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Abstract 

 In the field of deep learning, traditional 

classifier takes input data and output predicted 

labels. The conditional GAN receives the latent 

vector and the condition vector, and generates 

data with the desired condition. In this paper, I 

propose an inverted generator classifier that 

predicts the label of input data by finding 

condition vectors and latent vectors that can 

generate input data by using a generator of 

conditional GAN. Inverted Generator Classifier 

uses the trained generator of conditional GAN 

as it is. To find the data closest to the input data, 

Inverted Generator Classifier takes the latent 

vector of the generator for each condition as a 

variable and model parameters as constants, 

and performs gradient descent repeatedly to 

find the data closest to the input data. Then, 

among the data generated for each condition, 

the condition vector of the data closest to the 

input data becomes the predicted label. 

Inverted Generator Classifier is slow when 

predicting because it predicts based on 

gradient descent, but accuracy is high and very 

robust against adversarial attacks [1] such as 

noise. 

 

Abbreviations 

Inverted Generator Classifier: IGC 

 

1.  Inverted Generator Classifier 

1.1 Training 

 IGC uses a trained generator of conditional 

GAN as a model. Any of several methods [2, 3, 

4] for training conditional GAN can be used. 

Also, no additional training is required after 

training the conditional GAN. 

 

1.2 Prediction 

 IGC performs prediction through two stages: 

latent space search and decision. Latent space 

search takes the latent vector as variables for 

each condition, and model parameters as 

constants, and uses two losses: data difference 

loss and latent restriction loss, to find the latent 
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vector that can generate the data closest to the 

input data. The latent space search is to find a 

latent vector that minimizes these two losses 

through multiple gradient descent. 

 The data difference loss is the loss to find the 

latent vector that can generate the data closest 

to the input data for each condition. The latent 

restriction loss is a loss for the latent vector not 

to search beyond the latent space too much. 

 The loss for IGC to perform latent space search 

is as follows. 

𝐿 = 𝐿𝐷𝐷 + λ𝐿𝑅𝐿𝐿𝑅 

𝐿𝐷𝐷 = ∑ 𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑑)

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (𝑐𝑛𝑑,𝑙𝑡𝑛) 𝑖𝑛 𝑆𝑖𝑛_𝑣𝑒𝑐

 

𝐿𝐿𝑅

= ∑ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑎𝑏𝑠(𝑧_𝑠𝑐𝑜𝑟𝑒(𝑙𝑡𝑛)))

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (𝑐𝑛𝑑,𝑙𝑡𝑛) 𝑖𝑛 𝑆𝑖𝑛_𝑣𝑒𝑐

 

𝐿 is the loss for IGC to perform latent space 

search through gradient descent. 𝐿𝐷𝐷 is data 

difference loss, and 𝐿𝐿𝑅 is latent restriction loss. 

λ𝐿𝑅  is the weight of latent restriction loss. 

𝑆𝑖𝑛_𝑣𝑒𝑐 is a set of tuples 𝑐𝑛𝑑 (condition vector) 

and  𝑙𝑡𝑛 (latent vector). 𝑆𝑖𝑛_𝑣𝑒𝑐  has 𝑐𝑛𝑑 

corresponding to each class as many as the 

number of classes. For example, if there are 10 

classes, 𝑆𝑖𝑛_𝑣𝑒𝑐 has 10 tuples and the condition 

vectors of each tuple are all different. 

 𝐺 is a trained generator of conditional GAN. 

𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛)  is one data generated by 𝐺  by 

receiving 𝑐𝑛𝑑  and 𝑙𝑡𝑛 . 𝑑  is one input data. 

𝑑𝑖𝑓 is a function that measures the difference 

between two data. 𝑧_𝑠𝑐𝑜𝑟𝑒 is a function that 

calculates the z score of each element of the 

input vector based on the distribution of latent 

vectors used when training 𝐺. For example, if 

𝐺  was trained by 3 dimension latent vector, 

each element of which follows a Gaussian 

distribution (mean=0, standard deviation=1), 

𝑧_𝑠𝑐𝑜𝑟𝑒([1,2, −3]) is [1,2, −3]. 𝑎𝑏𝑠 is a function 

that converts each element of the input vector 

to an absolute value. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is a function to 

find the average of each element of the input 

vector. 

 To reduce 𝐿, latent vectors for each conditions 

are taken as a variable and model parameters 

as constants, and gradient descent is 

performed. If gradient descent is repeatedly 

performed a certain number of times, the latent 

space search stage ends.  

 In the decision stage, a difference between 

data generated for each condition and input 

data is measured by a 𝑑𝑖𝑓 function, and IGC 

decides the condition with the smallest 

difference as a predicted label. 

 

 

 

 

 



Label Condition Vector Latent vector 

num 

0 

1 

(untrainable) 

0 

(untrainable) 

0 

(untrainable) 

… 0.3 

(trainable) 

-1.0 

(trainable) 

… 

num 

1 

0 

(untrainable) 

1 

(untrainable) 

0 

(untrainable) 

… -0.2 

(trainable) 

0.1 

(trainable) 

… 

num 

2 

0 

(untrainable) 

0 

(untrainable) 

1 

(untrainable) 

… 0.7 

(trainable) 

-0.3 

(trainable) 

… 

… … … … … … … … 

Fig.1 Example of input vector of IGC 

 

Fig.2 Prediction process of IGC 

Fig. 1 is an example of an input vectors of IGC. 

The condition vector, which is an untrainable 

variable, does not change when performing 

gradient descent. However, the latent vector, 

which is a trainable variable, changes with every 

gradient descent. Fig. 2 shows the process of 

IGC prediction. The left-most column is data 

generated for each condition before gradient 

descent. Initially, the latent vector is initialized 

with the average of the latent vector 

distribution used during generator training. 

That is, at first, all latent vectors for each 

condition are the same. Later, the latent vector 

is changed to produce an image close to the 

input image through gradient descent. The 

right-most column shows data generated for 

each condition after performing gradient 

descent 900 times. After performing a gradient 



descent to some extent, the input condition 

vector to generate data with the closest 

distance to the input image be the predicted 

label of the IGC. 

 

1.3 Multi-label classification 

In the case of multi-class classification on one 

data, IGC can classify through one prediction. 

However, in order for IGC to perform multi-

label classification on one data, prediction is 

required as many as the number of labels. That 

is, the condition vector for one label is set as 

an untrainable variable, and the condition 

vector of remaining labels and latent vector are 

set as trainable variables. 

 

2. Experiment 

 Tensorflow 2.1 without compile option and 

rtx2080ti was used for the experiment. In this 

experiment, I used the training dataset of the 

MNIST handwriting number dataset [5] (60000 

images for training, 10000 images for test, 

28x28x1 resolution). 

 I used conditional activation GAN with LSGAN 

adversarial loss to train conditional GAN. The 

generator receives a 10-dimensional condition 

vector and a 256-dimensional latent vector. All 

elements of the latent vector used in training 

follow the Gaussian distribution with mean = 0 

and standard deviation = 1. The average FID [6] 

for each condition of the generator after 

training was measured to be 2.0. Since the 

MNIST dataset has one channel and their 

resolution is too low for the inception network, 

the width, height, and channel are tripled for 

the FID evaluation (84 × 84 × 3). 

 For prediction of IGC, gradient descent was 

performed 100 times for each image, and Adam 

optimizer [7] (learning rate = 0.001, beta1=0.9, 

beta2 = 0.999) was used. The latent restriction 

loss (λ𝐿𝑅) is 0.03 and the 𝑑𝑖𝑓 function is mean 

absolute error. All latent vectors are initialized 

to 0. 1000 data randomly selected from the 

MNIST test dataset were used for the prediction 

evaluation. 

 First, I tested the change in accuracy according 

to the change in the intensity of random 

Gaussian noise to test images. 

The original image was normalized from -0.5 to 

0.5, and Gaussian noise with an average of 0 

and a standard deviation of 1 was multiplied by 

sigma σ and added to the original image, and 

clipped -0.5~0.5 to keep the image stay within 

range.  

 

𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 + 𝜎 ∗ 𝑛𝑜𝑖𝑠𝑒 

 

Test Data size 1000 1000 1000 

Sigma 0 0.2 0.4 

Accuracy (%) 95.1 94.7 91.2 

Time(sec) 2526 2535 2586 

 

 

 



  

Fig.3 Correct case of IGC predict. Without noise. 

Number 6 in right side is the input image. 

 

 

Fig.4 Incorrect case of IGC prediction. Number 

9 in right side is the input image but IGC 

predicted number 8. 

 

Fig.3 Correct case of IGC predict. sigma=0.4. 

Noised number 2 in right side is the input 

image. 

 

 

Fig.4 Incorrect case of IGC prediction. Noised 

number 8 in right side is the input image but 

IGC predicted number 0. 

 



3. Conclusion 

Inverted Generator Classifier is very slow when 

predicting because it predicts based on 

gradient descent, but accuracy is high and very 

robust against adversarial attacks such as noise. 
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