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Abstract

One-stage object detectors like SSD [1] and YOLO [2] are able to speed up existing two-stage detectors like Faster
R-CNN [3] by removing the object proposal stage and making up for the lost performance in other ways. Nonetheless,
the same approach is not easily transferable to instance segmentation task. Current one-stage instance segmentation
methods can be simply classified into segmentation-based methods which segment first then do clustering, and
proposal-based methods which detect first then predict masks for each instance proposal. Proposal-based methods
always enjoy a better mAP; by contrast, segmentation-based methods are generally faster when inferencing. In this
work, we first propose a one-stage segmentation-based instance segmentation solution, in which a pull loss and a
push loss are used for differentiating instances. We then propose two post-processing methods, which provide a

trade-off between accuracy and speed.

Introduction

With the continuous decline in hardware costs and the rapid increase in the amount of data collected, the concept
of deep learning, which was proposed in the 1980s, has spread all over the globe overnight. And this tipping point
happened in the field of computer vision. Alexnet [4] reduced the top-5 error rate by ten percent in the ImageNet
image classification competition compared with the previous year’s champion. After the surprising success of
Alexnet, deep learning has achieved unprecedented results in more and more fields, and it has surprised people time
and time again on many tasks that were previously considered impossible by computers. Nowadays, deep learning
has penetrated deeply into every aspect of people’s lives, such as speech recognition [5], Language translation [0],

esports [7].

In the computer vision field, four types of tasks are most commonly used in benchmarks and real-life tasks. They
are image classification, object detection, semantic segmentation, and instance segmentation. The task of image
classification requires binary labels indicating whether objects are present in an image; see Figure 1(a). Currently,

the TmageNet [3] dataset contains over 14 million labeled images and has enabled significant advances in image



(a) Image classification (b) Object detection

(c) Semantic segmentation (d) Instance segmentation

Figure 1: A demo image from MS COCO dataset [9]. 4 types of tasks that are the most commonly used in
benchmarks and real life tasks: (a)Image classification, (b)Object detection, (c)Semantic segmentation, (d)Instance
segmentation

classification. Object detection entails both stating that an object belonging to a specified class is present, and
localizing it in the image with a squared bounding box; see Figure 1(b). The task of semantic segmentation requires
that each pixel of an image be labeled as belonging to a category. Compared to the aforementioned object detection
task, individual instances of objects do not need to be segmented, Figure 1(c). Instance segmentation as the most
challenging task can be seen as a combination of object detection and semantic segmentation, where pixels are

labeled using per-instance segmentations; see Figure 1(d).

In this work, we focus on instance segmentation task. As the most challenging one among four classic computer
vision tasks, instance segmentation has both the characteristics of semantic segmentation, which is pixel-level
classification and of object detection, localizing and differentiating different instances, even though they are of the
same class. The well known Mask R-CNN [10] is the first outstanding instance segmentation model using deep
neural network, which extends classic object detection work — Faster R-CNN by adding an additional branch
for predicting object masks in parallel with the existing branch for bounding box regression and class prediction.
Nonetheless, Mask R-CNN, as a two-stage detector, suffers from its low inferencing speed. In some real-time
applications, however, speed is critical. For instance, Autonomous cars have to make decisions in a limited time to

avoid wrong actions.

Our work focus on one-stage instance segmentation. Inspired by previously proposed Associative Embedding [11]
mainly for multiperson pose estimation, we introduce a pull loss and a push loss to distinguish instances belonging

to the same class. Pull loss works as a drawing-force that draws embeddings together and push loss works as a



repelling-force that pushes embeddings apart from each other. By doing so, pixels belonging to the same instance

are separately tagged.

Related works

Researches on one-stage instance segmentation has two main directions: proposal-based and segmentation-based.
Proposal-based approaches detect objects first then predict corresponding masks. Segmentation-based approaches,
however, perform semantic segmentation of the image first, then clustering them into different object instances with

particularly designed instance-aware features.

One-stage proposal-based methods:

Fully Convolutional Instance-aware Semantic Segmentation [12] FCIS is the first fully convolutional
end-to-end solution for instance segmentation task. The work uses a region proposal network (RPN) to generate
proposals. To introduce translation-variant property, a k x k position-sensitive score map that corresponds to k x
k evenly partitioned cells of objects is introduced to encode relative position information. Each score represents
the likelihood of the pixel belongs to some object instance at a relative position in terms of the overall image. The
final instance mask is then produced by assembling its k x k cells from the corresponding score maps. In this way,
a pixel can have different scores in different instances as long as the pixel is at different relative positions in the

instances.

YOLACT Real-time Instance Segmentation [13] Similar to typical anchor-based object detectors YOLACT
has two branches in the prediction heads: one branch to predict c¢ class confidences, and the other to predict 4
bounding box regressors. For mask coefficient prediction, the work simply adds a third branch in parallel that
predicts k mask coefficients, one corresponding to each prototype. YOLACT breaks up instance segmentation task
into two parallel ones: first generating an array of k global prototype masks over the entire image, second predicting
a set of linear combination coefficients per instance. Then producing a full-image instance segmentation from these
two components: for each instance, linearly combine the prototypes using the corresponding predicted coefficients

and then crop with a predicted bounding box.

One-stage segmentation-based methods:

SSAP: Single-Shot Instance Segmentation With Affinity Pyramid [14] SSAP introduces a pixel-pair
affinity pyramid, which computes the probability that two pixels belong to the same instance in a hierarchical
manner. The work jointly learns instance-agnostic semantic segmentation labels and instance-aware affinity pyramid
in a unified model. For each pixel, a small r x r window is learned, where each grid in the window corresponds to

a pixel in its surrounding and the value represents the likelihood that two pixels belong to the same instance.

Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth [15]

The work learns an offset vector for each pixel, pointing to its object’s center. To locate the object’s centers, the
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Figure 2: The white arrows indicate the intra-cluster pulles loss which pull embeddings belonging to the same
instance towards their embeddings centers. The black double-headed arrow indicate the inter-cluster push losses
which pushes clusters that are close to each other apart. The length of these arrows indicate the power of the force.
The pull loss and push loss are only activated when the distances reach a margin (hinge loss). These margins are
called 9y for pull loss and 6,ysp for push loss, which are denoted by dotted circles.

work learns a seed map for each semantic class. Unlike the standard regression approach, the work also learns an
optimal clustering region for each object and by doing so the losses are relaxed for pixels far away from the center.
At inference time, the procedure is to sample the pixel with the highest value in the seed map and use that location
as instance center. At the same location, the sigma value indicates the region of the object is then taken. By
using this center and accompanying sigma, the pixels are clustered into one instance. The work next mask out all

clustered pixels in the seed map and continue sampling until all pixels in the seed map are masked.

Method

Overview

The naive idea of our proposed work for clustering pixels belonging to the same instance together is to predict
an embedding for each pixel in addition to the semantic segmentation score. The pixels with similar embeddings
should be grouped together and otherwise be separated into different instances. We focus on not the absolute value

of the embeddings, instead, the distances between embeddings are only concerns.

To achieve this, we impose a pull loss and push loss on the predicted embeddings. The pull loss assesses how well
the predicted embeddings belonging to one instance are grouped together. Simultaneously, the push loss assesses
how well the predicted embeddings not belonging to one instance are clearly separated. Specifically, we retrieve the
predicted embeddings for pixels at ground truth locations for a certain class; we then calculate the mean values of
all embeddings at locations within each instance. Pull loss for each ground instance is then calculated by the sum

of the distances between each embedding within the instance and its mean embedding values. Push loss is achieved
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Figure 3: First row illustrates different scenarios of the output of the network. Second row illustrates two post-
processing method, which provide a trade-off between time efficiency and accuracy. Method 1 is fast but less
accurate and method 2 is more accurate but more time consuming.

by a fixed number subtracted by the distance between 2 instances and we apply push loss to all combinations of 2

different instances, see Figure 2.

Network architecture

In this work, we combine embedding prediction with the well-performed semantic segmentation network DeepLabv3+
[16], which employs an Atrous Spatial Pyramid Pooling(ASPP) structure used for expanding conceptional field and
a decoder structure for improving segmentation boundary accuracy. We increase the number of final output chan-
nels from C to C + K, where C denotes the number of classes and K is the length of the embedding. In other
words, in parallel with the output of semantic segmentation labels, we add an embedding prediction head. All

layers before the final output layer are shared for semantic segmentation and embedding prediction.

Loss function

The intuition of our loss function is that embeddings located within the same instance should end up close to

each other, while embeddings belonging to different instances should end up far apart. Alejandro et al.[1] propose



a grouping loss function, which has two terms: one to minimize the sum of squared errors between all values of
embeddings within each instance and mean value of these embeddings; and another term to maximize the distance
between the embedding means of all possible pairs of any two instances. In our loss function, we follow a similar
idea and name the loss for drawing embeddings together as pull loss and the loss for pushing embedding means

away as push loss.

Pull loss

Pull loss can be seen as an intra-instance force that draws embeddings towards the embedding mean. Different
from the loss used by [11] we slightly relax the restriction of pulling all embeddings towards a single ground-truth
value, which increases model stability and makes the weighs easier to be trained. The goal of the pull loss is
modified to draw embeddings into a circle with mean embeddings as the center and dy,,;; as the radius. When the

embeddings fall in the circle, it will not contribute to the loss anymore.

Push loss

Push loss can be seen as an inter-cluster force that pushes clusters away from each other, increasing the distance
between the cluster centers (embedding means). Like pull loss, the push losses are also hinged, the losses are only
activated when the distance between two cluster centers are close to some extend. We set a pre-defined dp,sp for

the push loss.

Regularization loss

Regularization loss is introduced as a small pull-force that draws all cluster centers towards the origin, to keep
the model stable.

Loss function

The total loss can be written as a combination of three losses above. To be specific, the overall per-class loss

function is a weighted sum of the pull loss, push loss and regularization loss:
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C
Ltotal = Z Lc (5)
c=1

In the functions above: K is the number of ground truth instances belonging to one class, Ny is the number of
pixels of instance k, Sy is the set of pixels of instance k, e; is the embedding of pixel at location i, ux is the mean
embedding of instance k (the cluster center), || - ||, is L, norm distance, and [z]; = max(0,z) denotes the hinge.
Oputr and dpysp, are the thresholds for the hinged pull and push loss respectively. C' is the number of classes, L.

denotes the loss for class c.

Post processing

First we consider the ideal situation where all embeddings are fallen within a distance of d,,;; from their corre-
sponding embedding centers and all embedding centers are at least d apart from each other, where dpusn = 40puir-
Under this scenario, every embedding lays closer to embeddings belonging to its own cluster than to any other
embeddings belonging to other clusters, see Figure 3(a). When inferencing, after semantic segmenting, we can first
randomly choose a pixel of a certain class, then use a threshold of 24,,;; and all pixels with embeddings within this
distance from the embedding of the chosen pixel belong to the same instance. Then we tag these pixels and run
the process again on all un-tagged pixels until all pixels of this class are tagged. Likewise, We repeat this random
choice, threshold and tag process for all classes. It should be noted that embeddings are class-agnostic, which means

all classes share the same group of embeddings.

In practice, however, things will not be such perfect. Case 1: Embeddings belonging to the same instance will
not always ideally lay within the radius of ground truth embedding centers, see Figure 3(b). Case 2: The distances

between embedding centers could be less than 4 times of the radius of each embedding cluster, Figure 3(c).

To handle this issue, the first thing we can do is to increase the difference between d and v when training and
to use a threshold for tagging larger than 2d,,; but still less than 0.56,,sn, when inferencing (Figure 3(d)). By
using a larger distance between 26, and 0.5psn, clusters are easier to differentiate. The robustness is therefore

increased when an embedding close to an embedding center is chosen.

However if we unfortunately selected an outlier to begin thresholding, it still could happen that a real cluster
is clustered into two sub-clusters and embeddings belonging to two adjacent clusters are mis-clustered into one.
To further alleviate this problem, we introduce a variant of k-means algorithm. As before, we randomly select an
un-tagged pixel and do thresholding. Next, we calculate the embedding mean of the selected group of embeddings
and use the mean as the new center to do thresholding again. The process keeps until the mean is converged. This
process can gradually draw the cluster of selected embeddings from a low-density area (which is near the periphery
of a ground truth embedding cluster) to a high-density area, which is closer to the ground truth embedding cluster

area. The process is described in Figure 3(e).



semantic segmentation post-processing AP

DeepLabv3+ center-fixed 23.4
DeepLabv3+ center-shift 24.9
ground truth mask center-fixed 30.6

ground truth mask center-shift 31.7

Table 1: Evaluation on COCO val2017 split. Different semantic segmentation proposal methods and post-processing
methods are used. A big leap can be seen by replacing the semantic segmentation proposal from DeepLabv3+ to
the ground truth mask, which is shown on the 1st and the 3rd row.

threshold AP | threshold AP

0.6 24.6 14 31.6
0.8 27.4 1.6 30.9
1.0 30.8 1.8 29.6

1.2 31.7 2.0 29.1

Table 2: Influence of using a different value of threshold for grouping when inferencing. Ground truth mask and
center-shift method are also compared. The AP increases first and then decreases as the threshold goes up.

Experiments

Training details

We choose the large-scale object detection benchmark MS COCO dataset [9], and use the train2017 split (115K
images) for training and val2017 split(5K images) for reporting results. The input images are resized with the
longer side being 513 while the aspect ratio keeps. Only left-right random flip with a probability of 0.5 is used for
data augmentation. DeepLabv3+ with 50-layer Resnet [17] pretrained on Pascal VOC dataset [18] is borrowed as
off-the-shelf semantic segmentation base network. Embedding prediction branch is randomly initialized with xavier
initializer [19]. We first fix the Resnet and train the ASPP and Decoder structure of DeepLabv3+ with learning
rate of 0.001 for 80 epochs and train all parts for an extra 60 epochs with learning rate of 0.0001. We train the
model with Adam optimizer [20]. Batch normalization is used with weights decay of 0.99 and with batch size set
as 4 on single RTX2060s graphic card.

The dimension of embeddings is set to 4 for MS COCO challenge. In terms of loss function, we set a =1, f =1
and v = 0.001. In our experiment we set the margin for hinge loss as dpyy = 0.2 and dpusp, = 3. When inferencing,

threshold set as 1.2 gives the best result.

Results

Our proposed method can be splited into two sub-tasks: semantic segmentation task and grouping task. The
semantic segmentation task solely depends on DeepLabv3+ network and the grouping task depends on embedding
prediction task and post-processing task. Consequently, the performance of grouping highly depends on the task

of semantic segmentation, as if a pixel is misclassified, there will be no remedial measures for grouping it correctly.



Figure 4: Some examples on MS COCO val2017 split. The first row demonstrates the ground truth and the second
row illustrates corresponding instance segmentation results based on ground truth semantic segmentations and
center-shift post-processing.

Therefore, it is reasonable that we evaluate the grouping task separately since this sub-task embodies the core idea

of our proposed work.

We first evaluate the performance of the overall network(DeepLabv34) with post-processing method 1 (center-
fixed). Then we replace the post-processing method with method 2 (center-shift). After that, we also report
performance for post-processing method 1 and 2 based on ground truth semantic segmentation results. The results
of all experiments are recorded in Table 1. It is obvious that the performance of the overall network can be
improved by a better semantic segmentation output. Table 2 illustrates the influence of using a different threshold
value for grouping when inferencing. Ground truth mask and center-shift method are used in this experiment.
The performance improved first while increasing the value of the threshold, as more embeddings belonging to the
same instances are correctly clustered. After passing the peak, the performance begins to drop as the value of
the threshold keeps increasing. The reason is that too many embeddings are allocated into one cluster, even when
they are far from each other. Some final results on COCO val2017 can be seen in Figure 4, where the first row
demonstrates the ground truth and second row are corresponding instance segmentation results based on ground

truth semantic segmentations.



Conclustion

In

this work, we first proposed a method for differentiating instances among semantic segmentation belonging

to the same class. The network predicts an embedding for each pixel in the image. Then a pull loss that draws

embeddings belonging to the same instances and a push loss that forces embeddings belonging to different instances

move apart are applied. When inferencing, two post-processing methods are introduced, which provide a trade-off

between time efficiency and accuracy. The center-fixed method uses a fixed threshold and therefore enjoys a fast

speed; the center-shift method, however, is more accurate but needs more time. Compared to SOTA counterparts,

our work still has much room for improvement. Some possible refinement includes using larger batch size on multiple

GPUs, using larger input image size and better semantic segmentation proposal network.
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