructure-constant is defined by N=3. Then we get the finit formular

$$\sqrt{\alpha} = \left(1 + \frac{\alpha}{(2\pi)^0} + \frac{\alpha}{(2\pi)^0} \cdot \frac{\alpha}{(2\pi)^1} + \frac{\alpha}{(2\pi)^0} \cdot \frac{\alpha}{(2\pi)^1} \cdot \frac{\alpha}{(2\pi)^2}\right) \cdot e^{-\frac{\pi^2}{4}}$$

Solving this euqation by iteration we get

 $\alpha \approx 0,00729735256865318$

$$\alpha^{-1} \approx 137,035999095842$$

So finally in words:

We have calculated a value for the finestructure – constant by an expectation value and therefore only based on stochastic methods.