
Inverted Generator Classifier

accurate and robust gradient-descent based classifier

JeongIk Cho1

Dept. of Computer Science and Engineering1

College of Engineering1

Konkuk University, Seoul, Korea1

jeongik. jo. 01@gmail. com1

Abstract

 In the field of deep learning, traditional

classifier takes input data and output predicted

labels. The conditional GAN receives the latent

vector and the condition vector, and generates

data with the desired condition. In this paper, I

propose an inverted generator classifier that

predicts the label of input data by finding

condition vectors and latent vectors that can

generate input data by using a generator of

conditional GAN. Inverted Generator Classifier

uses the trained generator of conditional GAN

as it is. To find the data closest to the input data,

Inverted Generator Classifier takes the latent

vector of the generator for each condition as a

variable and model parameters as constants,

and performs gradient descent repeatedly to

find the data closest to the input data. Then,

among the data generated for each condition,

the condition vector of the data closest to the

input data becomes the predicted label.

Inverted Generator Classifier is slow when

predicting because it predicts based on

gradient descent, but accuracy is high and very

robust against adversarial attacks [1] such as

noise.

Abbreviations

Inverted Generator Classifier: IGC

1. Inverted Generator Classifier

1.1 Training

 IGC uses a trained generator of conditional

GAN as a model. Any of several methods [2, 3,

4] for training conditional GAN can be used.

Also, no additional training is required after

training the conditional GAN.

1.2 Prediction

 IGC performs prediction through two stages:

latent space search and decision. Latent space

search takes the latent vector as variables for

each condition, and model parameters as

constants, and uses two losses: data difference

loss and latent restriction loss, to find the latent

mailto:jeongik.jo.01@gmail.com

vector that can generate the data closest to the

input data. The latent space search is to find a

latent vector that minimizes these two losses

through multiple gradient descent.

 The data difference loss is the loss to find the

latent vector that can generate the data closest

to the input data for each condition. The latent

restriction loss is a loss for the latent vector not

to search beyond the latent space too much.

 The loss for IGC to perform latent space search

is as follows.

𝐿 = 𝐿𝐷𝐷 + λ𝐿𝑅𝐿𝐿𝑅

𝐿𝐷𝐷 = ∑ 𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑑)

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (𝑐𝑛𝑑,𝑙𝑡𝑛) 𝑖𝑛 𝑆𝑖𝑛_𝑣𝑒𝑐

𝐿𝐿𝑅

= ∑ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑎𝑏𝑠(𝑧_𝑠𝑐𝑜𝑟𝑒(𝑙𝑡𝑛)))

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (𝑐𝑛𝑑,𝑙𝑡𝑛) 𝑖𝑛 𝑆𝑖𝑛_𝑣𝑒𝑐

𝐿 is the loss for IGC to perform latent space

search through gradient descent. 𝐿𝐷𝐷 is data

difference loss, and 𝐿𝐿𝑅 is latent restriction loss.

λ𝐿𝑅 is the weight of latent restriction loss.

𝑆𝑖𝑛_𝑣𝑒𝑐 is a set of tuples 𝑐𝑛𝑑 (condition vector)

and 𝑙𝑡𝑛 (latent vector). 𝑆𝑖𝑛_𝑣𝑒𝑐 has 𝑐𝑛𝑑

corresponding to each class as many as the

number of classes. For example, if there are 10

classes, 𝑆𝑖𝑛_𝑣𝑒𝑐 has 10 tuples and the condition

vectors of each tuple are all different.

 𝐺 is a trained generator of conditional GAN.

𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛) is one data generated by 𝐺 by

receiving 𝑐𝑛𝑑 and 𝑙𝑡𝑛 . 𝑑 is one input data.

𝑑𝑖𝑓 is a function that measures the difference

between two data. 𝑧_𝑠𝑐𝑜𝑟𝑒 is a function that

calculates the z score of each element of the

input vector based on the distribution of latent

vectors used when training 𝐺. For example, if

𝐺 was trained by 3 dimension latent vector,

each element of which follows a Gaussian

distribution (mean=0, standard deviation=1),

𝑧_𝑠𝑐𝑜𝑟𝑒([1,2, −3]) is [1,2, −3]. 𝑎𝑏𝑠 is a function

that converts each element of the input vector

to an absolute value. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is a function to

find the average of each element of the input

vector.

 To reduce 𝐿, latent vectors for each conditions

are taken as a variable and model parameters

as constants, and gradient descent is

performed. If gradient descent is repeatedly

performed a certain number of times, the latent

space search stage ends.

 In the decision stage, a difference between

data generated for each condition and input

data is measured by a 𝑑𝑖𝑓 function, and IGC

decides the condition with the smallest

difference as a predicted label.

Label Condition Vector Latent vector

num

0

1

(untrainable)

0

(untrainable)

0

(untrainable)

… 0.3

(trainable)

-1.0

(trainable)

…

num

1

0

(untrainable)

1

(untrainable)

0

(untrainable)

… -0.2

(trainable)

0.1

(trainable)

…

num

2

0

(untrainable)

0

(untrainable)

1

(untrainable)

… 0.7

(trainable)

-0.3

(trainable)

…

… … … … … … … …

Fig.1 Example of input vector of IGC

Fig.2 Prediction process of IGC

Fig. 1 is an example of an input vectors of IGC.

The condition vector, which is an untrainable

variable, does not change when performing

gradient descent. However, the latent vector,

which is a trainable variable, changes with every

gradient descent. Fig. 2 shows the process of

IGC prediction. The left-most column is data

generated for each condition before gradient

descent. Initially, the latent vector is initialized

with the average of the latent vector

distribution used during generator training.

That is, at first, all latent vectors for each

condition are the same. Later, the latent vector

is changed to produce an image close to the

input image through gradient descent. The

right-most column shows data generated for

each condition after performing gradient

descent 900 times. After performing a gradient

descent to some extent, the input condition

vector to generate data with the closest

distance to the input image be the predicted

label of the IGC.

1.3 Multi-label classification

In the case of multi-class classification on one

data, IGC can classify through one prediction.

However, in order for IGC to perform multi-

label classification on one data, prediction is

required as many as the number of labels. That

is, the condition vector for one label is set as

an untrainable variable, and the condition

vector of remaining labels and latent vector are

set as trainable variables.

2. Experiment

 Tensorflow 2.1 without compile option and

rtx2080ti was used for the experiment. In this

experiment, I used the training dataset of the

MNIST handwriting number dataset [5] (60000

images for training, 10000 images for test,

28x28x1 resolution).

 I used conditional activation GAN with LSGAN

adversarial loss to train conditional GAN. The

generator receives a 10-dimensional condition

vector and a 256-dimensional latent vector. All

elements of the latent vector used in training

follow the Gaussian distribution with mean = 0

and standard deviation = 1. The average FID [6]

for each condition of the generator after

training was measured to be 2.0. Since the

MNIST dataset has one channel and their

resolution is too low for the inception network,

the width, height, and channel are tripled for

the FID evaluation (84 × 84 × 3).

 For prediction of IGC, gradient descent was

performed 100 times for each image, and Adam

optimizer [7] (learning rate = 0.001, beta1=0.9,

beta2 = 0.999) was used. The latent restriction

loss (λ𝐿𝑅) is 0.03 and the 𝑑𝑖𝑓 function is mean

absolute error. All latent vectors are initialized

to 0. 1000 data randomly selected from the

MNIST test dataset were used for the prediction

evaluation.

 First, I tested the change in accuracy according

to the change in the intensity of random

Gaussian noise to test images.

The original image was normalized from -0.5 to

0.5, and Gaussian noise with an average of 0

and a standard deviation of 1 was multiplied by

sigma σ and added to the original image, and

clipped -0.5~0.5 to keep the image stay within

range.

𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 + 𝜎 ∗ 𝑛𝑜𝑖𝑠𝑒

Test Data size 1000 1000 1000

Sigma 0 0.2 0.4

Accuracy (%) 95.1 94.7 91.2

Time(sec) 2526 2535 2586

Fig.3 Correct case of IGC predict. Without noise.

Number 6 in right side is the input image.

Fig.4 Incorrect case of IGC prediction. Number

9 in right side is the input image but IGC

predicted number 8.

Fig.3 Correct case of IGC predict. sigma=0.4.

Noised number 2 in right side is the input

image.

Fig.4 Incorrect case of IGC prediction. Noised

number 8 in right side is the input image but

IGC predicted number 0.

3. Conclusion

Inverted Generator Classifier is very slow when

predicting because it predicts based on

gradient descent, but accuracy is high and very

robust against adversarial attacks such as noise.

4. References

[1] Xiaoyong Yuan, Pan He, Qile Zhu, Xiaolin Li

Adversarial Examples: Attacks and Defenses for

Deep Learning

https://arxiv.org/abs/1712.07107

[2] Mehdi Mirza, Simon Osindero

“Conditional Generative Adversarial Nets”, arXiv

preprint arXiv:1411.1784, 2014.

https://arxiv.org/abs/1411.1784 (accessed 16

February 2020)

[3] Augustus Odena, Christopher Olah,

Christopher Olah, Jonathon B Shlens, Jonathon

Shlens

Conditional image synthesis with auxiliary

classifier GANs

ICML'17: Proceedings of the 34th International

Conference on Machine Learning – Volume 70,

2017, pp. 2642-2651

[4] JeongIk Cho, Kyoungro Yoon

Conditional Activation GAN: Improved Auxiliary

Classifier GAN

http://vixra.org/abs/1912.0204

[dataset] [5] Yann LeCun, Corinna Cortes,

Christopher J.C. Burges

THE MNIST DATABASE of handwritten digits

http://yann.lecun.com/exdb/mnist/

[6] Heusel, Martin and Ramsauer, Hubert and

Unterthiner, Thomas and Nessler, Bernhard and

Hochreiter, Sepp

GANs Trained by a Two Time-Scale Update Rule

Converge to a Local Nash Equilibrium Advances

in Neural Information Processing Systems 30

(NIPS), 2017, pp. 6626-6637

http://papers.nips.cc/paper/7240-gans-

trainedby-a-two-t

[7] Diederik P. Kingma, Jimmy Ba

Adam: A Method for Stochastic Optimization

https://arxiv.org/abs/1412.6980

https://arxiv.org/abs/1712.07107
https://arxiv.org/abs/1411.1784
http://vixra.org/abs/1912.0204
http://yann.lecun.com/exdb/mnist/
http://papers.nips.cc/paper/7240-gans-trainedby-a-two-t
http://papers.nips.cc/paper/7240-gans-trainedby-a-two-t
https://arxiv.org/abs/1412.6980

