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Part 1. The Introduction

1. Let us begin with a short Introduction

The Riemann zeta function and the Riemann Hypothesis are two interconnected concepts in mathe-

matics, specifically in the field of number theory. Let’s start with a brief introduction to the Riemann

zeta function.The Riemann zeta function, denoted by ζ(s), is a mathematical function that was first

introduced by the German mathematician Bernhard Riemann in 1859. It is defined for complex num-

bers s with a real part greater than 1, and it can be extended analytically to other complex numbers

as well.The Riemann zeta function is defined by the infinite series:

ζ(−s) = 1(−s) + 2(−s) + 3(−s) + 4(−s) + ...

This series converges (i.e., it has a finite value) when the real part of s is greater than 1. For example,

when s = 2, the series becomes:

ζ(2) = 12 + 22 + 32 + 42 + ...

This is known as the Basel problem, and it was famously solved by the Swiss mathematician Leonhard

Euler, who found that ζ(2) equals π2

6
.

1.1. Euler the great grandfather of zeta function. In 1737, Leonard Euler published a paper

where he derived a tricky formula that pointed to a wonderful connection between the infinite sum of

the reciprocals of all natural integers (zeta function in its simplest form) and all prime numbers.

1 +
1

2
+

1

3
+

1

4
+

1

5
+ ... =

2.3.5.7.11....

1.2.4.6.12....

Now:

1 +

(
1

2

)
+

(
1

2

)2

+

(
1

2

)3

+

(
1

2

)4

... =
2

1

1 +

(
1

3

)
+

(
1

3

)2

+

(
1

3

)3

+

(
1

3

)4

... =
3

2

...

Euler product forms of zeta function when s > 1:

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1 +

1

ps
+

1

p2s
+

1

p3s
+

1

p4s
...

)
Equivalent to:

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

1

1− P−s

To carry out the multiplication on the right, we need to pick up exactly one term from every sum that

is a factor in the product and, since every integer admits a unique prime factorization; the reciprocal

of every integer will be obtained in this manner - each exactly once. This was originally the method[
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by which Euler discovered the formula. There is a certain sieving property that we can use to our

advantage:

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+

1

5s
+ . . .

1

2s
ζ(s) =

1

2s
+

1

4s
+

1

6s
+

1

8s
+

1

10s
+ . . .

Subtracting the second equation from the first we remove all elements that have a factor of 2:

(
1− 1

2s

)
ζ(s) = 1 +

1

3s
+

1

5s
+

1

7s
+

1

9s
+

1

11s
+

1

13s
+ . . .

Repeating for the next term:

1

3s

(
1− 1

2s

)
ζ(s) =

1

3s
+

1

9s
+

1

15s
+

1

21s
+

1

27s
+

1

33s
+ . . .

Subtracting again we get:

(
1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1 +

1

5s
+

1

7s
+

1

11s
+

1

13s
+

1

17s
+ . . .

where all elements having a factor of 3 or 2 (or both) are removed.

It can be seen that the right side is being sieved. Repeating infinitely for
1

ps
where p is prime, we get:

. . .

(
1− 1

11s

)(
1− 1

7s

)(
1− 1

5s

)(
1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1

Dividing both sides by everything but the ζ(s) we obtain:

ζ(s) =
1(

1− 1
2s

) (
1− 1

3s

) (
1− 1

5s

) (
1− 1

7s

) (
1− 1

11s

)
. . .

This can be written more concisely as an infinite product over all primes p:

ζ(s) =
∏

p prime

1

1− p−s

To make this proof rigorous, we need only to observe that when ℜ(s) > 1, the sieved right-hand side

approaches 1, which follows immediately from the convergence of the Dirichlet series for ζ(s).[
7 of 95
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1.2. Riemann the grandfather of zeta function. Riemann might had seen the following relation

between zeta function and eta function (also known as alternate zeta function) which converges for all

values Re(s) > 0.

ζ(s) =
∞∑
n=1

1

ns
=⇒

∞∑
n=1

2

(2n)s
=

1

2s−1
ζ(s)

Now subtracting the latter from the former we get:(
1− 1

2s−1

)
ζ(s) =

1

1s
− 1

2s
+

1

3s
− . . . =

∞∑
n=1

(−1)n−1 1

ns
=: η(s) =⇒ ζ(s) =

(
1− 21−s

)−1
η(s)

Then Riemann might had realised that he could analytically continue zeta function from the above

equation for 1 ̸= Re (s) > 0 after re-normalizing the potential problematic points. In his seminal paper

Riemann showed that zeta function have the property of analytic continuation in the whole complex

plane except for s=1 where the zeta function has its pole. Zeta function satisfies Riemann’s functional

equation.

ζ(s) = 2sπ(s−1) sin

(
πs

2

)
Γ(1− s)ζ(1− s)

Riemann Hypothesis is all about non trivial zeros of zeta function. There are trivial zeros which occur

at every negative even integer. There are no zeros for s > 1. All other zeros lies at a critical strip

0 < s < 1. Now, let’s turn our attention to the Riemann Hypothesis. The Riemann Hypothesis is

one of the most famous unsolved problems in mathematics, named after Bernhard Riemann. It states

that all non-trivial zeros of the Riemann zeta function lie on a critical line inside the critical strip.

This critical line has a real part of 1
2
.To put it simply, if the Riemann Hypothesis is true, it would

mean that all the interesting solutions of the equation ζ(s) = 0 lie on this critical line. The Riemann

Hypothesis has far-reaching consequences in number theory and has connections to the distribution of

prime numbers. Many results in number theory have been proven assuming the truth of the Riemann

Hypothesis.Despite its significance, the Riemann Hypothesis remains unproven. Mathematicians have

made significant progress in understanding the behavior of the zeta function, but a proof or disproof

of the Riemann Hypothesis still eludes us. It stands as one of the most challenging and intriguing

problems in mathematics, attracting the attention of researchers for over a century.

Showing that there are no zeros with real part 1 - Jacques Hadamard and Charles Jean de la Vallée-

Poussin independently prove the prime number theorem which essentially says that if there exists a limit

to the ratio of primes up to a given number and that numbers natural logarithm that should be equal

to 1. When I started reading about number theory I wondered that if prime number theorem is proved

then what is left. The biggest job is done. I questioned myself why zeta function cannot be defined

at 1. Calculus has got set of rules for checking convergence of any infinite series, sometime especially

when we are encapsulating infinities into unity, those rules may fall short to check the convergence of

infinite series. In spite of that Euler was successful proving sum to product form and calculated zeta[
8 of 95

]



Surajit Ghosh, Kolkata, India

values for some numbers by hand only. Leopold Kronecker proved and interpreted Euler’s formulas is

the outcome of passing to the right-sided limit as s → 1+. I decided I will stick to Great Grandpa

Euler’s approach in attacking the problem and I will investigate further how zeta function blows up

to infinity at 1 and renormalize the infinity introducing some new mathematical tools which may be

missing now in the present context.

Part 2. The Lemmas

2. Let us work out the lemmas related to factorial

In this section we will work out factorial related some new mathematics which will help us to prove

Riemann Hypothesis.

2.1. Recalling Gamma and Pi function. Euler in the year 1730 proved that the following indefinite

integral gives the factorial of x for all real positive numbers,

x! = Π(x) =

∫ ∞

0

txe−tdt, x > 1

Euler’s Pi function satisfies the following recurrence relation for all positive real numbers.

Π(x+ 1) = (x+ 1)Π(x)

In 1768, Euler defined Gamma function, Γ(x), and extended the concept of factorials to all real negative

numbers, except zero and negative integers. Γ(x), is an extension of the Pi function, with its argument

shifted down by 1 unit.

Γ(x) =

∫ ∞

0

tx−1e−tdt

Euler’s Gamma function is related to Pi function as follows:

Γ(x+ 1) = Π(x) = x!

Euler’s Gamma function have the following properties:

• Γ(z) =
∫∞
0
e−ttz−1dt for z ∈ C,ℜ(z) > 0;

• Γ is analytic on C\{0, −1, −2, . . .};
• Γ has a simple pole with residue (−1)n

n!
at z = −n for n = 0, 1, 2, ...;

• Γ(z + 1) = zΓ(z) for z ∈ C\{0, −1, −2, . . .};
• Γ(x) = (x− 1)! for x ∈ Z > 0.

2.2. Introduction of Delta function. Now let us extend factorials of negative integers by way of

shifting the argument of Gamma function further down by 1 unit. Hoping that capital Delta will not

be confused with Dirac’s small delta function let us define capital Delta function as follows:[
9 of 95
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Lemma 1.

∆(x) =

∫ ∞

0

tx−2e−tdt

I am not trying to somehow imprint my name in this function as neither of my names initial can be

related to Delta. Still I choose Delta because in cyclic sense Epsilon will sit exactly beween Pi and

Gamma in Greek Alphabet making a semi circle, but nature has a complete cycle, my following work

will complete the circle, so the very next letter after Gamma should the best candidate to represent 1+

something, 1+ something squared pattern or something - 1, something squared - 1 pattern. Hope people

will recognise this biased definition of mine. Let z ∈ C with ℜ(z) > 0. Then using integration by parts,

∆(z + 2) =

∫ ∞

0

tz+1e−tdt

=
[
− tz+1e−t

]∞
0
+

∫ ∞

0

(z + 1)tz+1−1e−tdt

= lim
t→∞

(−tz+1e−t)− (0e−0) + (z + 1)

∫ ∞

0

tz+1−1e−tdt

= (z + 1)

∫ ∞

0

tze−tdt

= (z + 1)∆(z + 1)

= (z + 1)

∫ ∞

0

tze−tdt

= (z + 1)

([
− tze−t

]∞
0
+

∫ ∞

0

ztz−1e−tdt

)

= (z + 1)

(
lim
t→∞

(−tze−t)− (0e−0) + z

∫ ∞

0

tz−1e−tdt

)

= (z + 1)z

∫ ∞

0

tz−1e−tdt

= (z + 1)z∆(z)

Similar to Gamma function Delta function will then have the following properties:

• ∆(z) =
∫∞
0
e−ttz−2dt for z ∈ C,ℜ(z) > 0;

• ∆ is analytic on C\{−1, −2, . . .};
• ∆ has a simple pole with residue (−1)n

n!
at z = −n for n = 1, 2, ...;

• ∆(z + 1) = z∆(z) for z ∈ C\{−1, −2, . . .};
• ∆(x) = (x− 2)! for x ∈ Z ≥ 0.

The extended Delta function shall have the following recurrence relation.

∆(x+ 2) = (x+ 2)∆(x+ 1) = (x+ 2)(x+ 1)∆(x) = x![
10 of 95
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2.3. Removing Poles of Gamma and Pi function. Newly defined Delta function is related to

Euler’s Gamma function and Pi function as follows:

Lemma 2.

∆(x+ 2) = Γ(x+ 1) = Π(x)

To make it simple we will be taking examples on integers but we will not forget the same may be true

in case other numbers such as fractions, complex numbers etc. within the extended domain.Whereever

necessary we will use that extended domain without recalling. Plugging into x = 2 above

∆(4) = Γ(3) = Π(2) = 2

Plugging into x = 1 above

∆(3) = Γ(2) = Π(1) = 1

Plugging into x = 0 above

∆(2) = Γ(1) = Π(0) = 1

Now these three factorial functions are behaving like triangle of harmonic-trio based on the fact they

all are analytic around -1. Gamma is playing the role of the central function whereas Pi and Delta are

acting like its harmonic pair. When we look deeper we will see following the definition of Delta function

zeta function is harmonised first if not simultaneously (see the proof of Riemann hypothesis) which in

turn harmonises these factorial functions.Γ(z) = u+ iv analytic means u and v which can be expressed

as variants of zeta series must be harmonic conjugates and so are u and -v because iΓ(z) = −v + iu .

The same kind of harmonic relation is observed above, therefore harmonicity among Gamma, Pi and

Delta functions are established both based on the harmonicity of zeta series or independent of zeta series.

The real and imaginary parts of Γ(z) = 1
z
must be harmonic away from the origin given the fact Γ(z)

can be defined on zero now.Since the real and imaginary parts of Γ(z) = 1
z
are harmonic, the same must

be true of the respective integrals, which is limit of linear combinations of such functions. Since the

circle is complete and it is finite and Gamma, Pi and Delta functions trio are continuous, interchang-

ing the order of integration is not a problem now. We can bring two more harmonic function centered

around Delta function into the picture to unify the symmetries among these fantastic five factorial func-

tions as follows. Plugging into x = −1 above we can remove poles of Gamma and Pi function as follows:

∆(1) = Γ(0) = Π(−1) =

∫ 0

−∞
t1−1etdt =

[
et

]0
−∞

Refer:2.5

=⇒ ∆(1) = Γ(0) = Π(−1) = (e0)− lim
t→−∞

et = 1

=⇒ ∆(1) = Γ(0) = Π(−1) = 1 = 1.∆(0) = Γ(−1) = Π(−2)

=⇒ ∆0 = Γ(−1) = Π(−2) = 1[
11 of 95
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Plugging into x = −2 above we can remove poles of Gamma and Pi function as follows:

∆(0) = Γ(−1) = Π(−2) =

∫ 0

−∞
t2−2etdt =

[
et

]0
−∞

Refer:2.6

=⇒ ∆(0) = Γ(−1) = Π(−2) = (e0)− lim
t→−∞

et = 1 = −2.∆(−1)

=⇒ ∆(0) = Γ(−1) = Π(−2) = 1 = −1.∆(−1) = Γ(−2) = Π(−3)

=⇒ ∆(−1) = Γ(−2) = Π(−3) = −1

Continuing further we can remove poles of Gamma and Pi function as follows:

Plugging into x = −3 above and equating with result found above

∆(−1) = Γ(−2) = Π(−3) = −2.− 1.∆(−2) = −1 =⇒ ∆(−2) = Γ(−3) = Π(−4) = −1

2

Plugging into x = −4 above and equating with result found above

∆(−2) = Γ(−3) = Π(−4) = −3.− 2.∆(−3) = −1

2
=⇒ ∆(−3) = Γ(−4) = Π(−5) = − 1

12

Plugging into x = −5 above and equating with result found above

∆(−3) = Γ(−4) = Π(−5) = −4.− 3.∆(−4) = − 1

12
=⇒ ∆(−4) = Γ(−5) = Π(−6) = − 1

48

Plugging into x = −6 above and equating with result found above

∆(−4) = Γ(−5) = Π(−6) = −5.− 4.∆(−5) = − 1

48
=⇒ ∆(−5) = Γ(−6) = Π(−7) = − 1

240

Plugging into x = −7 above and equating with result found above

∆(−5) = Γ(−6) = Π(−7) = −6.− 5.∆(−6) = − 1

240
=⇒ ∆(−6) = Γ(−7) = Π(−8) = − 1

1440

Plugging into x = −8 above and equating with result found above

∆(−6) = Γ(−7) = Π(−8) = −7.− 6.∆(−7) = − 1

1440
=⇒ ∆(−7) = Γ(−8) = Π(−9) = − 1

10080

...

And the pattern continues up to negative infinity.[
12 of 95
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2.4. Relation between Delta and Zeta function.

Lemma 3.

∆(x) =

∫ ∞

0

tx−2e−tdt substituting t = nu =⇒ dt = ndn we get

=⇒ ∆(x) =

∫ ∞

0

(nu)x−2e−nundu

=⇒ ∆(x) =
nx

n

∫ ∞

0

ux−2e−nudu

=⇒ ∆(x)
n

nx
=

∫ ∞

0

ux−2e−nudu

=⇒ ∆(x)
∞∑
n=1

n

nx
=

∞∑
n=1

∫ ∞

0

ux−2e−nudu

=⇒ ∆(x)
∞∑
n=1

1

nx

∞∑
n=1

n =
∞∑
n=1

∫ ∞

0

ux−2e−nudu

=⇒ ∆(x)ζ(x)ζ(−1) =

∫ ∞

0

ux−2

∞∑
n=1

e−nundu =

∫ ∞

0

ux−2

(
1

1− e−u
− 1

)
du

=⇒ 1

2
∆(x)ζ(x) =

∫ ∞

0

ux−2

(
e−u

1− e−u

)
du =

∫ ∞

0

ux−2du

eu − 1

2.5. Periodic harmonic conjugate of Gamma function.

Lemma 4. We can define periodic Gamma function as harmonic conjugate of capital Gamma function

as follows:

Γp(x) =

∫ 0

−∞
tx+1etdt

Let z ∈ C with ℜ(z) < 0. Then using integration by parts,

Γp(z − 1) =

∫ 0

−∞
tzetdt

=
[
tzet
]0
−∞

−
∫ 0

−∞
ztz−1etdt

= (0e0)− lim
t→−∞

(tzet) + z

∫ ∞

0

tz−1etdt

= z

∫ ∞

0

tz−1etdt

= zΓ(z) = Γ(z + 1)

= −zΓp(z − 2)

Similar to Gamma function periodic Gamma function will then have the following properties:[
13 of 95

]



NUMBERS ARE 3 DIMENSIONAL

• Γp(z) =
∫ 0

−∞ ettz+1dt for z ∈ C,ℜ(z) < 0;

• Γp is analytic on C\{0, +1, +2, . . .};
• Γp has a simple pole with residue (−1)n

n!
at z = n for n = 0, 1, 2, ...;

• Γp(z + 1) = zΓp(z) for z ∈ C\{0, +1, +2, . . .};

The periodic Gamma function shall have the following recurrence relation.

Γp(x+ 1) = xΓp(x)

2.6. Periodic harmonic conjugate of Delta function.

Lemma 5. We can define periodic Delta function as harmonic conjugate of capital Delta function as

follows:

∆p(x) =

∫ 0

−∞
tx+2etdt

Let z ∈ C with ℜ(z) < 0. Then using integration by parts,

∆p(z − 2) =

∫ 0

−∞
tz+1etdt

=
[
tz+1et

]0
−∞

−
∫ 0

−∞
(z + 1)tz+1−1etdt

= (0e0)− lim
t→−∞

(t(z+1)et) + (z + 1)

∫ ∞

0

tzetdt

= (z + 1)

∫ ∞

0

tzetdt

= (z + 1)Γ(z + 1) = Γ(z + 2)

= −(z + 1)∆p(z − 1)

= −z(z + 1)∆p(z − 2)

Similar to Delta function periodic Delta function will then have the following properties:

• ∆p(z) =
∫ 0

−∞ ettz+1dt for z ∈ C,ℜ(z) < 0;

• ∆p is analytic on C\{ +1, +2, +3, . . .};
• ∆p has a simple pole with residue (−1)n

n!
at z = n for n = 1, 2, 3, ...;

• ∆p(z + 1) = z∆p(z) for z ∈ C\{ +1, +2, +3, . . .};

The periodic Delta function shall have the following recurrence relation.

∆p(x+ 2) = x∆p(x+ 1)[
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2.7. Closure of factorial operation. Now these fantastic five factorial functions shall have the fol-

lowing inter functional relationship.

∆(x+ 2) = Γ(x+ 1) = Π(x) = Γp(x− 1) = ∆p(x− 3)

Lemma 6. We can use fantastic five factorial functions for closure of factorials. For negative even

numbers the formulas are as follows. For odd numbers we just need to multiply or divide the result by

the corresponding succeeding or preceding odd number.

−1

∆(−3)
=

−1

Γ(−4)
=

−1

Π(−5)
=

−1

−Γp(−6)
=

−1

−∆p(−7)
= −2! = 2

−1

∆(−5)
=

−1

Γ(−6)
=

−1

Π(−7)
=

−1

−Γp(−8)
=

−1

−∆p(−9)
= −4! = 12

−1

∆(−7)
=

−1

Γ(−8)
=

−1

Π(−9)
=

−1

−Γp(−10)
=

−1

−∆p(−11)
= −6! = 720

−1

∆(−9)
=

−1

Γ(−10)
=

−1

Π(−11)
=

−1

−Γp(−12)
=

−1

−∆p(−13)
= −8! = 40320

−1

∆(−11)
=

−1

Γ(−12)
=

−1

Π(−13)
=

−1

−Γp(−14)
=

−1

−∆p(−15)
= −10! = 3628800

−1

∆(−13)
=

−1

Γ(−14)
=

−1

Π(−15)
=

−1

−Γp(−16)
=

−1

−∆p(−17)
= −12! = 479001600

−1

∆(−15)
=

−1

Γ(−16)
=

−1

Π(−17)
=

−1

−Γp(−18)
=

−1

−∆p(−19)
= −14! = 87178291200

...

And the pattern continues up to negative infinity.

For x < 0, x = −2,−4,−6... we can generalise the pattern as follows.

−1

∆(x− 1)
=

−1

Γ(x− 2)
=

−1

Π(x− 3)
=

−1

−Γp(x− 4)
=

−1

−∆p(x− 5)
= x!

For x < 0, x = −3,−5,−7... we can generalise the pattern as follows.

−1
∆(x−1)

x+ 1
=

−1
Γ(x−2)

x+ 1
=

−1
Π(x−3)

x+ 1
=

−1
−Γp(x−4)

x+ 1
=

−1
−∆p(x−5)

x+ 1
= x!

We can evaluate factorial of all complex argument z! = (x+ iy)! = ∆(x+ iy + 2) = Γ(x+ iy + 1)[
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Example 1.

∆(2 + i) = Γ(1 + i) = i! = iΓ(i) ≈ 0.498− 0.155i

∆(1 + i) = Γ(i) = (i− 1)! = (i− 1).i! ≈ −0.343 + 0.653i

∆(2− i) = Γ(1− i) = −i! = −iΓ(−i) ≈ 0.498 + 0.155i

∆(1− i) = Γ(−i) = (−i− 1)! = (−i− 1).− i! ≈ −0.343− 0.653i

3. Let us work out the lemmas related to zeta function

In this section we will work out zeta function related some new mathematics which will help us to prove

Riemann Hypothesis.

3.1. Harmonic zeta function and alternate functional equation. Multiplying both side of Rie-

mann’s functional equation by (1− s) we get

(1− s)ζ(s) = 2sπ(s−1) sin

(
πs

2

)
(1− s)Γ(1− s)ζ(1− s)

Putting (1− s)Γ(1− s) = Γ(2− s) we get:

(1− s)ζ(s) = 2sπ(s−1) sin

(
πs

2

)
Γ(2− s)ζ(1− s)

s→ 1we get: ∵ lims→1(s− 1)ζ(s) = 1 ∴ (1− s)ζ(s) = −1

2sπ(s−1) sin

(
πs

2

)
Γ(2− s)ζ(1− s) = −1

Similarly multiplying both numerator and denominator right hand side of Riemann’s functional equation

by (1− s)(2− s) before applying any limit we get :

ζ(s) = 2sπ(s−1) sin

(
πs

2

)
(1− s)(2− s)Γ(1− s)ζ(1− s)

(1− s)(2− s)

Putting (1− s)(2− s)Γ(1− s) = Γ(3− s) we get:

ζ(s) = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

(1− s)(2− s)

Multiplying both side of the above equation by (1− s) we get

(1− s)ζ(s) = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

(2− s)[
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s→ 1we get: ∵ lims→1(s− 1)ζ(s) = 1 ∴ (1− s)ζ(s) = −1

−1 = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

(2− s)

Multiplying both side of the above equation further by (2− s) we get:

(s− 2) = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

Multiplying both side of the above equation by ζ(s− 1) we get

(s− 2)ζ(s− 1) = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)ζ(s− 1)

s→ 2 we get: ∵ lims→2(s− 2)ζ(s− 1) = 1

2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)ζ(s− 1) = 1

Which can also be written as:

2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s) =

1

ζ(s− 1)

The above equation is consistent at s = 1 following analytical continuation of Riemann’s functional

equation at ζ(1− s) = ζ(s− 1) = ζ(0) = −1
2
. Following harmonic conjugate theorem the above kind of

consistency make the expression a harmonic conjugate function around the pole of zeta function.The

real and imaginary parts of ζ(z) = 1
z
around a unit disc centered at 1 must be harmonic away from

the origin given the fact ζ(1) is analytic now. The above analytic function will not have any zeros as

proven by Jacques Hadamard and Charles Jean de la Vallée-Poussin. Therefore the above function will

be an entire function. But overall we see zeta function have got lots of zeros. That is possible only

another harmonic away from the origin. Due to the fact that harmonic conjugate appears in pairs, the

domain of unit disk area gets bifurcated. Since the real and imaginary parts of ζ(z) = 1
z
are harmonic,

the same must be true of the respective functional equations. Since the circle is complete and it is finite

changing the sign of the equation multiplying by -1 is not a problem and also we can set 1
ζ(s−1)

= 1 due

to its harmonicity and we can rewrite the above equation as follows:

−2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s) = −1

Both the above boxed forms are equivalent to Riemann’s original functional equation therefore Rie-

mann’s original functional equation can be analytically continued further which will lead us to zeros of

zeta function as follows: [
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Lemma 7.

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
∆(4− s)ζ(1− s)

This can be rewritten in terms of Gamma function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

This again can be rewritten in terms of Pi function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Π(2− s)ζ(1− s)

To manually define zeta function such a way that it takes value 1 or mathematically ∃!s ∈ N; ζ(s−1) = 1

, Euler’s induction approach was applied and it was observed that zeta function have the potential unit

value as demonstrated in the results section. Justification of the definition we set for ζ(1) = 1 and

consistency of the above forms of functional equation have been cross checked and it was found that

the proposition complies with all the theorems used in complex analysis. Justification of the definition

we set for ζ(−1) = 1
2
and consistency of the above forms of functional equation have been cross

checked in the results section. ζ(−1) = 1
2
must be the second solution to ζ(−1) apart from the known

Ramanujan’s proof ζ(−1) = −1
12
. One has to accept that following the zeta functions analytic and its

harmonic conjugal behaviour zeta values can be multivalued if seen as a continuam or alternatively it

can be seen as a multi zeta function.

3.2. Integral representation of ζ(1) from Bose integral.

Lemma 8.

−ζ(1) =
∫ ∞

0

dx

ex − 1
=

∫ ∞

0

e−x

1− e−x
dx =

∫ ∞

0

∞∑
n=1

e−x.(e−x)n−1dx =
∞∑
n=1

∫ ∞

0

e−nxdx

substituting nx = u we get =⇒
∞∑
n=1

∫ ∞

0

e−u

n
du =

∞∑
n=1

1

n

∫ ∞

0

e−udu = −
∞∑
n=1

1

n

substituting x = ln(2) in −ζ(1) =
∫ ∞

0

dx

ex − 1
and changing the limit we get

ζ(1) =

∫ 1

0

dx

eln (2) − 1
=

[
x

2− 1

]1
0

= 1[
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3.3. Integral representation of ζ(−1) from Ramanujan summation.

Lemma 9.

ζ(−1) = i3
∫ ∞

0

f(6it)− f(−6it)

e2πt − 1
dt = i3

∫ ∞

0

12it

e2πt − 1
dt = 12i4

∫ ∞

0

t

e2πt − 1
dt

Substituting u = 2πt we get

ζ(−1) = 12

∫ ∞

0

u
2π

eu − 1
.
du

2π
=

12

4π2

∫ ∞

0

udu

eu − 1
=

12

4π2
.
π2

6
=

1

2

4. Let us work out the lemmas related to logarithm

In this section we will work out logarithm related some new mathematics which will help us to interpret

Riemann Hypothesis.

4.1. The unit circle, the unit sphere revisited. The unit circle is a circle centered at the origin (0,

0) in a coordinate plane, with a radius of 1 unit. In trigonometry and complex analysis, the unit circle is

commonly used to study the relationships between angles and points on the circle.In trigonometry, the

unit circle is used to define the trigonometric functions (sine, cosine, tangent, etc.) for any angle. Each

point on the unit circle corresponds to a unique angle, and the coordinates of that point represent the

values of the trigonometric functions for that angle.If we closely observe the trigonometric unit circle

we will see a pattern. After every 30 degree angle, value of the trigonometric ratios are same in absolute

sense, I mean Pythagoras formula on sine and cosine results 1 . So it takes one sixth Pi rotation to

complete a cycle of three. There are two semi circles, four quadrants inside the unit circle. Therefore we

need to go through six cycles of three to complete a semi cycle and twelve cycles of three to complete a

cycle. In complex analysis, the unit circle is also significant. When complex numbers are represented in

polar form the unit circle plays a crucial role. The angle theta corresponds to the argument or phase of

the complex number, while the point on the unit circle represents the direction of the complex number

in the complex plane.Euler’s famous formula for complex numbers eiθ = icosθ + isinθ connects the

exponential function with trigonometric functions and bridges between trigonometry,algebra,analytical

geometry. Concept of trigonometric unit circle is not the only unit circle we know. Our knowledge

of mathematics is not restricted to trigonometry alone. We have got arithmetic, algebra. Four basic

operation of arithmetic i.e, addition, subtraction, multiplication and division also exhibits the same

cycle of 3.Two anti operation pair out of those four operations on any numbers can always be zero

through the results additive identity, or an unity through the results multiplicative identity. When

things are linear the cycles are obvious, we start suspecting cycles when things starts geting non-linear

in higher dimensions. We have got non-linear algebraic functions such as polynomial, exponential,

logarithmic functions etc. which should also exhibit the same cyclic pattern as these functions also

obeys two fundamental laws of algebra i.e. the law of additive inverse and the law of multiplicative

inverse. Let us have little more clarity on cycles. Logarithms of negative numbers are not defined in

the real numbers in the same way that the square roots of negative numbers are not defined in real[
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numbers. The logarithm of negative numbers is undefined. The logarithms of negative numbers are

defined in complex numbers from Euler‘s identity eiπ = −1. Still there is a caveat as we note that the

complex logarithm is a multi-valued function. This means that for any given complex number z, there

are infinitely many complex logarithms that satisfy ew = z. Each of these logarithms differs by an

integer multiple of 2iπ.To define a single-valued logarithm, called the principal logarithm, we typically

choose a branch cut in the complex plane. The branch cut is a curve that removes a portion of the

complex plane to make the logarithm function continuous. Common choices for the branch cut include

the negative real axis or the branch cut extending from the origin to negative infinity.To complete the

cycle and to define complex logarithm in an unique way we need to define some real value for imaginary

number i. This should be done assigning an unique lowest possible value to i which can reach atleast

theoratically all real numbers along the number line.

[
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x

y

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

360◦

π
6

π
3

π
2

2π
3

5π
6

π

7π
6

4π
3

3π
2

5π
3

11π
6

2π

(
eln (

√
3

2
), eln ( 1

2
)
)

(
eln ( 1

2
), eln (

√
3

2
)
)

(
eln (−

√
3

2
), eln ( 1

2
)
)

(
eln (− 1

2
), eln (

√
3
2
)
)

(
eln (−

√
3

2
), eln (− 1

2
)
)

(
eln (− 1

2
), eln (−

√
3

2
)
)

(
eln (

√
3

2
), eln (− 1

2
)
)

(
eln ( 1

2
), eln (−

√
3

2
)
)

(eiπ = −1, 0) (e0 = 1, 0)

ei
3π
2 = −i = e?

?

ei
π
2 = i = e?

?

z = r(cosx + i sinx) is the trigonometric form of complex numbers. Using Euler’s formula eix =

cosx+ i sinx we can write z = reix. Putting x = π in Euler’s formula we get , eiπ = −1.Putting x = π
2

we get e
iπ
2 = i. So the general equation of the points lying on unit circle |z| = |eix| = 1. But that’s not

all because i is not defined yet. From the trigonometric unit circle we can predict existence of some

absolute real value for i as the coordinates of i numerically obeys arithmetic/ algebraic fundamental

law of additive inverse and the law of multiplicative inverse. If x = π
3
in trigonometric form then

z = cos(π
3
) + i.sin(π

3
) = 1

2
(
√
3 + i).So |z| = r =

√
(
√
3
2
)2 + (1

2
)2 = 1

2
.
√
4 = 1

2
.2 = 1.So another equation

of the points lying on unit circle |z| = 1
2
eix = 1. Although both the equation are of unit circle, usefulness

of |z| = 1
2
eix = 1 is greater than |z| = |eix| = 1 as |z| = 1

2
eix = 1 bifurcates mathematical singularity[
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and introduces unavoidable mathematical duality particularly in studies of primes and zeta function.

|z| = 1
2
eix = 1 can be regarded as d-unit circle.

−3 −2 −1 1 2 3

−2

2

Re(z)

Im(z)

The d-unit circle together with the general unit circle

completes the algebraic cycle via |z| = 1
2
eix = 1. There-

fore taking the imaginary number i out of the unit circle

as a constant scale factor we can visulise the imaginary

axis maintaining the rotational symmetries arising out

of trigonometric cycle of 3. The imaginary cycle gets

reflected along the real axis and the dynamics keep on

cycling alternately. Five lattice points 1, i, -1, -i, 0 works

as mid value between i[ 1+ i - 1 - i = 0 ] and [ 1+ i - 1 - i

= 0 ]. After all the concept of place hoder zeros in deci-

mal number system is just replication of completing the

complex unit circle.When Unit circle in complex plane

is stereo-graphically projected to unit sphere the points within the area of unit circle gets mapped to

southern hemisphere, the points on the unit circle gets mapped to equatorial plane, the points out-

side the unit circle gets mapped to northern hemisphere. d-unit circle can also be easily projected to

Riemann sphere. Projection of d-unit circle to d-unit sphere will have three parallel disc (like three di-

mensions hidden in one single dimension of numbers) for three (equivalent unit values in three different

sense) magnitude of 1
2
, 1, 2 in the southern hemisphere, on the equator, in the northern equatorial sphere

respectively as shown in the following diagram. The polar sphere will be projecting points outside the

d-unit circle.

[
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axis of rotation

π
3
Critical Line of zeta zeroes

Unit surface=1

d-unit surface=2

North pole=at infinity

Half unit surface=1
2

South pole=0

Three parallel surfaces in a single cone (the one way absolute view) will look like as follows.

Explanation 1. One may attempt to show that |z| = 1
2
eix = 1 will mean 1= 2. This may not be right

interpretation. Correct way to interpret is given here under.

We know: eix = r(cos θ + i sin θ). Taking derivative both side we get

ieix = (cos θ + i sin θ)
dr

dx
+ r(− sin θ + i cos θ)

dθ

dx
.[
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Now Substituting r(cos θ + i sin θ) for eix and equating real and imaginary parts in this formula gives
dr
dx

= 0 and dθ
dx

= 1. Thus, r is a constant, and θ is x + C for some constant C. Now if we assign

r = 1
2
and ix = ln 2 then reix = 1

2
.eln 2 = 1 The initial value x=1 then gives i = ln 2. That means

in 4D the imaginary number i turns into a complete real number ln 2 in logarithmic way. Now let see

how quaternion helps in justifying the definition for imaginary number i. For simplification let us use

a single alphabet for expressing quaternion. Let us recall the power addition identity, which is,

e(a+b) = ea.eb

However this only applies when ’a’ and ’b’ commute, so it applies when a or b is a scalar for instance.

The more general case where ’a’ and ’b’ don’t necessarily commute is given by:

eq = eq1 .eq2

where:

q = q1 + q2 + q1 × q2 +
1

3
(q1 × (q1 × q2) + q2 × (q2 × q1)) + ...

Where: × = vector cross product. This shows that when a and b become close to becoming parallel then

q1 × q2 approaches zero and q approaches q1 + q2 so the rotation algebra approaches vector algebra. As

we have seen all the three unit discs appear parallel to each other our life gets easier and we can do

complex exponentiation and logarithm as we do it for real numbers. We have seen in Euler’s formula

eiπ = −1 complex exponentials turn into real numbers. Applying the same trick we can turn quaternion

exponentials into real numbers following the cycle of eiπ + 1 = 0 . This time we need to complete the

cycle of [ 1+ i - 1 - i = 0 ] by way of showing eq = −1 which will prove the formula |z| = 1
2
eix = 1 for

generalised complex numbers. Let us consider the following infinite series.

eq1 .eq2 .q3 .eq4 .eq5 .eq6 .q7 ...

=eq1+q2+q3+q4+q5+q6+q7...

=e2. ln (2)∗

=eln (2).eln (2)

=− e− ln (2).eln (2)

=− 1

2
.2

=− 1

∗ q1 + q2 + q3 + q4 + q5 + q6 + q7...

= i(
0∑

s=−∞

ζ(s)) + j(
0∑

s=−∞

ζ(s)) + k(
0∑

s=−∞

ζ(s))

+
∞∑

s=−∞

ζ(s) +
∞∑

s=−∞

ζ(s) +
∞∑

s=−∞

ζ(s) +
∞∑

s=−∞

ζ(s)

= i(ζ(−1) + ζ(0)) + j(ζ(−1) + ζ(0))

+ k(ζ(−1) + ζ(0)) + η(1) + η(1) ∗ ∗

= i.0 + j.0 + k.0 + 2.η(1)

= 2. ln (2)

There is a cycle of three in four infinite series of infinite zeta values which emerges as two infinite

alternate zeta series following 1
2
.eln 2 = 1.

This proves the formula |z| = 1
2
eix = 1.Thus we see ix = ln(cos θ+ i sin θ) is a multivalued function not

only because of infinite rotation around the unit circle but also due to different real solutions to i in higher[
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dimensional number system of quaternion discovered by Hamilton involving higher dimensional algebra

like Clifford algebra, or at least involving 3 dimensional vector algebra connected to four dimensional

zeros through algebraic cycles proposed by Hodge, Tate, Weil and others existence of which are not

proven algebraically, numerically they actually exists, using zeta results I have outlined the minimal

proof, someone has to work on the rigorous proof. Now coming back to the explanation, when we

completed the circle of [ 1+ i - 1 - i = 0 ] we actually completed two semi circle [ 1 - 1 = 0 ] following

eiπ + 1 = 0. Thus we cannot interpret 1=2 or 2=1, we have to interpret either 2=2 or 1=1.

4.2. Closure of logarithmic operation under quaternion.

Lemma 10. i = ln (2) comes as a solution to indeterminacy of negative logarithm and a filler for the

caveat in the definition of principal logarithm in terms of complex logarithm. We need quaternion to

do the job. If we visualise principal logarithm as logarithm a set of quaternion instead of product of

two pairs of i then we can arrive zero at par with the definition of logarithm and solve the issue of

indeterminacy of the principal value i.e.

ln (1) = 0 = ln (−1.− 1) = ln (−1.− 1.− 1.− 1) = ln (i2.j2.k2.i.j.k) = 3(ln i+ ln j + ln k)

. Any guess what angle can make vector-sum of three equal vectors equal to zero? As shown in Riemann

hypothesis proof, its 120 degree in 3D or 60 degree in 4D. This way numbers are very complexly 3

dimensional hidden in other hidden dimensions of quaternion although we do not feel its requirement in

our everyday use of numbers. Following the above definition we can generalise the definitions further

as follows.

ln (−1) = −1−1 = −1

1

ln (−2) = −2−1 = −1

2

ln (−3) = −3−1 = −1

3

And the pattern continues up to negative infinity.

But in complex sense we can do the closure of logarithmic operation under quaternion as follows:

Example 2. Find natural logarithm of -1 using first quaternion solution of i

ln(−1) = ln(i2) = 2ln(i) = −0.733025841(approx)

Part 3. The Proofs

5. Let us prove Riemann Hypothesis

In this section we will prove Riemann Hypothesis.[
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5.1. An elegant proof using Euler’s product form. Euler’s Product form of zeta Function in

Euler’s exponential form of complex numbers is as follows:

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1 + reiθ + r2ei2θ + r3ei3θ...

)

Now any such factor

(
1 + reiθ + r2ei2θ + r3ei3θ...

)
will be zero if

(
reiθ + r2ei2θ + r3ei3θ...

)
= −1 = eiπ

Comparing both side of the equation and equating left side to right side on the unit circle we can say:

*

θ + 2θ + 3θ + 4θ... = π

r + r2 + r3 + r4.... = 1

We can solve θ and r as follows:

θ + 2θ + 3θ + 4θ... = π

θ(1 + 2 + 3 + 4...) = π

θ.ζ(−1) = π

θ.
−1

12
= π

θ = −12π

r + r2 + r3 + r4.... = 1

r(1 + r + r2 + r3 + r4....) = 1

r
1

1− r
= 1

r = 1− r

r =
1

2

We can determine the real part of the non trivial zeros of zeta function as follows:

r cos θ =
1

2
cos(−12π) =

1

2

Therefore Principal value of ζ(1
2
) will be zero, hence Riemann Hypothesis is proved.

Explanation 2. *We can try back the trigonometric form then the algebraic form of complex numbers

do the summation algebraically and then come back to exponential form as follows:[
26 of 95
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reiθ + r2ei2θ + r3ei3θ...

= (r cos θ + ir sin θ) + (r2 cos 2θ + ir2 sin 2θ) + (r3 cos 3θ + ir3 sin 3θ)....

= (x1 + iy1) + (x2 + iy2) + (x3 + iy3) + (x4 + iy4) + (x5 + iy5)....

= (x1 + x2 + x3 + x4 + x5 + ...) + i(y1 + y2 + y3 + y4 + y5 + ...)

= R cosΘ + iR sinΘ

= (r + r2 + r3 + r4....)ei(θ+2θ+3θ+4θ...)

Explanation 3. One may attempt to show that (reiθ + r2ei2θ + r3ei3θ...) = −1 actually results reiθ

1−reiθ

which implies in absurdity of 0 = −1. Correct way to evaluate reiθ

1−reiθ
is to apply the complex conjugate of

denominator before reaching any conclusion. reiθ(1+reiθ)
(1−reiθ)(1+reiθ)

then shall result to reiθ = −1 which points

towards the unit circle. In the present proof we need to go deeper into the d-unit circle and come up

with the interpretation which can explain the Riemann Hypothesis.

Explanation 4. One may attempt to show inequality of the reverse calculation 1
21
+ 1

22
+ 1

23
... = 1 ̸= −1.

reiπ = −1 need to be interpreted as the exponent which then satisfies 1−1 = 1 or 2.2−1 = 1 on the unit

or d-unit circle. There is nothing called t-unit circle satisfying 3.3−1 = 1.

Explanation 5. Essentially proving log2(
1
2
) = −1 in a complex turned simple way is equivalent of

saying log(1) = 0 in real way. Primes other than 2 satisfy logp(
1
2
) = eiθ also in a pure complex way.

5.2. An elementary proof using alternate product form. Euler’s alternate Product form of zeta

Function in Euler’s exponential form of complex numbers is as follows:

∞∑
n=1

1

ns
=
∏
p

(
1

1− 1
reiθ

)
=
∏
p

(
reiθ

reiθ − 1

)
Multiplying both numerator and denominator by reiθ + 1we get:

∞∑
n=1

1

ns
=
∏
p

(
reiθ(reiθ + 1)

(reiθ − 1)(reiθ + 1)

)

Now any such factor

(
reiθ(reiθ+1)
(r2ei2θ−1)

)
will be zero if reiθ(reiθ + 1) is zero:

reiθ(reiθ + 1) = 0

reiθ(reiθ − eiπ) = 0

r2ei2θ − rei(π−θ)∗ = 0

r2ei2θ = rei(π−θ)[
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We can solve θ and r as follows:

2θ = (π − θ)

3θ = π

θ =
π

3

r2 = r

r2

r
=

r

r

r = 1

We can determine the real part of the non trivial zeros of zeta function as follows:

r cos θ = 1. cos(π
3
) = 1

2

Therefore Principal value of ζ(1
2
) will be zero, and Riemann Hypothesis is proved.

Explanation 6. * ei(−θ) is arrived as follows:

eiθ =

(
eiθ
)1

=

(
eiθ
)1−1

=

(
eiθ
)−11

=

((
eiθ
)i2)1

=

(
eiθ
)i2

= e−iθ

5.3. An exhaustive proof using alternate functional equation. Multiplying both side of Rie-

mann’s functional equation by (1− s) we get

(1− s)ζ(s) = 2sπ(s−1) sin

(
πs

2

)
(1− s)Γ(1− s)ζ(1− s)

Putting (1− s)Γ(1− s) = Γ(2− s) we get:

ζ(1− s) =
(1− s)ζ(s)

2sπ(s−1) sin

(
πs
2

)
Γ(2− s)

s→ 1we get: ∵ lims→1(s− 1)ζ(s) = 1 ∴ (1− s)ζ(s) = −1 and Γ(2− 1) = Γ(1) = 1

ζ(0) =
−1

21π0 sin

(
π
2

) = −1

2

Examining the functional equation we shall observe that the pole of zeta function at Re(s) = 1 is

attributable to the pole of Gamma function. In the critical strip 0 < s < 1 Delta function holds equally

good if not better for factorial function. As zeta function has got the holomorphic property the act of

stretching or squeezing preserves the holomorphic character. Using this property we can remove the

pole of zeta function. Introducing Delta function for factorial we can remove the poles of Gamma and

Pi function and rewrite the functional equation in terms of its harmonic conjugate function as follows

(see above):

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
∆(4− s)ζ(1− s)[
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This can be rewritten in terms of Gamma function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

This again can be rewritten in terms of Pi function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Π(2− s)ζ(1− s)

Now Putting s = 1we get:

ζ(1) = −21π(1−1) sin

(
π

2

)
Γ(3− 1)ζ(0) = 1

zeta function is now defined on entire C , and as such it becomes an entire function. In complex anal-

ysis, Liouville’s theorem states that every bounded entire function must be constant. That is, every

holomorphic function f for which there exists a positive number M such that |f(z)| ≤M for all z in C
is constant. Being an entire function zeta function is constant as none of the values of zeta function do

not exceedM = ζ(2) = π2

6
.Maximum modulus principle further requires that non constant holomorphic

functions attain maximum modulus on the boundary of the unit circle. Being a constant function zeta

function duly complies with maximum modulus principle as it reaches maximum modulus π2

6
outside

the unit circle i.e. on the boundary of the double unit circle. Gauss’s mean value theorem requires that

in case a function is bounded in some neighbourhood, then its mean value shall occur at the centre of

the unit circle drawn on the neighbourhood. |ζ(0)| = 1
2
is the mean modulus of entire zeta function.

Inverse of maximum modulus principle implies points on half unit circle give the minimum modulus or

zeros of zeta function. Minimum modulus principle requires holomorphic functions having all non zero

values shall attain minimum modulus on the boundary of the unit circle. Having lots of zero values

holomorphic zeta function do not attain minimum modulus on the boundary of the unit circle rather

points on half unit circle gives the minimum modulus or zeros of zeta function. Everything put together

it implies that points on the half unit circle will mostly be the zeros of the zeta function which all have

±1
2
as real part as Riemann rightly hypothesized.

Putting s = 1
2
in ζ(s) = −2sπ(s−1) sin

(
πs
2

)
Γ(3− s)ζ(1− s)[
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ζ

(
1

2

)
= −2

1
2π(1− 1

2
) sin

(
π

2.2

)
Γ

(
5

2

)
ζ

(
1

2

)

ζ

(
1

2

)(
1 +

3
√
2.π.π

4.
√
2

)
= 0

ζ

(
1

2

)(
1 +

3π

4

)
= 0

ζ

(
1

2

)
= 0

Therefore principal value of ζ(1
2
) is zero and Riemann Hypothesis holds good.

[
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Part 4. The Results

6. The Results

6.1. Infinite product of positive zeta values converges.

ζ(1) = 1 +
1

21
+

1

31
+

1

41
... =

(
1 +

1

21
+

1

22
+

1

23
...

)(
1 +

1

31
+

1

32
+

1

33
...

)
...

ζ(2) = 1 +
1

22
+

1

32
+

1

42
... =

(
1 +

1

22
+

1

24
+

1

26
...

)(
1 +

1

32
+

1

34
+

1

36
...

)
...

ζ(3) = 1 +
1

23
+

1

33
+

1

43
... =

(
1 +

1

23
+

1

26
+

1

29
...

)(
1 +

1

33
+

1

36
+

1

39
...

)
...

ζ(1)ζ(2)ζ(3)... =

From the side of infinite sum of negative exponents of all natural integers:

=

(
1 +

1

21
+

1

31
+

1

41
...

)(
1 +

1

22
+

1

32
+

1

42
...

)(
1 +

1

23
+

1

33
+

1

43
...

)
...

= 1 +

(
1

21
+

1

22
+

1

23
...

)
+

(
1

31
+

1

32
+

1

33
...

)
+

(
1

41
+

1

42
+

1

43
...

)
...

= 1 + 1 +
1

21
+

1

31
+

1

41
+

1

51
+

1

61
+

1

71
+

1

81
+

1

91
... = 1 + ζ(1)

From the side of infinite product of sum of negative exponents of all primes:(
1 +

1

21
+

1

22
+

1

23
...

)(
1 +

1

31
+

1

32
+

1

33
...

)(
1 +

1

51
+

1

52
+

1

53
...

)
...(

1 +
1

22
+

1

24
+

1

26
...

)(
1 +

1

32
+

1

34
+

1

36
...

)(
1 +

1

52
+

1

54
+

1

56
...

)
...(

1 +
1

23
+

1

26
+

1

29
...

)(
1 +

1

33
+

1

36
+

1

39
...

)(
1 +

1

53
+

1

56
+

1

59
...

)
...

=

(
1 + 1

)(
1 +

1

31
+

1

32
+

1

33
...

)(
1 +

1

51
+

1

52
+

1

53
...

)
...(

1 +
1

22
+

1

24
+

1

26
...

)(
1 +

1

32
+

1

34
+

1

36
...

)(
1 +

1

52
+

1

54
+

1

56
...

)
...(

1 +
1

23
+

1

26
+

1

29
...

)(
1 +

1

33
+

1

36
+

1

39
...

)(
1 +

1

53
+

1

56
+

1

59
...

)
...

continued to next page.... [
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continued from last page....

Simultaneously halving and doubling each factor and writing it as sum of two forms

= 2

(
1

2

(
1 +

1
3

1− 1
3

+ 1 +
1

31
+

1

32
+

1

33
...

))(
1

2

(
1 +

1
5

1− 1
5

+ 1 +
1

51
+

1

52
+

1

53
...

))
...(

1

2

(
1 +

1
4

1− 1
4

+ 1 +
1

22
+

1

24
+

1

26
...

))(
1

2

(
1 +

1
9

1− 1
9

+ 1 +
1

32
+

1

34
+

1

36
...

))
...(

1

2

(
1 +

1
8

1− 1
8

+ 1 +
1

23
+

1

26
+

1

29
...

)(
1

2

(
1 +

1
27

1− 1
27

+ 1 +
1

33
+

1

36
+

1

39
...

))
...

= 2

(
1

2

(
1 +

1

2
+ 1 +

1

31
+

1

32
+

1

33
...

))(
1

2

(
1 +

1

4
+ 1 +

1

51
+

1

52
+

1

53
...

))
...(

1

2

(
1 +

1

3
+ 1 +

1

22
+

1

24
+

1

26
...

)(
1

2

(
1 +

1

8
+ 1 +

1

32
+

1

34
+

1

36
...

))
...(

1

2

(
1 +

1

7
+ 1 +

1

23
+

1

26
+

1

29
...

)(
1

2

(
1 +

1

26
+ 1 +

1

33
+

1

36
+

1

39
...

))
...

= 2

(
1 +

1

2

(
1

2
+

1

31
+

1

32
+

1

33
...

))(
1 +

1

2

(
1

4
+

1

51
+

1

52
+

1

53
...

))
...(

1 +
1

2

(
1

3
+

1

22
+

1

24
+

1

26
...

))(
1 +

1

2

(
1

8
+

1

32
+

1

34
+

1

36
...

))
...(

1 +
1

2

(
1

7
+

1

23
+

1

26
+

1

29
...

))(
1 +

1

2

(
1

26
+

1

33
+

1

36
+

1

39
...

))
...

= 2

(
1 +

1

2

(
1

21
+

1

31
+

1

41
...+

1

21
+

1

31
+

1

41
...

))

= 2

(
1 +

1

2

(
2ζ(1)− 2

))
= 2(1− 1 + ζ(1))

= 2ζ(1)

Now comparing two identities we get:

1 + ζ(1) = 2ζ(1))

ζ(1) = 1

Hence Infinite product of positive zeta values converges to 2.[
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6.2. Infinite product of negative zeta values converges.

ζ(−1) = 1 + 21 + 31 + 41 + 51... =

(
1 + 2 + 22 + 23...

)(
1 + 3 + 32 + 33...

)
...

ζ(−2) = 1 + 22 + 32 + 42 + 52... =

(
1 + 22 + 24 + 26...

)(
1 + 32 + 34 + 36...

)
...

ζ(−3) = 1 + 23 + 33 + 43 + 53... =

(
1 + 23 + 26 + 29...

)(
1 + 33 + 36 + 39...

)
...

From the side of infinite sum of negative exponents of all natural integers:

ζ(−1)ζ(−2)ζ(−3)...

=

(
1 + 21 + 31 + 41 + 51...

)(
1 + 22 + 32 + 42 + 52...

)(
1 + 23 + 33 + 43 + 53...

)
...

= 1 +

(
2 + 22 + 23...

)
+

(
3 + 32 + 33...

)
+

(
4 + 42 + 43...

)
...

= 1 +

(
1 + 2 + 22 + 23...− 1

)
+

(
1 + 3 + 32 + 33...− 1

)
+

(
1 + 4 + 42 + 43...− 1

)
...

= 1 +

(
− 1

1
− 1

)
+

(
− 1

2
− 1

)
+

(
− 1

3
− 1

)
+

(
− 1

4
− 1

)
...

= 1−

((
1 +

1

2
+

1

3
+

1

4
...

)
+ 1 + 1 + 1 + 1...

)

= 1−

(
ζ(1) + ζ(0)

)
= 1−

(
1− 1

2

)
=

1

2

From the side of infinite product of sum of negative exponents of all primes:(
1 + 2 + 22 + 23...

)(
1 + 3 + 32 + 33...

)(
1 + 5 + 52 + 53...

)
...(

1 + 22 + 24 + 26...

)(
1 + 32 + 34 + 36...

)(
1 + 52 + 54 + 56...

)
...(

1 + 23 + 26 + 29...

)(
1 + 33 + 36 + 39...

)(
1 + 53 + 56 + 59...

)
...

= 1 + 21 + 31 + 41 + 51... =⇒ ζ(−1) =
1

2[
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Therefore ζ(−1) =
1

2
must be the second solution apart from ζ(−1) = −1

12
.

Using Delta function instead of Gamma function we can rewrite the functional equation applicable

as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
∆(4− s)ζ(1− s)

This can be rewritten in terms of Gamma function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

This again can be rewritten in terms of Pi function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Π(2− s)ζ(1− s)

Putting s = −1we get:

ζ(−1) = −2−1π(−1−1) sin

(
−π
2

)
Γ(3− s)ζ(2) =

1

2

To proof Ramanujan’s Way

σ = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9.....

2σ = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9... + 1 + 1 + 1 + 1 + 1 + 1 + 1...∗

Subtracting the bottom from the top one we get:

− σ = 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1...+ 1 + 1 + 1 + 1 + 1 + 1 + 1...

σ = −(1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1........)

σ =
1

2

*The second part is calculated subtracting bottom from the top before doubling.[
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6.3. Infinite sum of Positive Zeta values converges.

ζ(1) = 1 +
1

21
+

1

31
+

1

41
...

ζ(2) = 1 +
1

22
+

1

32
+

1

42
...

ζ(3) = 1 +
1

23
+

1

33
+

1

43
...

...

ζ(1) + ζ(2) + ζ(3)...

=

(
1 +

1

21
+

1

31
+

1

41
...

)
+

(
1 + 1 + 1 + 1 + ...

)

= ζ(1) + ζ(0) = 1− 1

2
=

1

2

6.4. Infinite sum of Negative Zeta values converges.

ζ(−1) = 1 + 21 + 31 + 41 + 51...

ζ(−2) = 1 + 22 + 32 + 42 + 52...

ζ(−3) = 1 + 23 + 33 + 43 + 53...

...

ζ(−1) + ζ(−2) + ζ(−3)...

=

(
1 + 21 + 31 + 41 + 51...

)
+

(
1 + 1 + 1 + 1 + ...

)

= ζ(−1) + ζ(0) =
1

2
− 1

2
= 0

6.5. Infinite product of All Zeta values converges.

ζ(−1)ζ(−2)ζ(−3)...ζ(1)ζ(2)ζ(3)... = 2.ζ(−1).ζ(1) = 2.1.
1

2
= 1

6.6. Infinite sum of All Zeta values converges.

ζ(−1) + ζ(−2) + ζ(−3)...ζ(1) + ζ(2) + ζ(3)... = 0 +
1

2
=

1

2

6.7. Counter to Nicole Oresme’s logic of divergence. Nicole Oresme in around 1350 proved

divergence of harmonic series by comparing the harmonic series with another divergent series. He[
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replaced each denominator with the next-largest power of two.

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
... > 1 +

1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
...

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
... > 1 +

(
1

2

)
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ ...

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
... > 1 +

1

2
+

1

2
+

1

2
+

1

2
+

1

2
+

1

2
+

1

2
...

He then concluded that the harmonic series must diverge as the above series diverges. It was too quick

to conclude as we can go ahead and show:

R.H.S = 1 +
1

2

(
1 + 1 + 1 + 1 + 1 + 1 + 1 + ...

)
= 1 +

1

2
.
−1

2
= 1− 1

4

If we consider ζ(1) = 1 then also it passes the comparison test. Therefore We need to come out of the

belief that harmonic series diverges.

= 1 +
1

2
+

1

2
+

1

2
+

1

2

(
1 + 1 + 1...

)

= 1 +
3

2
+

1

2
.
−1

2

= 1 +
3

2
− 1

4

= 1 +
3

2
−

(
1− 2 + 3− 4 + ...

)

= 1 +
3

2
−

((
1 + 2 + 3...

)
− 2

(
1 + 2 + 4...

))

= 1 +
3

2
−

(
1

2
− 2

(
1 + 1 + 1...

))

= 1 +
3

2
−

(
1

2
− 2

−1

2

)

= 1 +
3

2
−

(
1

2
+ 1

)

= 1 +
3

2
− 3

2

= 1

= 1 +
1

2
+

1

2
+

1

2
+

1

2
+

1

2
+

1

2

(
1 + 1 + 1...

)

= 1 +
5

2
+

1

2
.
−1

2

= 1 +
5

2
− 1

4

= 1 +
5

2
−

(
1− 2 + 3− 4 + ...

)

= 1 +
5

2
−

((
1 + 2 + 3...

)
− 2

(
1 + 2 + 4...

))

= 1 +
5

2
−

(
1

2
− 2

(
1

1− 2

))

= 1 +
5

2
−

(
1

2
+ 2

)

= 1 +
5

2
−

(
1 + 4

2

)

= 1 +
5

2
− 5

2

= 1[
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According to residue theorem we can have a Laurent expansion of an analytic function at the pole f(s) =∑∞
n=−∞ an(s− s0)

n of f in a punctured disk around s0, and therefrom we can have Res (f(s); s0) = a−1,

i.e. the residue is the coefficient of (s − s0)
−1 in that expansion. For the pole ζ(1), we know the

start of the Laurent series (since it is a simple pole, there is only one term with a negative exponent),

namely ζ(s) = 1
s−1

+ γ + . . . so we have Res (ζ(s); 1) = 1. At the pole zeta function have zero radius

of convergence ( also known as infinite radius of convergence ). Interpreting zeta function at the

pole to be divergent is extreme arbitrary, contradictory and void of rationality. The pole neither falls

outside the radius of convergence resulting ζ(1) = ∞ nor inside the radius of convergence resulting

ζ(1) = 1 to be absolutely true, its just on the zero radius of convergence suggesting both values to

be equally good. Since none of the above value is more natural than the others, both of them can

be incorporated into a multivalued zeta function (We should not say, it’s not a function at all which

gives unique results, we should keep it in mind that ultimately it’s two different zeta function seen

as a continuum) which is again totally consistent with harmonic conjugate theorem and allows us to

interpret ⇒ 1 + 1
2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8
... = 1

6.8. Integral representation of ζ(1).

−ζ(1) =
∫ ∞

0

dx

ex − 1
=

∫ ∞

0

e−x

1− e−x
dx =

∫ ∞

0

∞∑
n=1

e−x.(e−x)n−1dx =
∞∑
n=1

∫ ∞

0

e−nxdx

substituting nx = u we get =⇒
∞∑
n=1

∫ ∞

0

e−u

n
du =

∞∑
n=1

1

n

∫ ∞

0

e−udu = −
∞∑
n=1

1

n

substituting x = ln(2) in −ζ(1) =
∫ ∞

0

dx

ex − 1
and changing the limit we get

ζ(1) =

∫ 1

0

dx

eln (2) − 1
=

[
x

2− 1

]1
0

= 1

6.9. Integral representation of ζ(−1).

ζ(−1) = i3
∫ ∞

0

f(6it)− f(−6it)

e2πt − 1
dt = i3

∫ ∞

0

12it

e2πt − 1
dt = 12i4

∫ ∞

0

t

e2πt − 1
dt

Substituting u = 2πt we get

ζ(−1) = 12

∫ ∞

0

u
2π

eu − 1
.
du

2π
=

12

4π2

∫ ∞

0

udu

eu − 1
=

12

4π2
.
π2

6
=

1

2

6.10. Positive Odd values from harmonic conjugate. Earlier we found that following harmonic

conjugate theorem Riemann’s functional equation which is an extension of real valued zeta function

can also be represented as its harmonic conjugate function which mimics the extended function.

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)[
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. What shall be the harmonic conjugate of this functional equation? We can shift the argument of

zeta function following the fact that the product of Extentended Gamma and Extended Zeta function

should also be analytic we can figure out the harmonic conjugate as follows.

ζ(s) = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(3− s)

We can get the closed form of odd positive zeta values as follows:

When s=3 ζ(3) = 23π(3−1) sin

(
3π

2

)
Γ(3− 3)ζ(3− 3) = 4π2

But When x=-2, ζ(−2) = 2−2−1π(−2) 1

Γ(−2) cos(−2π
2
)
ζ(1 + 2) =

ζ(3)

4π2

Therefore we can say, ζ(−2) =
4π2

4π2
= 1

Similarly When s=5 ζ(5) = 25π(5−1) sin

(
5π

2

)
Γ(3− 5)ζ(3− 5) = −(2π)4

But When x=-4, ζ(−4) = 2−4−1π(−4) 1

Γ(−4) cos(−4π
2
)
ζ(1 + 4) =

3ζ(5)

8π4

Therefore we can say, ζ(−4) =
−3(2π)4

8π4
= −6

Similarly When s=7 ζ(7) = 27π(7−1) sin

(
7π

2

)
Γ(3− 7)ζ(3− 7) = −25π6

But When x=-6, ζ(−6) = 2−6−1π(−6) 1

Γ(−6) cos(−6π
2
)
ζ(1 + 6) =

15ζ(7)

8π6

Therefore we can say, ζ(−6) =
−15.25π6

8π6
= −60

Similarly When s=9 ζ(9) = 29π(9−1) sin

(
9π

2

)
Γ(3− 9)ζ(3− 9) = 27π8

But When x=-8, ζ(−8) = 2−8−1π(−8) 1

Γ(−8) cos(−8π
2
)
ζ(1 + 8) =

315ζ(9)

16π8

Therefore we can say, ζ(−8) =
315.27π8

16π8
= 2520

...

And the pattern continues for all negative even numbers up to negative infinity.[
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6.11. Negative even values redefining trivial zeros. We can apply Euler’s reflection formula for

Gamma function

Γ(1− s)Γ(s) =
π

sin(πs)
, s ̸∈ Z

in Riemann’s functional equation

ζ(s) = 2sπ(s−1) sin

(
πs

2

)
Γ(1− s)ζ(1− s)

to get another representation of zeta function as follows:

ζ(s) = 2sπ(s−1) sin

(
πs

2

)
π

Γ(s) sin(πs)
ζ(1− s)

=⇒ ζ(s) = 2sπ(s) sin

(
πs

2

)
1

Γ(s)2 sin(πs
2
) cos(πs

2
)
ζ(1− s)

=⇒ ζ(s) = 2s−1π(s) 1

Γ(s) cos(πs
2
)
ζ(1− s)

When x=-2, ζ(−2) = 2−2−1π(−2) 1

Γ(−2) cos(−2π
2
)
ζ(1 + 2) =

ζ(3)

4π2
=

4.π2

4π2
= 1

When x=-4, ζ(−4) = 2−4−1π(−4) 1

Γ(−4) cos(−4π
2
)
ζ(1 + 4) =

3ζ(5)

8π4
=

3.− (2π)4

8π4
= −6

When x=-6, ζ(−6) = 2−6−1π(−6) 1

Γ(−6) cos(−6π
2
)
ζ(1 + 6) =

15ζ(7)

8π6
=

15.− 25π6

8π6
= −60

When x=-8, ζ(−8) = 2−8−1π(−8) 1

Γ(−8) cos(−8π
2
)
ζ(1 + 8) =

315ζ(9)

16π8
=

315.27π8

16π8
= 2520

...

And the pattern continues for all negative even numbers up to negative infinity.

6.12. Trivial zeros of harmonic conjugate. Like the original functional equation its harmonic con-

jugate shall also have trivial zeros at every negative even integer due to sine function.[
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6.13. Negative odd values from harmonic conjugate. Earlier we found that following harmonic

conjugate theorem Riemann’s functional equation which is an extension of real valued zeta function

can also be represented as its harmonic conjugate function which mimics the extended function.

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

We can get the harmonic conjugates of negative zeta values as follows:

When s=-1 ζ(−1) = −2−1π(−1−1) sin

(
−1π

2

)
Γ(3 + 1)ζ(1 + 1) =

1

2

When s=-3 ζ(−3) = −2−3π(−3−1) sin

(
−3π

2

)
Γ(3 + 3)ζ(1 + 3) =

−1

6

When s=-5 ζ(−5) = −2−5π(−5−1) sin

(
−5π

2

)
Γ(3 + 5)ζ(1 + 5) =

1

6

When s=-7 ζ(−7) = −2−7π(−7−1) sin

(
−7π

2

)
Γ(3 + 7)ζ(1 + 7) =

−3

10

...

And the pattern continues for all negative odd numbers up to negative infinity.

6.14. Negative even values from harmonic conjugate. We can apply Euler’s reflection formula

for Gamma function

Γ(2− s)Γ(s− 1) =
π

sin(πs− π)
, s ̸∈ Z

in Riemann’s functional equation

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

to get another representation of zeta function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
π(2− s)

Γ(s− 1) sin(πs− π)
ζ(1− s)

=⇒ ζ(s) = −2sπ(s−1) sin

(
πs

2

)
π(2− s)

Γ(s− 1) sin(πs)
ζ(1− s)

=⇒ ζ(s) = −2sπ(s) sin

(
πs

2

)
2− s

Γ(s− 1)2 sin(πs
2
) cos(πs

2
)
ζ(1− s)

=⇒ ζ(s) = −2s−1π(s) 2− s

Γ(s− 1) cos(πs
2
)
ζ(1− s)[
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When x=-2, ζ(−2) = 2−2−1π(−2) 2 + 2

Γ(−3) cos(−2π
2
)
ζ(1 + 2) =

ζ(3)

π2
=

4.π2

π2
= 4

When x=-4, ζ(−4) = 2−4−1π(−4) 2 + 4

Γ(−5) cos(−4π
2
)
ζ(1 + 4) =

9ζ(5)

2π4
=

3.− (2π)4

2π4
= −48

When x=-6, ζ(−6) = 2−6−1π(−6) 2 + 6

Γ(−7) cos(−6π
2
)
ζ(1 + 6) =

45ζ(7)

π6
=

15.− 25π6

π6
= −480

When x=-8, ζ(−8) = 2−8−1π(−8) 2 + 8

Γ(−9) cos(−8π
2
)
ζ(1 + 8) =

45ζ(7)

π8
=

315.27π8

π8
= 40320

...

And the pattern continues for all negative even numbers up to negative infinity.

6.15. Zeta results confirms PNT. In number theory, the prime number theorem (PNT) describes

the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive

idea that primes become less common as they become larger by precisely quantifying the rate at which

this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la

Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann (in particular, the Riemann zeta

function). The first such distribution found is π(N) ∼ N
logN

, where π(N) is the prime-counting function

and logN is the natural logarithm of N. This means that for large enough N, the probability that a

random integer not greater than N is prime is very close to 1
logN

. The prime number theorem then

states that N
logN

is a good approximation to π(N) (where log here means the natural logarithm), in the

sense that the limit of the quotient of the two functions π(N) and N
logN

as N increases without bound

is 1:

lim
N→∞

π(N)[
N

log(N)

] = 1 known as the asymptotic law of distribution of prime numbers. Using asymptotic

notation this result can be restated as π(N) ∼ N

logN
Wherever logarithm is there we can take it

guaranteed e = lim
n→∞

(
1 +

1

n

)n

is working in the background. Now we have got one more formula for

euler’s number e in the form of:

e =

√
lim
n→∞

(
2 +

2

n

)n

. lim
n→∞

(
2−1 +

2−1

n

)n

For this reason prime number theorem works as nicely as primes appear through zeta zeros on critical

half line in analytic continuation of zeta function.[
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6.16. Numbers rotates via Euler’s formula. In d-unit circle we have seen |z| = 1
2
eix = 1 is another

form of unit circle. From i2 = −1 we know that i shall have at least two roots or values, one we have

already defined, another we need to find out. We have seen that at π
3
Zeta function attains zero. Let

us use Euler’s formula to define another possible value of i as Euler’s formula deals with unity which

comes from the product of exponential and its inverse i.e. logarithm.

Now its proven :

z =
1

2
eix = 1 =

1

2
eln 2

we can say :

eix = eln2

taking logarithm both side :

ix = ln(2)

setting x=1 :

ln(2) = eln(ln(2)) = eln(i) = i ≈ e−
1
e ≈ 2−

1
2 ≈ e− 2

or

ln(2)
1

ln(ln(2)) = i
1

ln(i) = e ≈ − 1

ln(i)
≈ 2 + i

we get two more identity like eiπ + 1 = 0:

1

e
+ ln(i) = 0 = e+

1

ln(i)

again we know i2 = −1, taking log both side

ln (−1) = 2 ln i = 2ln(ln(2))

Lets assume:

ei
π
3 = z

taking natural log both side :

iπ

3
= ln(z)

Lets set:ln(z) = i+
1

3

iπ = 1 + 3i

i(π − 3) = 1

i =
1

π − 3

π = 3 +
1

i

we get two more identity like eiπ + 1 = 0:

ln(i)− 2 = 0 =
1

ln(i)
− 1

2

taking log both side of i2 = −1

ln (−1) = 2 ln i = 2ln

(
1

π − 3

)
Constant 1.

eiπ = eln(2).π = 8.824977827 = e2.17758609...(approx)

Constant 2.

eiπ = e
π

π−3 = 4, 324, 402, 934 = e22.18753992...(approx)

6.17. Fundamental formula of numbers. Also I got a nice relationship between sum of numbers

and the product of primes which can be regarded as the second fundamental formula of arithmetic.

Theorem 1.

2.
∞∑

N=1

N =
∞∏
i=1

Pi =⇒
∞∑

N=1

N =
∞∏
i=2

Pi[
42 of 95

]



Surajit Ghosh, Kolkata, India

We know :

ζ(−1) = ζ(1) + ζ(0)

=⇒

(
1 +

1

2
+

1

3
+

1

4
...

)
+

(
1 + 1 + 1 + 1 + ...

)
=

1

2

=⇒

(
1 + 1

)
+

(
1 +

1

2

)
+

(
1 +

1

3

)
+

(
1 +

1

4

)
+ ... =

1

2

=⇒

(
2

1
+

3

2
+

4

3
+

5

4
+

6

5
...

)
=

1

2

=⇒

(
1 + 2 + 3 + 4 + 5 + 6 + 7...∗

2.3.5.7.11... ∗ ∗

)
=

1

2

=⇒ 2.
∞∑

N=1

N =
∞∏
i=1

Pi

*Series in reverse order.

** LCM steps :

LCM =
∞∏
i=1

P 1
i .P

2
i .P

3
i ...P

1
i .P

2
i .P

3
i ...

LCM =
∞∏
i=1

P
(1+2+3+...)+(1+2+3+...)
i

LCM =
∞∏
i=1

P
1
2
+ 1

2
i

LCM = 2.3.5.7.11...

6.18. Goldbach’s prime theorem.

Theorem 2. Every even integer greater than 2 can be expressed as the sum of two primes.

Proof 1. Let N be a arbitrarily large number. Sum of all the natural numbers up to N shall be N(1+N)
2

which includes sum of all the primes up to N too. Double of such sum shall be N(1 + N) which shall

include double of sum of all the primes up to N too. According to PNT we know that there shall be
N

ln(N)
number of primes up to N with an average prime gap of ln(N). We can visualise N

ln(N)
as a prime

number itself and we can allow the prime gaps to change equivalently and complete the number sequence.

Now if we take logarithm of N(1 +N) with respect to the base of N
ln(N)

the result shall give us the lower

bound of powers that can comfortably be applied on that prime to reach double of the sum of all the

natural numbers up to N i.e. N(1+N). In other words if we consolidate the average prime gaps into a

relatively large prime having approximate value of P1 ≤ N
ln(N)

then that will lead us also to lower limit

of Goldbach partitions (as our push action shall have squeeze reaction on the prime gaps) which will

satisfy the following set of equations P2 ≤ log N
ln(N)

N(1 +N), P1 + P2 = E,P
log N

ln(N)
N(1+N)

1 ≤ N(1 +N)

. If our resultant exponent is greater than 2 (ideally it should be greater than or equal to 2 as we have

ensured all primes are summed up 2 times) then that will be greater than the lower bound of prime

gaps 2 which eventually ensures continuity of the pattern up to infinity. Clearly due to infinitude of

primes, the result log N
ln(N)

N(1 +N) = log N
ln(N)

N + log N
ln(N)

(1 +N) shall be always greater than 2. As 2

Goldbach partition is always lesser than the exponent as calculated above, all the even numbers greater

than 2 can be expressed as sum of two primes P1 + P2. Hence Goldbach conjecture stands proved and[
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it can be called as Goldbach theorem. The weaker version of Goldbach conjecture (ternary Goldbach

conjecture) immediately follows from the stronger version (binary Goldbach conjecture) proved above.

6.19. Twin prime theorem.

Theorem 3. There are infinitely many primes p such that p + 2 is also prime.

Proof 2. As the above result log N
ln(N)

N(1 +N) = log N
ln(N)

N + log N
ln(N)

(1 +N) shall be always greater

than 2 there shall be infinitely many twin primes with a prime gap of 2.Hence Twin prime conjecture

stands proved and it can be called as Twin prime theorem.

6.20. Sophie Germain’s prime theorem.

Theorem 4. There are infinitely many prime numbers of the form 2P + 1

Proof 3. As there shall be infinitely many twin primes with a prime gap of 2, there shall also be

infinitely many prime numbers of the form 2P + 1 with prime gap of P + 1 . Hence Sophie Germain

conjecture stands proved and it can be called as Sophie Germain’s prime theorem.

6.21. Polignac’s prime theorem.

Theorem 5. For every natural number k, there are infinitely many primes p such that p + 2k is also

prime.

Proof 4. As there shall be infinitely many twin primes with a prime gap of 2, there shall also be

infinitely many prime numbers of the form P + 2k with prime gap of 2k . Hence Polignac’s conjecture

stands proved and it can be called as Polignac’s prime theorem.

6.22. Bertrands prime theorem.

Theorem 6. There is at least one prime between N and 2N.

Proof 5. According to PNT N
ln(N)

shall be number of primes up to N. As the result log N
ln(N)

2N =

log N
ln(N)

2 + log N
ln(N)

N shall be always greater than 1, there shall be at least one prime between N and

2N. Hence Bertrands postulates stands proved and it can be called as Bertrands theorem. This proof is

most elementary compared to Chebyshev, Paul Erdos’s proof.

6.23. Legendre’s prime theorem.

Theorem 7. There is always a prime number between n2 and (n+ 1)2 provided that n ̸= −1, 0.

Proof 6. Let N be a arbitrarily large number. Sum of squares of all the natural numbers up to N shall

be N(N+1)(2N+1)
6

. Double of the sum shall be N(N+1)(2N+1)
3

. According to PNT we know that there shall

be N
ln(N)

number of primes up to N with an average prime gap of ln(N). We can visualise N
ln(N)

as a

prime number itself and we can allow the prime gaps to change equivalently and complete the number[
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sequence. Now if we take logarithm of N(N+1)(2N+1)
3

with respect to the base of N
ln(N)

the result shall

give us the lower bound of powers that can comfortably be applied on that prime to reach double of the

sum of squares of all the natural numbers up to N i.e. N(N+1)(2N+1)
3

. In other words if we consolidate

the average prime gaps into a relatively large prime having approximate value of P1 ≤ N
ln(N)

then that

will lead us also to lower limit of Legendre’s primes (as our push action shall have squeeze reaction on

the prime gaps) which will satisfy the following set of equations Pg ≤ log N
ln(N)

N(N+1)(2N+1)
3

, P1 + Pg =

P2, P
log N

ln(N)

N(N+1)(2N+1)
3

1 ≤ N(N+1)(2N+1)
3

. Similarly replacing sum of N2 by sum of (N + 1)2 we get

Pg ≤ log N
ln(N)

(N+1)(N+2)(2N+3)
3

, P1 + Pg = P3, P
log N

ln(N)

(N+1)(N+2)(2N+3)
3

1 ≤ (N+1)(N+2)(2N+3)
3

. If our resultant

exponent is greater than 2 both the cases (ideally it should be greater than or equal to 2 as we have

ensured all primes are summed up 2 times) then that will be greater than the lower bound of prime gaps

2 which eventually ensures continuity of the pattern up to infinity. Clearly due to infinitude of primes,

both the results

log N
ln(N)

N(N + 1)(2N + 1)

3
= log N

ln(N)
N + log N

ln(N)
(N + 1) + log N

ln(N)
(2N + 1)− log N

ln(N)
3

and log N
ln(N)

(N+1)(N+2)(2N+3)
3

= log N
ln(N)

(N + 1)((N + 1) + 1)((2N + 1) + 2) = log N
ln(N)

(N + 1)+log N
ln(N)

((N + 1) + 1)+

log N
ln(N)

((2N + 2) + 1))−log N
ln(N)

3 are greater than 2.And due to complete pattern of extra little quantity

of +1 another prime can occur in the interval meaning that the lower limit of number of primes in the

interval between n2 and (n+1)2. So the limit of Legendre’s primes would be greater than 1. Thus there

shall be at least one prime between n2 and (n + 1)2 as Legendre conjectured. Hence Legendre’s prime

conjecture stands proved and it can be called as Legendre’s theorem.

6.24. Landau’s prime theorem.

Theorem 8. There are infinitely many prime numbers of the form N2 + 1.

Proof 7. We know

P1 + P2 = Even number followed from Goldbach theorem

2N + 1 = Odd Prime if N= Odd prime followed from Sophie Germain theorem

Now lets consider this following statement:

(N + 1)2 + 1 = N2 + 2N + 1 + 1 = N2 + 1 + 2N + 1 = Even number obviously if N= Even

For infinite number of cases 2N +1 = N=Odd Sophie Prime in the above equation , N2 +1 must have

infinite number of prime solution applying Goldbach theorem.

Proof 8. Let N be a arbitrarily large number. Sum of squares of all the natural numbers up to N shall

be N(N+1)(2N+1)
6

. Double of the sum shall be N(N+1)(2N+1)
3

. According to PNT we know that there shall be
N

ln(N)
number of primes up to N with an average prime gap of ln(N). We can visualise N

ln(N)
as a prime[
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number itself and we can allow the prime gaps to change equivalently and complete the number sequence.

Now if we take logarithm of N(N+1)(2N+1)
3

with respect to the base of N
ln(N)

the result shall give us the lower

bound of prime powers that can comfortably be applied on that prime to reach double of the sum of squares

of all the natural numbers up to N i.e. N(N+1)(2N+1)
3

. In other words if we consolidate the average prime

gaps into a relatively large prime having approximate value of P1 ≤ N
ln(N)

then that will lead us also to

lower limit of Landau’s primes (as our push action shall have squeeze reaction on the prime gaps) which

will satisfy the following set of equations Pg ≤ log N
ln(N)

N(N+1)(2N+1)
3

, P1+Pg = P2, P
log N

ln(N)

N(N+1)(2N+1)
3

1 ≤
N(N+1)(2N+1)

3
. If our resultant exponent is greater than 2 (ideally it should be greater than or equal to 2

as we have ensured all primes are summed up 2 times) then that will be greater than the lower bound of

prime gaps 2 which eventually ensures continuity of the pattern up to infinity. Clearly due to infinitude

of primes, the result log N
ln(N)

N(N+1)(2N+1)
3

= log N
ln(N)

N + log N
ln(N)

(N + 1) + log N
ln(N)

(2N + 1) is greater

than 2. As exponent 2 is always lesser than the exponent as calculated above, there shall be infinitely

many prime numbers of the form N2 + 1. Hence Landau’s prime conjecture stands proved and it can

be called as Landau’s prime theorem.

6.25. Brocard’s prime theorem.

Theorem 9. With the exception of 4, there are always at least four primes between the square of a

prime and the square of the next prime.

Proof 9. Let N be a arbitrarily large number. Sum of squares of all the natural numbers up to N

shall be N(N+1)(2N+1)
6

. Double of the sum shall be N(N+1)(2N+1)
3

. According to PNT we know that

there shall be N
ln(N)

number of primes up to N with an average prime gap of ln(N). We can visualise
N

ln(N)
as a prime number itself and we can allow the prime gaps to change equivalently and complete

the number sequence. Now if we take logarithm of N(N+1)(2N+1)
3

with respect to the base of N
ln(N)

the

result shall give us the lower bound of prime powers that can comfortably be applied on that prime to

reach double of the sum of squares of all the natural numbers up to N i.e. N(N+1)(2N+1)
3

. In other

words if we consolidate the average prime gaps into a relatively large prime having approximate value

of P1 ≤ N
ln(N)

then that will lead us also to lower limit of primes between two successive squares (as

our push action shall have squeeze reaction on the prime gaps) which will satisfy the following set

of equations Pg ≤ log N
ln(N)

N(N+1)(2N+1)
3

, P1 + Pg = P2, P
log N

ln(N)

N(N+1)(2N+1)
3

1 ≤ N(N+1)(2N+1)
3

. If our

resultant exponent is greater than 2 (ideally it should be greater than or equal to 2 as we have ensured

all primes are summed up 2 times) then that will be greater than the lower bound of prime gaps 2

which eventually ensures continuity of the pattern up to infinity. Clearly due to infinitude of primes,

the result log N
ln(N)

N(N+1)(2N+1)
3

= log N
ln(N)

N + log N
ln(N)

(N + 1) + log N
ln(N)

(2N + 1) is greater than 2. In

case of interval between two consecutive primes the above limit get raised to the power of its own value

meaning that there shall be at least 4 primes between the square of a prime and the square of the next

prime. Hence Brocard’s prime conjecture stands proved and it can be called as Brocard’s prime theorem.[
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6.26. Opperman’s prime theorem.

Theorem 10. For every integer x > 1, there is at least one prime number between x(x−1) and x2,and

at least another prime between x2 and x(x+ 1)

Proof 10. Let N be a arbitrarily large number. Sum of square of all the natural numbers up to N shall

be N(N+1)(2N+1)
6

. Double of the sum shall be N(N+1)(2N+1)
3

. Sum of all the natural numbers up to N shall

be N(1+N)
2

. Double of the sum shall be N(1 +N) which shall include double of sum of all the primes up

to N too. According to PNT we know that there shall be N
ln(N)

number of primes up to N with an average

prime gap of ln(N). We can visualise N
ln(N)

as a prime number itself and we can allow the prime gaps to

change equivalently and complete the number sequence. Subtracting N(1+N) from N(N+1)(2N+1)
3

we get

N(N + 1).2N−2
3

. Now if we take logarithm of N(N + 1).2N−2
3

with respect to the base of N
ln(N)

the result

shall give us the lower bound of prime powers that can comfortably be applied on that prime to reach

N(N + 1).2N−2
3

. In other words if we consolidate the average prime gaps into a relatively large prime

having approximate value of P1 ≤ N
ln(N)

then that will lead us also to lower limit of primes between x2

and x2 − x (as our push action shall have squeeze reaction on the prime gaps) which will satisfy the

following set of equations Pg ≤ log N
ln(N)

N(N+1)(2N−2)
3

, P1 + Pg = P2, P
log N

ln(N)

N(N+1)(2N−2)
3

1 ≤ N(N+1)(2N−2)
3

.

Clearly due to infinitude of primes, the result log N
ln(N)

N(N + 1).2N−2
3

= log N
ln(N)

N + log N
ln(N)

(1 +N) +

log N
ln(N)

2N−2
3

shall be greater than 2 meaning that there shall be at least one prime between x(x− 1) and

x2. Again adding N(1 + N) with N(N+1)(2N+1)
3

we get N(N + 1). (2N+4)
3

. Now if we take logarithm of

N(N+1). (2N+4)
3

with respect to the base of N
ln(N)

the result shall give us the lower bound of prime powers

that can comfortably be applied on that prime to reach N(N+1). (2N+4)
3

. In other words if we consolidate

the average prime gaps into a relatively large prime having approximate value of P1 ≤ N
ln(N)

then that will

lead us also to lower limit of primes between x2+x and x2 (as our push action shall have squeeze reaction

on the prime gaps) which will satisfy the following set of equations P1 ≤ N
ln(N)

to reach N(N +1). (2N+4)
3

satisfying the following set of equations Pg ≤ log N
ln(N)

N(N+1)(2N+4)
3

, P1 + Pg = P3, P
log N

ln(N)

N(N+1)(2N+4)
3

1 ≤
N(N+1)(2N+4)

3
. Clearly due to infinitude of primes, the result log N

ln(N)
N(N + 1). (2N+4)

3
= log N

ln(N)
N +

log N
ln(N)

(1 +N) + log N
ln(N)

(2N+4)
3

shall be greater than 2 meaning that there shall be at least one prime

between x2 and x(x + 1). Altogether Opperman’s conjecture stands proved and it can be called as

Opperman’s theorem.

6.27. Firozbakht’s prime theorem.

Theorem 11. p
1
n
n (where pn is the nth prime) is a strictly decreasing function of n, i.e.,

n+1
√
pn+1 < n

√
pn Equivalently: pn+1 < p

1+ 1
n

n for all n ≥ 1

Proof 11. According to PNT we know that there shall be N
ln(N)

number of primes up to N with an

average prime gap of ln(N). The same is also true in case of primes i.e. there shall be P
ln(P )

number[
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of primes up to P with an average prime gap of ln(P ). Now let us consider the following logarithmic

expression.

log P
ln(P )

(P + 2) < log P
ln(P )

P +
1

P
log P

ln(P )
P

Which we can show by the following steps

log P
ln(P )

(P + 2) < log P
ln(P )

P +
1

P
log P

ln(P )
P

=⇒ log P
ln(P )

(P + 2) < log P
ln(P )

P + log P
ln(P )

P
1
P

=⇒ log P
ln(P )

(P + 2) < log P
ln(P )

P.P
1
P

=⇒ log P
ln(P )

(P + 2) < log P
ln(P )

P 1+ 1
P

=⇒ log Pn
ln(Pn)

(P + 2) < log Pn
ln(Pn)

P
1+ 1

Pn
n

Pn → ∞ =⇒ Pn+1 <P
1+ 1

n
n

Hence Firozbakht’s prime conjecture stands proved and it can be called as Firozbakht’s prime theorem.

6.28. Let us prove Collatz conjecture.

Theorem 12. The Collatz conjecture is: This process will eventually reach the number 1, regardless of

which positive integer is chosen initially. That smallest i such that ai = 1 is called the total stopping

time of n. The conjecture asserts that every n has a well-defined total stopping time. If, for some n,

such an i doesn’t exist, we say that n has infinite total stopping time and the conjecture is false. If the

conjecture is false, it can only be because there is some starting number which gives rise to a sequence

that does not contain 1. Such a sequence would either enter a repeating cycle that excludes 1, or increase

without bound.

Proof 12. Collatz conjectured operations on any number (i.e. halving the even numbers or simultane-

ously tripling and adding 1 to odd numbers) may blow up to infinity or come down to singularity or may

get stuck in a loop in between. Tripling and adding 1 to odd numbers will always land on an even num-

ber. Now to end the game we just need to step upon an even number which is of the form 2n. Will that

happen always up to infinity when odd primes are tripled and added to 1? Lets call n as Collatz exponent.

We have seen that odd primes are kind of descendants of sole even prime 2 via zeta zeros which again

appear infinitely in cycles of 3 divisions. Multiplying by 3 simply connects it back to the sequence up to

infinity. This small bias turns the game of equal probability into one sided game. Let N be a arbitrarily

large number. Sum of squares of all the natural numbers up to N shall be N(N+1)(2N+1)
6

. Double of the

sum shall be N(N+1)(2N+1)
3

. According to PNT we know that there shall be N
ln(N)

number of primes up to

N with an average prime gap of ln(N). We can visualise N
ln(N)

as a prime number itself and we can allow

the prime gaps to change equivalently and complete the number sequence. Now if we take logarithm of
N(N+1)(2N+1)

3
with respect to the base of N

ln(N)
the result shall give us the lower bound of prime powers[
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that can comfortably be applied on that prime to reach double of the sum of squares of all the natural

numbers up to N i.e. N(N+1)(2N+1)
3

. In other words if we consolidate the average prime gaps into a rela-

tively large prime having approximate value of P1 ≤ N
ln(N)

then that will lead us also to lower limit of the

collatz exponent (as our push action shall have squeeze reaction on the prime gaps) which will satisfy the

following set of equations Pg ≤ log N
ln(N)

N(N+1)(2N+1)
3

, P1 + Pg = P2, P
log N

ln(N)

N(N+1)(2N+1)
3

1 ≤ N(N+1)(2N+1)
3

.

If our resultant exponent is greater than 2 (ideally it should be greater than or equal to 2 as we have

ensured all primes are summed up 2 times) then that will be greater than the lower bound of prime gaps

2 which eventually ensures continuity of the pattern up to infinity. Clearly due to infinitude of primes,

the result log N
ln(N)

N(N+1)(2N+1)
3

= log N
ln(N)

N + log N
ln(N)

(N + 1) + log N
ln(N)

(2N + 1) is greater than 2 . As

resultant exponent is always greater than 2 Collatz conjecture neither blows up to infinity nor it get

stuck in a loop, it always lands on an even number of the form 2n and one last step before the final

whistle bring it down to singularity 1 as Collatz conjectured. Hence Collatz conjecture stands proved

and it can be called as Collatz prime theorem.

6.29. Fermat’s last theorem.

Theorem 13. There cannot be any integer solution for n > 2 which satisfies xn + yn = zn

Proof 13. Let there be some value n > 2 which satisfies xn + yn = zn. Case n = 2 is known since

Greeks (Pythagoras) if not earlier since Indians (Boudhayana). Now to search for greater values where

from the search should begin. Obviously it should be 3 because if it discontinues at 3 then we should

stop the search. At zero x3+ y3 = z3 should satisfy the special case x3+ y3 = (x+ y)3 which can also be

written as x3+y3 = (x+y)(x2+xy+y2). Replacing (x2+y2) = 1 will bring zeta function into the picture

analogous to Euler’s sum to product form involving primes in the form of x3+ y3 = (x+ y)(1+xy).The

idea is factoring out this (1+ something) terms one side and take their products to relate it universal

zeta zeros related to primes. Similarly every higher order Diophantine equations of this form can be

equated to zeros of higher order polynomials. Expanding those polynomials by repeated Newton’s binomial

expansion we shall get terms like (x2 + y2) = 1. For example x4 + y4 = (x2 +2xy+ y2).(x2 +2xy+ y2),

replacing (x2+ y2) = 1 which can be written x4+ y4 = (1+2xy).(1+2xy). Even higher order cases will

not be an exception. Now this (1+ something) form is reserved for primes in Euler’s sum to product

form of zeta function. If we try to unify these terms arising from zeros of all higher order polynomials

we fall into a serious conflict as the first term (1 + xy) itself suggesting xy cannot be prime. Therefore

there cannot be any integer solution for any value of n > 2 which satisfies xn + yn = zn as Fermat

claimed. Fermat’s last theorem holds good. He was not bluffing when he said he had the proof after

all his claims was found to be true. Andrew Wiles has given 500+ pages proof. Proving Fermat’s last

theorem in more elementary way is a subject of academic interest now. I am presenting my signature

proof which not to be construed as an attempt to undermine Andrew Wiles’s work. His work has given

the world of mathematics something new called Taniyama-Shimura theorem ( I don’t know what it is all

about). It’s always good to keep on adding new theorems as they always proves to be handy in attacking[
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novel problems. Let zn be a arbitrarily large number. Let two numbers x > ln(zn) and y > ln(zn) also

satisfies xn + yn = zn. Now to find the limit n = eln (zn)

eln (zn) we can look into its zeros in the d-unit circle

which satisfies 1 = 1
n
.eln (n). The only value n = 2 satisfies such conditions, therefore there cannot be

any solution for any value of n > 2 which satisfies xn + yn = zn as Fermat claimed. We can work out

the same proof using square roots also. I guess Fermat’s original motivation was using square roots.

6.30. Beal theorem.

Theorem 14. If Ax + By = Cz where A, B, C, x, y, and z are positive integers with x, y, z > 2 then

A, B, and C have a common prime factor.

Proof 14. In the proof of Fermat’s last theorem we already got hint that x, y, z > 2 cases solution to

above Diophantine equation will involve some composite numbers. Now if Beal theorem is true it will

obey the limit z
xy

= 1
2
, 2 or xy

z
= 2, 1

2
which can only be true when AB

C
= 2, 1

2
or C

AB
= 1

2
, 2 respectively

inside the d-unit circle. In all the cases A, B, and C have a common prime factor which is 2. So along

the real numberline Ax + By = Cz will be true for x, y, z > 2 if A, B, and C have a common prime

factor.

6.31. abc theorem.

Theorem 15. For every positive real number ε , there exist only finitely many triples (a, b, c) of

coprime positive integers, with a + b = c, such that c > rad(abc)1+ε.

Proof 15. If we observe mimutely we will see infinity of abc conjecture triples (a, b, c) would have

been true if and only if a + b - c = 0 = abc. But that is impossible because abc=0 has not completed the

cycle although a+b-c=0 has completed a semicircle. The proven zeros of d-unit circle make infinitude

of triples (a, b, c) impossible because 1+1 = 2 ̸= rad(1.1.2)1+ε, hence abc conjecture stands proved. We

can conclude that for every positive real number ε , there exist finitely many triples (a, b, c) of coprime

positive integers, with a + b = c, such that c > rad(abc)1+ε.

Part 5. On the Unification of Complex Numbers

7. Let us begin with a short Introduction of complex numbers

The history of complex numbers dates back to ancient times, with the Greeks and the Chinese inves-

tigating equations with negative numbers. However, the concept of a complex number as we know

it today was not fully developed until the 16th century, when Italian mathematicians like Niccolo

Fontana Tartaglia and Gerolamo Cardano used complex numbers to solve cubic equations. The term

”imaginary” for these quantities was coined by René Descartes in 1637. Later, in the 18th century,

Swiss mathematician Leonhard Euler introduced the symbol ”i” to represent the imaginary unit, and

contributed significantly to the development of complex analysis. A more abstract formalism for the

complex numbers was further developed by the Irish mathematician William Rowan Hamilton, who[
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extended this abstraction to the theory of quaternions a hypercomplex number that involve more than

one imaginary unit. Hypercomplex Numbers introduce additional dimensions beyond the real and

imaginary axes found in the complex plane. There are several types of hypercomplex numbers, includ-

ing quaternions, octonions, sedenions and trigintaduonions. Today, complex numbers are used in a

wide range of fields, including physics, engineering, and computer science.However, complex numbers

come with certain challenges and problems.While complex numbers can be geometrically interpreted

as points on a plane and quaternions can be related to rotations in three-dimensional space, octonions

lack a straightforward geometric interpretation. The reduced ability to visualize and geometrically

interpret Hyper Complex numbers can make them more abstract and difficult to work with. Unlike

real numbers, Quaternions do not commute under multiplication. This means that the order in which

Quaternions are multiplied can affect the result.Sedenions do not possess the property of associativity

under multiplication. Sedenions contain zero divisors. Zero divisors are elements that multiply to zero

but are themselves non-zero. This means that not all sedenions have a multiplicative inverse. This lack

of commutativity, associativity can make computations and algebraic manipulations more challenging

and less intuitive.

8. If all complex numbers could be turned into real numbers

If all complex numbers could be turned into real numbers, it would imply a significant reduction in

the mathematical structure and properties of complex numbers.The imaginary unit ”i” is an essential

component of complex numbers. It is defined as the square root of -1 and plays a fundamental role

in various mathematical and scientific applications. If complex numbers were reducible to reals, the

concept of the imaginary unit would cease to exist. The complex plane, where complex numbers

are represented as points with real and imaginary coordinates, would no longer have meaning. The

complex plane provides a geometric interpretation of complex numbers and facilitates visualizations of

their properties, such as modulus, argument, and transformations. Removing complex numbers would

eliminate the need for a two-dimensional plane to represent numbers.Complex analysis is a branch of

mathematics that deals with functions defined on complex numbers. It has numerous applications in

physics, engineering, and other fields. If complex numbers were reduced to reals, complex analysis

would not exist in its current form, and the insights and techniques developed in complex analysis

would be lost.Complex numbers are instrumental in solving polynomial equations. The Fundamental

Theorem of Algebra states that every non-constant polynomial equation with complex coefficients has

at least one complex root. If complex numbers were reduced to reals, the ability to find solutions to

certain equations would be significantly hindered.Complex numbers have deep connections to various

branches of mathematics and physics. They are used extensively in fields like quantum mechanics,

signal processing, electrical engineering, and control systems. If complex numbers were reduced to

reals, these areas would experience a loss of the mathematical tools and frameworks that complex

numbers provide. Although we cannot get rid of Complex Numbers completely, In the present article I[
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will try or atleast lay down the foundation stone towards the same direction. I could do this with the

help of the insights I got while attempting to prove Riemann Hypothesis. Although it is a monumental

accomplishment in the world of mathematics, I know it will take a lot of time before it get accepted

all across the globe. After extensive research and countless hours dedicated to this endeavor, I believe

that I have uncovered a compelling proof that demonstrates the validity of the Riemann Hypothesis.

This proof could potentially have significant implications for our understanding of prime numbers, the

distribution of their zeros, and the broader implications for various branches of mathematics.Given the

immense impact that the Riemann Hypothesis holds for number theory and its connections to other

mathematical fields, I am keen to share my findings with the broader mathematical community. If any

of my readers find merit in my proof and believe that it holds great importance for mathematics, I

kindly seek their assistance in advancing its recognition within the mathematical community. Their

endorsement in whatsoever manner you may deem fit would provide a significant additional layer of

credibility to the proof and its implications.

9. Let The definition of imaginary number iota be natural logarithm of 2

Before we dive into the definition of imaginary number i let us recall Complex Numbers are composed

of a real part and an imaginary part, they are written in the form x + iy. x denotes the real part and iy

denotes the imaginary part. Complex numbers can be represented on an Argand Diagram. An Argand

diagram is similar to the Cartesian coordinate system except that the Real axis and Imaginary axis

replace the X and Y axis respectively which you would usually expect see on the Cartesian system. The

ℜ{z}

ℑ{z}

−3

−3i

−2

−2i

−1

−1i

1

1i

2

2i

3

3i 2 + 3i

hypercomplex numbers are a generalization of the complex numbers. They were created in an attempt

to describe certain geometric operations in spaces with a dimension higher than the 2-dimensional[
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plane. Operations on the complex numbers can be used to describe many of the geometric operations

on the plane. For instance multiplication by a real number corresponds to a scaling of the plane.

Multiplication by complex numbers with a modulus of 1 corresponds to a rotation of the plane. Adding

complex numbers corresponds to translation of the plane. To turn complex numbers into reals we need

to define the imaginary number in such a uniqe way that the definition set brimgs back the missing

order amongst the complex numbers. The unit circle will be the best place to start with.Of course

there were circles of radius 1 since the ancient Greek geometers, but the term “unit circle” could not

have been described until Fermat and Descartes invented coordinates and developed analytic geometry

in the 1630s.Later, Euler parametrized it and also studied it using complex numbers.The unit circle

provides an easy way to define the sine and cosine functions, since for an arbitrary angle in standard

position (i.e. vertex at origin, initial side the positive x-axis), the terminal side cuts the unit circle

at the point whose x-coordinate is cosine of the angle and whose y-coordinate is sine of the angle.In

mathematics, the concept of ordering is closely related to the idea of a number line. Real numbers

can be represented on a number line, where each point corresponds to a specific real number. On the

number line, we can clearly see the order of real numbers: we can say that one real number is greater

than another by its position on the number line.However, when we introduce complex numbers, things

become more intricate. Complex numbers have both a real part and an imaginary part, and they

cannot be represented on a simple number line. In the complex plane, the horizontal axis represents

the real part of the complex number, and the vertical axis represents the imaginary part. Each complex

number corresponds to a unique point in the complex plane.Unlike the real numbers on the number line,

complex numbers do not have a natural ordering based on their positions in the complex plane.Since the

real and imaginary parts of complex numbers can vary independently, it is not meaningful to say that

one complex number is greater or less than another until we evaluate the complex number into reals.A

direct one-to-one mapping of complex numbers onto the real number line can be possible if somehow

we can define some real value for imaginary number i. In our proof of Riemann Hypothesis we saw that

inside d-unit circle four dimensional mathematics turns the imaginary number into a completely real

one. The very first real solution to imaginary number i is natural logarithm of 2. Therefore let The

definition of imaginary number iota be natural logarithm of 2.

10. Conceiving The Simplex Numbers

Having set the definition of imaginary number iota equal to be natural logarithm of 2 we are set to

embark for a new world of new number system. Although complex numbers are named so to actually

mean a complex (something like housing complex) of real and imaginary numbers, frequently it is

misunderstood to mean a number system with complexity. Indeed complex operations and complex

analysis can involve increasing level of complexity as we introduce higher number of dimensions.Now

in our newly discovered number system which will turn every complex number into a real one based

on the definition of imaginary number iota equal to be natural logarithm of 2 is going to simplify[
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the whole process of complex operations. It will be justified to call this new namber system to be

Simplex Numbers. Similar to complex number a typical Simplex number can also be expressed as

(a + bi), where ”a” represents the decimal part and ”bi” represents the complex part. The decimal

part can take any real value, while the complex part combines the imaginary unit ”i” to be finally

evaluated as equal to the natural logarithm of 2 with a real coefficient.The Simplex number system is

a novel mathematical construct that combines the properties of both decimal numbers and complex

numbers. It offers a unique framework for representing and manipulating numerical quantities, blending

the familiar decimal system with the rich algebraic structure of complex numbers. Real part can also

have multiple parts but they need to be simplified according to BODMAS / PEMDAS rule before

evaluating any Simplex number. In the Simplex number system, the place value are similar to the rules

followed in the decimal system we commonly use with an exception that it starts with base 10 and

the power increases in opposite direction i.e. left to right. The complex part has got different place

value than the real part. Similar to Decimal numbers the real part represents the normal decimal value

representing decimal numbers of base 10. However the complex part has got hundreds as place value

multiplier i.e. second power of 10, and the next has got thousands i.e. third power of 10 as place value

multiplier, and so on. The decimal part functions similarly to the decimal system we are accustomed

to, where digits from 0 to 9 represent different place values. The complex parts, on the other hand,

follows the principles of complex numbers, where the each imaginary unit is introduced to represent

natural logarithm of 2 at its successive natural logarithms.just like complex numbers can be represented

geometrically on the complex plane, Simplex numbers can be visualized on a modified complex plane.

The real axis represents the decimal part, while the imaginary axis represents the complex part.The

Simplex number system allows for decimal precision, similar to the decimal system. This means that

decimal parts can be represented with as many decimal places as needed, providing flexibility for precise

calculations and measurements.

11. The Simplex Operations

The Simplex number system inherits the algebraic structure of complex numbers. This means that

Simplex numbers can be added, subtracted, multiplied, and divided using rules similar to those used

for complex and decimal numbers combined.Now we need to set the rules for Simplex Operation which

will turn complex numbers into real one.just like in the decimal system, arithmetic operations like

addition, subtraction, multiplication, and division can be performed on Simplex numbers. For in-

stance, addition and subtraction are carried out by separately operating on the decimal and complex

parts. Addition of Simplex numbers is self explanatory and is done in the same way as we would

add other algebraic terms. The same applies for subtraction.These operations incorporate both the

decimal and complex aspects of Simplex numbers, providing a comprehensive toolset for mathematical

analysis and problem-solving.The introduction of the Simplex number system opens up new avenues

for exploring mathematical concepts and solving real-world problems. Its hybrid nature allows for the[
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representation of quantities that possess both decimal and complex characteristics, finding potential

applications in fields such as engineering, physics, and computer science.While the Simplex number

system is a theoretical construct at this stage, its development showcases the ongoing quest to expand

and enrich mathematical frameworks. As mathematics continues to evolve, the integration of diverse

number systems may lead to exciting discoveries and novel insights into the nature of numbers and

their applications.Multiplication and division in the Simplex number system involve utilizing the non-

Commutative, non-Associative, non-Distributive properties of Simplex numbers. The product of two

Simplex numbers (a + bi) and (c + di) is calculated by combining like terms, resulting in a new Simplex

number. Division follows a similar procedure, where the division result is calculated by dividing like

terms.

Example of Multiplication:

(3 + 4i)(−4 + 7i)

= −12 + 28i

(3 + 0i)(−4 + 7i)

= −12 + 0i = −12

Example of Division:

4 + 7i

3− 2i
=

4

3
+

7i

−2
=

4

3
− 7i

2

The Simplex number system extends beyond basic arithmetic operations. Exponentiation, logarithms,

and trigonometric functions can also be defined and applied to Simplex numbers. These operations

consider both the decimal and complex aspects of the numbers, providing a comprehensive mathematical

toolkit. Example of Exponentiation:

(3 + 4i)2

(3 + 4i)(3 + 4i) = 9 + 16i

Example of Logarithm:

ln ((3 + 4i)(−4 + 7i))

= ln (−12) + ln 28.i

= ln (
1

12
) + ln 28.i

= −2.484 + 3.332i[
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Example of Trignometric functions:

sin((3 + 4i)(−4 + 7i))

= sin(−12 + 28i)

= sin(−12) cosh(28) + cos(28) sinh(−12)i

= 388011186582.81− 78334.3584923298i

Hyperbolic complex numbers are a two-dimensional extension of the real numbers that include the

imaginary unit j, where j2 = 1. The change of sign distinguishes the Hyperbolic-complex numbers

from the ordinary complex ones.As we are in the process of unification, notation j may be confusing

with higher dimensional quaternion number system. For better clarity, henceforth we shall use ih for

hyperbolic complex numbers.To turn the hyperbolic unit ih into a real number we just need to define

ih = −i = − ln(2) just before evaluation in Simplex Operation. Rest of the thing will remain the same.

Example of Multiplication:

(3 + 4ih)(−4 + 7ih)

= −12 + 28ih

(3 + 0ih)(−4 + 7ih)

= −12 + 0ih = −12

Example of Division:

4 + 7ih
3− 2ih

=
4

3
+

7ih
−2

=
4

3
− 7ih

2

Dual numbers are a two-dimensional extension of the real numbers that include the imaginary unit ϵ ̸= 0,

where ϵ2 = 0,. To turn the dual unit ϵ ̸= 0 into a real number we just need to define ϵ ̸= 0 = ln(2).ln(−2)

equal to the product of imaginary number i and hyperbolic number j in Simplex Operation. Rest of

the thing will remain the same.

Example of Multiplication:

(3 + 4ϵ)(−4 + 7ϵ)

= −12 + 28ϵ

(3 + 0ϵ)(−4 + 7ϵ)

= −12 + 0ϵ = −12

Example of Division:

4 + 7ϵ

3− 2ϵ
=

4

3
+

7ϵ

−2
=

4

3
− 7ϵ

2

The Simplex number system has the potential to find applications in various fields. For instance, in

engineering, it could be useful in modelling and analysing systems that possess both real and complex[
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characteristics for example in electrical engineering, it could be used to model circuits that involve both

decimal values (such as resistors) and complex values (such as capacitors or inductors). In finance, the

Simplex number system might be utilized for analysing investments that have both real and complex

components, such as options or derivatives. In physics, the Simplex number system might be utilized

to study phenomena that involve both decimal measurements and complex quantities, such as oscilla-

tions or wave propagation.It’s worth noting that the Simplex number system is a theoretical concept

introduced here for illustrative purposes. Its practical implementation and development would require

further consideration, refinement, and exploration by mathematicians, scientists, and researchers.The

integration of the decimal and complex aspects in the Simplex number system represents a fascinating

exploration of mathematical structures, showcasing the potential for new insights and applications in

the realm of numbers and their properties.

12. Higher Dimensional Simplex Numbers

Similar to how complex numbers extend beyond the realm of two-dimensional space, the Simplex num-

ber system can be further extended to higher dimensions. This opens up possibilities for applications

in fields such as computer graphics, physics simulations, and signal processing.Quaternions are a four-

dimensional extension of complex numbers and are represented as a + bi + cj + dk, where a, b, c,

and d are real numbers, and i, j, and k are the quaternion units.To compute the product qp, we can

use the quaternion multiplication rules:i2 = j2 = k2 = ijk = −1, ij = k, jk = i, ki = j, ji = −k, kj =

−i, ik = −j.We have just defined imaginary number i Now, let’s multiply the quaternions under Simplex

Operation:

(2 + 3i+ 4j + 5k)(−1 + 2i− 3j + 6k)

= −2 + 6i− 12j + 30k

Similarly the Division result will be:

(2 + 3i+ 4j + 5k)

(−1 + 2i− 3j + 6k)

= −2 +
3

2
i− 4

3
j +

5

6
k

Hyperbolic quaternions are an extension of quaternions that incorporate hyperbolic numbers in each

component.q = a+ bih+ cjh+ dkh is a hyperbolic quaternion when a, b, c, and d are real numbers, and

ih, jh, and kh are the hyperbolic quaternion units has these products:ihjh = kh = −jhih, jhkh = ih =

−khjh, khih = jh = −ihkh and i2h = j2h = k2h = +1. To turn the hyperbolic units into a real number we

just need to to define ih = −i, jh = −j, kh = −k in Simplex Operation. Rest of the thing will remain

the same. Now, let’s multiply the hyperbolic quaternions under Simplex Operation:

(2 + 3ih + 4jh + 5kh)(−1 + 2i− 3j + 6k)

= −2 + 6ih − 12jh + 30kh[
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Similarly the Division result will be:

(2 + 3ih + 4jh + 5kh)

(−1 + 2i− 3j + 6k)

= −2 +
3

2
ih −

4

3
jh +

5

6
kh

Now, let’s multiply the 4 dimensional dual numbers under Simplex Operation:

(2 + 3ϵ1 + 4ϵ2 + 5ϵ3)(−1 + 2ϵ1 − 3ϵ2 + 6ϵ3)

= −2 + 6ϵ1 − 12ϵ2 + 30ϵ3

Similarly the Division result will be:

(2 + 3ϵ1 + 4ϵ2 + 5ϵ3)

(−1 + 2ϵ1 − 3ϵ2 + 6ϵ3)

= −2 +
3

2
ϵ1 −

4

3
ϵ2 +

5

6
ϵ3

13. Evaluating The Simplex Numbers

Already things have started getting messy. There are more to go in the form of octonions(base-8),

sedenions(base-16), trigintaduonions(base-32), babylonions(base-64)(I guess they are there and I am

sure they do not violate any Laws of addition) , their Hyperbolic versions and their dual versions.

Thankfully all these variants of hyper complex numbers will obey our definition for imaginary number

i as we have chosen the unique one. We have seen some lack of inconsistencies above, to unify and

simplify the notation ιc, ιh, ιdto denote complex number, perplex number, dual numbers respectively

and use a subscript to denote the dimension. For example all the complex numbers up to 64 dimensions

can be represented as

ιc1, ιc2, ιc3, ιc4, ιc5, ιc6, ιc7, ιc8, ιc9, ιc10, ιc11, ιc12, ιc13, ιc14, ιc15, ιc16, ιc17, ιc18, ιc19, ιc20, ιc21, ιc22...

Similarly all the split complex/purplex/hyperbolic numbers upto 64 dimension can be represented as:

ιh1, ιh2, ιh3, ιh4, ιh5, ιh6, ιh7, ιh8, ιh9, ιh10, ιh11, ιh12, ιh13, ιh14, ιh15, ιh16, ιh17, ιh18, ιh19, ιh20, ιh21, ιh22...

Similarly all the dual numbers numbers upto 64 dimension can be represented as:

ιd1, ιd2, ιd3, ιd4, ιd5, ιd6, ιd7, ιd8, ιd9, ιd10, ιd11, ιd12, ιd13, ιd14, ιd15, ιd16, ιd17, ιd18, ιd19, ιd20, ιd21, ιd22...

However we should also allow/continue the practice if Greek letter iota is represented as English letter

i. Let us now set the rules for evaluation of Simplex Numbers. To evaluate a complex number into a

real number, we can multiply the imaginary part with the real part along with the pre-defined value of

imaginary part.We have seen the imaginary number i can be defined to be equal to natural logarithm

of 2, the imaginary hyperbolic numberih can be defined to be equal to minus natural logarithm of 2 and

finally the imaginary dual numberid can be defined to be equal to minus natural logarithm of 2 squared.

Now what shall be higher dimensional imaginary numbers for all these variants? Well to go for cycles[
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in the context natural logarithm of 2 we can take repeated logarithm of 2, replacing minus 1 by 2 times

of natural logarithm of 2 as and when they may appear in the iterative process. Now the question arise

whether we shall consider the sign of the imaginary constants also? Answer shall be yes again as we are

dealing with the power/indices plus sign means the Simplified imaginary constants (Simplex) part shall

get multiplied with the real part and vice-versa.Did not got Why multiply? The default positive sign of

complex numbers stands for positive power of exponents and which means multiplication and negative

sign of complex numbers stands for negative power of exponents and which means division. But as we

are flattening down the higher dimensions along the 1 dimensional number line we should also consider

the sign it is bringing with it. Now lets discuss the scale factor for higher/lower dimensions to climb

up and down. Why an extra scale factor? Because we use a number system based on powers of 10 for

which there should be a default scale fator of 10 and some higher/lower multiples of 10 as we want to

further ascend/descend to/from extra dimensions.What shall be the scale factor for imaginary number

i . Starting with 10 for the real part, imaginary part i shall have a scale factor of 100. How come the

decimal system be related to complex numbers,Wherefrom 100 is coming here? π4 approximates to

hundred. When higher dimensions are involved and pi is squared successively applying borrowing and

carry over the decimal part, it can be rearranged to bring zeta function come into play and show that

final sum of the decimal part equals to 1 as follows

1.10n + 2.10n−1 + 3.10n−2 + 4.10n−3 + 5.10n−4 + ...

10n

when n tends to infinity out of infinite rotations among the unit circle, factoring out

10n(1 + 1
2
+ 1

3
+ 1

4
+ 1

5
+ ...)

10n

finally giving us π2 = 9 + ζ(1) = 9 + 1 = 10. Now Let us make a table of simplex constants of all the

absolute real values for all the imaginary numbers up to 64 dimensions and its equivalent decimal scale

factor. The scale factor chosen here is the natural one. However depending upon the application the

scale factor may be adjusted to factors of 10 consistently.

SL. ic = ln(2), ln(ln(2))... ih = − ln(2), ln(− ln(2))... id = − ln2(2), ln(− ln2(2))... SF

0 Real part Real part Real part 100

1 +0.6931471806 -0.6931471806 -0.4804530139 101

2 -0.3665129206 +1.0197814405 +0.6532685200 102

3 +0.3825728568 +0.0195883304 -0.4257670245 103

4 -0.9608361685 -3.9328212802 +0.5324313880 104

5 +1.3463429964 +2.7556514124 -0.6303012386 105

6 +0.2973920252 +1.0136538620 +0.9247369438 106

7 -1.2127040605 +0.0135614879 -0.0782459670 107

8 +1.5791469881 -4.3005212739 -1.1616036295 108[
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SL. ic = ln(2), ln(ln(2))... ih = − ln(2), ln(− ln(2))... id = − ln2(2), ln(− ln2(2))... SF

9 +0.4568848203 +2.8450306030 +1.5360958508 109

10 -0.7833239542 +1.0455738243 +0.4292440356 1010

11 +1.1420854272 +0.0445658488 -0.8457296742 1011

12 +0.1328559134 -3.1107874343 +1.2187388566 1012

13 -2.0184900961 +2.5211702496 +0.1978166000 1013

14 +2.0886441159 +0.9247231785 -1.6204149402 1014

15 +0.7365151071 -0.0782608528 +1.8689766135 1015

16 -0.3058255313 -1.1614134045 +0.6253910156 1016

17 +0.2015538624 +1.5359320767 -0.4693782000 1017

18 -1.6016986259 +0.4291374128 +0.6299479222 1018

19 +1.8573590684 -0.8459781017 -0.4621181262 1019

20 +0.6191556231 +1.2190325569 +0.6143596250 1020

21 -0.4793986274 +0.1980575580 -0.4871748138 1021

22 +0.6510715410 -1.6191975934 +0.6671621014 1022

23 -0.4291357488 +1.8682250750 -0.4047222321 1023

24 +0.5403123818 +0.6249888224 +0.4817400672 1024

25 -0.6156078219 -0.4700215136 -0.7303505901 1025

26 +0.9011491902 +0.6313175495 +1.0720637614 1026

27 -0.1040844522 -0.4599462951 +0.0695855398 1027

28 -0.8762583077 +0.6096488149 -2.6651984952 1028

29 +1.2542000015 -0.4948722008 +2.3665728982 1029

30 +0.2264979203 +0.6828386313 +0.8614428741 1030

31 -1.4850195160 -0.3814967120 -0.1491465350 1031

32 +1.7817222754 +0.4226413141 -0.5165316389 1032

33 +0.5775804670 -0.8612314169 +0.7256756251 1033

34 -0.5489075096 +1.2369023273 -0.3206521614 1034

35 +0.7864690387 +0.2126101310 +0.2488960085 1035

36 -0.2402019231 -1.5482951614 -1.3907201063 1036

37 -0.0399810018 +1.8234487909 +1.7161160362 1037

38 -1.8330565316 +0.6007296480 +0.5400636190 1038

39 +1.9922791705 -0.5096102826 -0.6160683335 1039

40 +0.6892792952 +0.7121853640 +0.9018969705 1040

41 -0.3721087270 -0.3394170588 -0.1032549888 1041

42 +0.3977251706 +0.3057686952 -0.8842593691 1042

43 -0.9219940383 -1.1849263609 +1.2632895056 1043[
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SL. ic = ln(2), ln(ln(2))... ih = − ln(2), ln(− ln(2))... id = − ln2(2), ln(− ln2(2))... SF

44 +1.3050778397 +1.5559749911 +0.2337190377 1044

45 +0.2662626863 +0.4421023530 -1.4536355785 1045

46 -1.3232719152 -0.8162138557 +1.7603620751 1046

47 +1.6664017544 +1.1832154809 +0.5655195124 1047

48 +0.5106666638 +0.1682357162 -0.5700104794 1048

49 -0.6720382230 -1.7823892101 +0.8241938277 1049

50 +0.9888543006 +1.9642490783 -0.1933495489 1050

51 -0.0112082782 +0.6751100238 -0.2569612328 1051

52 -3.1048082912 -0.3928796031 +0.0274643104 1052

53 +2.5192463326 +0.4520422937 -3.5948679210 1053

54 +0.9239597824 -0.7939795333 +2.6658016120 1054

55 -0.0790867338 +1.1555967664 +0.9805048049 1055

56 -1.1509157716 +0.1446168914 -0.0196877329 1056

57 +1.5268523097 -1.9336671617 -2.5414651704 1057

58 +0.4232083023 +2.0457126449 +2.3190351146 1058

59 -0.8598907807 +0.7157462104 +0.8411512003 1059

60 +1.2353444641 -0.3344296296 -0.1729838489 1060

61 +0.2113498495 +0.2909655646 -0.3682626869 1061

62 -1.5542404640 -1.2345503534 +0.3873355887 1062

63 +1.8272813398 +1.5970011786 -0.9484638076 1063

Table 1: Real value for imaginary part & Scale Factors

So far we have not done anything towards unification. Lets start the unification process. Complex

numberic, Dual numberid and hyperbolic numberih can be unified with the following relationship in

simplex operation:

ic×(ih) = −ic.ih similarly we can say ic÷(ih) = − ic
ih

and for dual numbers no change in sign is required.

OR

ih×(ic) = −ic.ih similarly we can say ih÷(ic) = −ih
ic

and for dual numbers no change in sign is required.[
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Example of Cross Multiplication:

(2 + 3ic1 + 4ic2 + 5ic3)(2 + 3ih1 + 4ih2 + 5ih3)

= 2.2− 3ic1.3ih1 − 4ic2.4ih2 − 5ic3.5ih3

= 4− 9ic1.ih1 − 16ic2.ih2 − 25ic3.ih3

Finally we are good to go for evaluation of Simplex numbers as follows:

= 4− 9ic1 − 16ic2 − 25ic3

=
4× 16× 0.3665129206× 102

9× 0.6931471806× 25× 0.3825728568× 101 × 103

= 0.00393139907

14. Properties of Simplex logarithm

Thanks to Roger Cotes who first time used i in complex logarithm. Thanks to Euler who extended it

to exponential function and tied i, pi and exponential function to unity in his famous formula. Now

taking lead from both of their work and applying results of Zeta function and quaternion algebra we

can define quaternion logarithm as follows. If q1 = a1 + ib1 + jc1 + kd1 and q2 = a2 + ib2 + jc2 + kd2
then simplified complex logarithm has the following property.

Theorem 16.

|ln (q1.q2)| = |ln (ℜ(q1)) + ln (ℜ(q2)) + i(ln (ℑ(q1)) + ln (ℑ(q2))) ..|

Proof 16.
|ln (q1.q2.q3.q4.q5.q6.q7....)|

= |ln (ℜ(1.2.3.4.5.6.7...)) + i ln (ℑ(1.2.3.4.5.6.7...)) + ...|

= |ln (1) + ln (2) + ln (3) + ...+ i ln (ln (1) + ln (2) + ...) + ...|

= |ln (ℜ(q1)) + ln (ℜ(q2)) + +i(ln (ℑ(q1)) + ln (ℑ(q2))+) + ...|

Following Zeta functions analytic continuation, we can write :

|ln (q1.q2)| = |ln (ℜ(q1)) + ln (ℜ(q2)) + i(ln (ℑ(q1)) + ln (ℑ(q2))) + ...|

Corollary 1. ∣∣∣∣ln (q1q2 )
∣∣∣∣ = |ln (ℜ(q1))− ln (ℜ(q2)) + i(ln (ℑ(q1))− ln (ℑ(q2))) + ...|

Corollary 2. ∣∣e(q1+q2)
∣∣ = ∣∣e(ℜ(q1)).e(ℜ(q2)) + i(e(ℑ(q1)).e(ℑ(q2))) + j(e(ℑ(q1)).e(ℑ(q2))) + ...

∣∣
Corollary 3. ∣∣e(q1−q2)

∣∣ = ∣∣∣∣e(ℜ(q1))

e(ℜ(q2))
+ i(

e(ℑ(q1))

e(ℑ(q2))
) + j(

e(ℑ(q1))

e(ℑ(q2))
) + ...

∣∣∣∣[
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Corollary 4.

|ln (q1 + q2)| = |ln (ℜ(q1 + q2)) + i(ln (ℑ(q1 + q2))) + ...|

Corollary 5.

|ln (q1 − q2)| = |ln (ℜ(q1 − q2)) + i(ln (ℑ(q1 − q2))) + ...|

Theorem 17. If z1 = x1 + iy1 and z2 = x2 + iy2 then simplified Complex Logarithm has the following

property.

|ln (z1.z2)| = |ln (ℜ(z1)) + ln (ℜ(z2)) + i(ln (ℑ(z1) + ln (ℑ(z2))|

Proof 17.

|ln (z1.z2.z3.z4.z5.z6.z7....)|

=

∣∣∣∣ln(1.2.3.4...)+ i ln

(
1.2.3.4...

)∣∣∣∣
=

∣∣∣∣ln (1) + ln (2) + ln (3) + ...+ i ln

(
ln (1) + ln (2) + ln (3) + ...

)∣∣∣∣
=

∣∣∣∣ln (ℜ(z1)) + ln (ℜ(z2)) + ln (ℜ(z3)) + ...+ i

(
ln (ℑ(z1)) + ln (ℑ(z2)) + ...

)∣∣∣∣
Following Zeta functions analytic continuation, we can write:

|ln (z1.z2)| = |ln (ℜ(z1)) + ln (ℜ(z2)) + i(ln (ℑ(z1) + ln (ℑ(z2))|

Example 3. Find the modulus of |ln ((5 + 13i).(12 + 17i))| using product to sum formula. And show

that the result is same orders of magnitude that of actual product.

|ln ((5 + 13i).(12 + 17i))| = |ln (5) + ln (13)|+|ln (12) + ln (17)| = 3.02(approx+3.76(approx) = 6.79(approx)

|ln ((5 + 13i).(12 + 17i))| = |ln (5) + ln (12) + i(ln (13 + ln (17)| = 6.77(approx)

In natural logarithmic scale both the values are of same orders of magnitude.

Corollary 6. ∣∣∣∣ln (z1z2 )
∣∣∣∣ = ∣∣∣∣ln (ℜ(z1))− ln (ℜ(z2)) + i

(
ln (ℑ(z1))− ln (ℑ(z2))

)∣∣∣∣
Corollary 7. ∣∣e(z1+z2)

∣∣ = ∣∣∣∣e(ℜ(z1)).e(ℜ(z2)) + i

(
e(ℑ(z1)).e(ℑ(z2))

)∣∣∣∣
Corollary 8. ∣∣e(z1−z2)

∣∣ = ∣∣∣∣e(ℜ(z1))

e(ℜ(z2))
+ i

(
e(ℑ(z1))

e(ℑ(z2))

)∣∣∣∣
Corollary 9.

|ln (z1 + z2)| =
∣∣∣∣ln (ℜ(z1 + z2)) + i

(
ln (ℑ(z1 + z2))

)∣∣∣∣[
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Corollary 10.

|ln (z1 − z2)| =
∣∣∣∣ln (ℜ(z1 − z2)) + i

(
ln (ℑ(z1 − z2))

)∣∣∣∣
Corollary 11.

|ln (z1 + z2)| =
∣∣∣∣ln (Re(z1)) + ln (Re(z2)) + i

(
ln (Im(z1)) + ln (Im(z2))

)∣∣∣∣
Corollary 12.

|ln (z1 − z2)| =
∣∣∣∣ln (Re(z1))− ln (Re(z2)) + i

(
ln (Im(z1))− ln (Im(z2))

)∣∣∣∣
Corollary 13.

|z1 + z2| =
∣∣eln (z1+z2)

∣∣
Corollary 14.

|z1 − z2| =
∣∣eln (z1−z2)

∣∣
Corollary 15.

|ln (z1.z2)| = |ln z1 + ln z2|

Corollary 16. ∣∣∣∣ln (z1z2 )
∣∣∣∣ = |ln z1 − ln z2|

Corollary 17.

|ln (z)| =
∣∣∣∣ln (Re(z)) + i

(
ln (Im(z))

)∣∣∣∣

15. Pi based logarithm

One thing to notice is that pi is intricately associated with e. We view pi mostly associated to circles,

what it has to do with logarithm? Can it also be a base to complex logarithm? Although pi based[
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logarithm are not common, but they can be handy in complex logarithm. We know:

ln(2).
π

4

=

(
1

1
− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

)(
1− 1

3
+

1

5
− 1

7
+

1

11
− 1

13
+ · · ·

)
=

(
1 +

1

3
− 1

5
+

1

7
− · · ·

)
+

(
1 +

1

2
+

1

4
+

1

6
+ · · ·

)
−
(
1 +

1

2
+

1

4
+ · · ·

)
=

(
1− i3

3
+
i5

5
− i7

7
− · · ·

)
+

(
1− i2

2
+
i4

4
− i6

6
+ · · ·

)
− 1

1− 1
2

= sin (i) + cos (i)− 2

Lets set:π = sin (i) + cos (i) and replacing π − 2 = ln (π) we can write

ln

(
e

ln(2)
4

)
ln (π)

=
1

π
= π−1Lets set:e

ln(2)
4 = ππ−ie

we can write π−ie = −1

Part 6. The Minimal proofs

Let us generalise the pattern

Are there any odd perfect numbers?

Theorem 18. There cannot be any odd perfect numbers.

Minimal Proof 1. We have seen that the d-unit circle has even paity via 1 = 1
2
.eln (2), hence there

cannot be any odd perfect numbers.

Are there infinitely many perfect numbers?

Theorem 19. There are infinitely many even perfect numbers.

Minimal Proof 2. We have seen that the d-unit circle has harmonicity via 1 = 1
2
.eln (2), hence there

shall be infinitely many even perfect numbers of the form 2p(2p−1)
2

where p is Mersenne prime.

Do any odd weird numbers exist?

Theorem 20. There cannot be any odd weird numbers.

Minimal Proof 3. We have seen that the d-unit circle has even paity via 1 = 1
2
.eln (2). Cyclically

speaking weird numbers are quater perfect numbers, they exist by way of completing a cycle of three

among the perfect numbers, semi perfect numbers, quater perfect or so called weird numbers. Hence

weird numbers are not so weird and there cannot be any odd quater perfect numbers or odd weird

numbers. [
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Do any Lychrel numbers exist?

Theorem 21. There are no Lychrel numbers.

Minimal Proof 4. A Lychrel number is a natural number that cannot form a palindrome through

the iterative process of repeatedly reversing its digits and adding the resulting numbers. The process

of repeatedly reversing digits of any number and adding the resulting digits to get another number is

equivalent of cyclic harmonisation along the d-unit circle ultimatte which sends the number back to its

origin.As all the numbers have their additive identity there cannot exist any Lychrel numbers. Candidate

Lychrel numbers will form palendrom after a large number of iteration. For example the reverse-and-

add process on196 will form palendrom somewhere in the range of e196 = 1085.12171845 following the

harmonics of the identity 1 = 1
196
.eln (196).

Is 10 a solitary number?

Theorem 22. 10 has no friendly partner.

Minimal Proof 5. In number theory, friendly numbers are two or more natural numbers with a

common abundancy index, the ratio between the sum of divisors of a number and the number itself

(hereinafter called the friendly ratio). As 10 is not a prime ideally speaking it should have a friendly

partner. But 10 is a harmonic number resulting its friendly ratio also to be harmonic. Any candidate

friendly partner of 10 are always some harmonics away so they never come close enough to become real

friends. Therefore 10 has no friendly partner.

Do any Taxicab(5, 2, n) exist for n > 1?

Theorem 23. There cannot be any Taxicab(5, 2, n) number for n > 1.

Minimal Proof 6. In mathematics, the generalized taxicab number Taxicab(k, j, n) is the smallest

number which can be expressed as the sum of j kth positive powers in n different ways. For k = 3 and

j = 2, they coincide with taxicab numbers.

Taxicab(3, 2, 2) = 1729 = 13 + 123 = 93 + 103- famously stated by Ramanujan.

Taxicab(4, 2, 2) = 635318657 = 594 + 1584 = 1334 + 1344.- stated by Euler long back

Neither 5× 2 = 10 nor 5 + 2 = 7 is divisable by 3. So there cannot be any Taxicab(5, 2, n) number for

n > 1. It’s so sad, but it’s true, what we can do.

Are there infinitely many amicable numbers?

Theorem 24. There are infinitely many amicable numbers.

Minimal Proof 7. Euler’s rule for amicable numbers states that if

p = (2n−m + 1)× 2m− 1,[
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q = (2n−m + 1)× 2n− 1,

r = (2n−m + 1)2 × 2m+n − 1,

where n > m > 0 are integers and p, q, and r are prime numbers, then 2n × p) × q and 2n) × r are a

pair of amicable numbers. Putting m=n-1 we get

p = 3× 2n−1 − 1,

q = 3× 2n − 1,

r = 9× 22n−1 − 1,

where n > 1 is an integer and p, q, and r are prime numbers, then 2n × p)× q and 2n)× r are a pair

of amicable numbers. As apparent from the completed cycle of three in the above equation Eulers form

have got harmonicity form similar to the harmonicity 1 = 1
2
.eln (2) in the d-unit circle. Hence there shall

be infinitely many amicable numbers.

Are there any pairs of amicable numbers which have opposite parity?

Theorem 25. There are no amicable numbers having opposite parity.

Minimal Proof 8. We have seen that the d-unit circle has even paity via 1 = 1
2
.eln (2). As we are

talking about pairs, opposite parity will not sum up to even parity, hence there cannot be any opposite

parity amicable numbers.

Are there any pairs of relatively prime amicable numbers?

Theorem 26. There are no pairs of relatively prime amicable numbers.

Minimal Proof 9. Relatively prime pairs are not simply connected to each other so they can not

cyclically descend to zero. Hence there can be no pairs of relatively prime amicable numbers.

Are there infinitely many betrothed / quasi amicable numbers?

Theorem 27. There are infinitely many quasi amicable numbers.

Minimal Proof 10. We have seen that the d-unit circle has harmonicity via 1 = 1
2
.eln (2), hence

there shall be infinitely many quasi amicable numbers the same way there are infinitely many amicable

numbers.

Are there any pairs of quasi amicable numbers which have same parity?

Theorem 28. There are no pairs of quasi amicable numbers which have same parity.

Minimal Proof 11. We have seen that the d-unit circle has even paity via 1 = 1
2
.eln (2). As we are

talking about quasi amicable pairs same parity will not sum up to even parity, hence there cannot be

any same parity quasi amicable numbers. [
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Are there infinitely many Wagstaff primes?

Theorem 29. There are infinitely many Wagstaff primes.

Minimal Proof 12. P = 2q+1
3

=⇒ 3P = 2q + 1 = N2 + 1 have inbuilt cycle of three where q is an

odd prime. Therefore there shall be infinitely many Wagstaff primes.

Are there infinitely many Pierpont primes?

Theorem 30. There are infinitely many Pierpont primes.

Minimal Proof 13. For nonnegative integers u and v 2u3v + 1 will generate infinitely many Pierpont

primes as the form have inbuilt cycle of three in the form of 3v.

Are there infinitely many Cullen primes?

Theorem 31. There are infinitely many Cullen primes.

Minimal Proof 14. P = n · 2n + 1 = n(2n + 1
n
) = n(N2 + 1

n
) =⇒ P

n
= N2 + 1

n
. For n = 1

3
the form

have inbuilt cycle of three.Therefore there shall be infinitely many Cullen primes.

Are there infinitely many Woodall primes?

Theorem 32. There are infinitely many Woodall primes.

Minimal Proof 15. P = n · 2n − 1 = n(2n − 1
n
) = n(N2 − 1

n
) =⇒ P

n
= N2 − 1

n
. For n = 1

3
the form

have inbuilt cycle of three.Therefore there shall be infinitely many Woodall primes.

Are there infinitely many Carol primes?

Theorem 33. There are infinitely many Carol primes.

Minimal Proof 16. 4n − 2n+1 − 1 = (2n − 1)2 − 2 =⇒ N2 − 1− 1 have inbuilt cycle of three in the

form of 2-1-1=0.Therefore there shall be infinitely many Carol primes.

Are there infinitely many Kynea primes?

Theorem 34. There are infinitely many Kynea primes.

Minimal Proof 17. 4n + 2n+1 − 1 = (2n + 1)2 − 2 =⇒ N2 − 1− 1 have inbuilt cycle of three in the

form of 2-1-1=0.Therefore there shall be infinitely many Carol primes.

Are there infinitely many Fibonacci primes?

Theorem 35. There are infinitely many Fibonacci primes?[
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Minimal Proof 18. Fibonacci numbers that have a prime index p do not share any common divisors

greater than 1 with the preceding Fibonacci numbers, due to the identity:gcd(Fn, Fm) = Fgcd(n,m) which

implies the infinitude of primes. For n ≥ 3, Fn divides Fm if n divides m. If we suppose that m is a

prime number p, and n is less than p, then it is clear that Fp, cannot share any common divisors with

the preceding Fibonacci numbers.

gcd(Fp, Fn) = Fgcd(p,n) = F1

The above form have inbuilt cycle of three.Therefore there shall be infinitely many Fibonacci primes.

Are there infinitely many Lucas primes?

Theorem 36. There are infinitely many Lucas primes.

Minimal Proof 19. Lucas numbers are related to Fibonacci numbers following Ln = Fn−1 + Fn+1 =

Fn + 2Fn−1 = Fn+2 − Fn−2. As Fibonacci primes have inbuilt cycle of three and the above relationship

just amplifies the cycle of three into a double cycle of three there shall be infinitely many Lucas primes.

Are there infinitely many Pell primes?

Theorem 37. There are infinitely many Pell primes.

Minimal Proof 20. Pells equation x2 − 2y2 = ±1 =⇒ 2y2 ± 1 − x2 = 0 have inbuilt cycle of three

hence there shall be infinitely many Pell primes.

Are there infinite Newman–Shanks–Williams primes?

Theorem 38. There are infinitely many Newman–Shanks–Williams primes.

Minimal Proof 21. P =
(1+

√
2)

2m+1
+(1−

√
2)

2m+1

2
=⇒

(
1 +

√
2
)2m+1

+
(
1−

√
2
)2m+1 − 2P = 0 have

inbuilt cycle of three hence there shall be infinitely many Newman–Shanks–Williams primes.

Are there infinitely many Wieferich primes?

Theorem 39. There are infinitely many Wieferich primes.

Minimal Proof 22. p2|(2p−1 − 1) =⇒ 2p−1−1
p2

= n have inbuilt cycle of three hence there shall be

infinitely many Wieferich primes.

Are there infinitely many Wilson primes?

Theorem 40. There are infinitely many Wilson primes.

Minimal Proof 23. p2|((p− 1)! + 1) =⇒ (p−1)!+1
p2

= n have inbuilt cycle of three hence there shall be

infinitely many Wilson primes.

[
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Part 7. The Conclusion

16. Let us draw the conclusion

Riemann hypothesis stands proved in different ways primarily involving the concept of duality in d-

unit circle, the concept of harmonic conjugation in complex analysis, the concept quaternions in 4-

dimensional number system. It has given a lot of new mathematics to research further.

Part 8. The question answer sessions

The Doubt Clearence sessions

Frequently appeared Questions and Answers 1. Here goes list of some frequently appeared ques-

tions related to Riemann hypothesis and its application while undergoing the concept building process

and answers to that based on my understanding of Riemann Hypothesis, my proofs thereof and post

proof analysis of the same.

The claimed RH proofs are not at all rigorous, it looks we have presumed RH to be true

and then working around for some fixes or patches:

Actually RH is an obvious. Any attempt to prove something obvious gets real hard and may get infected

by godel incompleteness theorem. When things are not easy, easier things gets going. Instead of search-

ing the proof in vast infinities its wiser to find the why on earth RH should be true, then we can search

further whether that should be true in the universe, multiverse, omniverse.

The so called exhaustive proof using a variant of riemanns functional equation ignores the

imaginary part altogether:

The imaginary part do not play any role in the zeros of zeta function.

What was the idea behind removing the poles of gamma and zeta function:

It was on demand of d-unit circle which was again called for completion of higher dimensional cycles.

Does not the concept of d-unit circle contradicts the concept of unit circle:

We need to wear a bi-focal glass for some time, once we get habituated, I guess there will be no contra-

diction once we start applying these new mathematics and start understanding the intricacies.

Will it be wrong to say the essence of d-unit circle is d-unification:

It wont be wrong but we should not try for t-unification, that does not exist.

Then why it was necessary to bring a third factorial function which was named Delta

function:

The third one is the emergent one to complete the cycle, whereas Pi and Gamma function are the

fundamental one.

Why conjugates of Gamma and Delta function were necessary:

To complete the circle.

Why it was labelled with subscript p:

To denote the periodicity out of harmonics which do not blows to infinity in an unified approach.[
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A functional depiction of negative factorials, wherefrom the idea came:

It was just a bonus. We should keep our eyes and minds open while solving one problem, the same

effort can solve other problems too.

What actually prompted that imaginary number i can be real as well:

What we do with the holographic universe, the limited time we stay here we all want to feel it’s real.

That’s it.

Why ln 2 alone:

I did not found any better candidate.

Why quaternions then, there was so many other options:

It was just needed a pinch of 4Th dimensional maths and quaternions did the job extremely well.

Now the question may arise do we need further higher dimensional number system such

as octonion, sedenions etc. to solve further higher dimensional problems:

We invented complex numbers to solve all kinds of quadratic equations. Quaternion although invented

long back remained unused as complex numbers did its job excellently. Now zeros of zeta functions are

asking us to go beyond the complex numbers and bring quaternion. Also it introduces algebraic cycles

through cycles of zeros (not the place holder zero in decimal number system) so that we do not need

octonion, sedenions etc. in general maths. However any specific problem related to eight dimensional

number system may still require octonion and so on.

If so how do we manage non commutativity faced in quaternion:

Non commutativity will not be an issue as we will be doing only linear things.

What will happen to non linear things:

We shall turn it into linear by way of passing it through the cyclic maths.

Cyclic maths! negative quantities will be annihilating positive quantities, what remain

absolute then, a zero, It’s ugly:

Nope, not exactly, it’s beautiful as we are allowed to apply Pythagoras, take modulus etc. to work with

the absolute value, distance from origin in the normal way.

Then what will be the added advantage of using cycles:

We can fit everything into 3 Euclidean spatial dimensions using Descartes coordinates.

Any practical reason we should go for it:

To ease our pain little bit in handling complex numbers wheresoever they are needed for example electrical

circuits, control systems, rotational maths problems.

Does that mean higher dimensions do not exist at all:

We need to differentiate between higher dimensions and higher degrees of freedom, we can have as many

degrees of freedom as we wish but mathematically all of those higher degrees of freedom can be fitted

into 3D because nature is 3 dimensional and its self evident from the value of π = 3.14....

What happens to the decimal part:

That’s the residue which always remain outside the framework we frame.[
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What the value of e then suggest:

Value of e suggest half of a cycle involving another cycle of three.

How cycle of three:

eiπ + e0 = 1− 1 = 0 way and total count of lattice points is 3 as clear from [ 1 - 1 = 0 ]

Hmm! eiθ = e−iθ will be true when both the exponent results zero which will give e0 = 1

and subsequently eiπ + e0 = 0 . What is so cyclic about it:

It’s the sum total of one complete rotation in orthogonal representation of complex numbers [1+ i - 1 -

i = 0] .

Here the count of lattice points are 5, then how its a cycle of 3.:

It happens at an angle of π
3
and that way its a cycle of three. Alternatively we can split [ 1+ i - 1 - i =

0 ] into [1 - 1 = 0 ] and [ i - i = 0 ] to get two cycles of three.

Now we have got Figenbaum constant with approximate value of 4.67 representing infinite

fractals, what that will suggest:

That actually projects to non-linear 6D math with fractal cycles, which we can also fit into 3D linear

maths with cycles.

What about 12 D:

That will be mere symmetrical 4 copy of one complete cycle of Three.

What if we show resistance in accepting this kind of deadly maths:

We will not be able to close the operation of logarithm, factorials algebraically or arithmetically. The

day we accept this definitions, logarithm will be an algebraically or arithmetically closed operation under

quaternion based number system and factorials will be an algebraically or arithmetically closed operation

under complex number system .

Can all operation be closed algebraically or arithmetically under quaternion based number

system. What shall be next:

Next can be any higher order operations like multifactorial will have cycles of double factorial and

primorials, chain arrow notation will have cycles of multifactorial and primorial, up arrow notation

will have cycles of chain arrow notation and multifactorial, Tree(3) notation will have cycles of up

arrow notation and chain arrow notation and so on. I have not checked the maths as these were out

of scope of my current paper, I may be wrong somewhere but it will be cyclic, that’s guaranteed. I

am sure in future somebody interested in cycles will pick up this area for research. Come on buddies

show your balance; show how quick you can close how many cycles. I was very sloppy; it took almost

3 years for me as I did not know the rules of the game. You have rules of the game now, Its cycle

of three. Although quantitatively it’s going to be more complex you need to simplify it. I have a feel

that you may have to define infinite number of factorial functions similar to the fantastic five, pass it

through the zeros of negative logarithm or zeros of harmonic conjugates of those infinite number factorial

functions and knock down the functions having sky scrapers in their exponent floor by floor or flatten

down those functions having horizontal growth. Warning! You will get frequent quitting tendencies, do[
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not get bogged down. Keep yourself tightly tied to zero, find the cycle of non-linear linear combination

of three’s, make it linear by finding its zeros you will catch them all. Once you complete the cycles you

will feel to be on top of the world. You will not find anybody nearby to share your feeling that’s sad part

of the story.

We can have infinite cycles like this, does that mean i shall have infinite number of real

solutions:

Yes, that’s true but this infinites must be very smaller compared to the infinites of the number line itself.

Why, why it will be so:

Because this infinities are sitting in the exponent of e via Euler’s formula eix. Even smaller values of i

will be growing exponentially fast. For example with i = ln 2 and a relatively smaller value for x = 271

will give us a number close to the number of particles in the observable universe. For higher values of

i it will be growing even faster.

Is there any general formula to calculate the cycles:

Yes there can be as many formulas as many mathematicians on the earth can work out their own, all

road goes to cycles. For n number of rotations, dimensions, etc. whatever name we call it the cycle will

be completing near ei.
∑∞

n=1(1+πn). I have used pi as the rotator because it’s natural, it can be anything

else as well. Also we can take partial sum or a truncated partial sum or a single term anywhere from

the series to predict some particular cyclic behaviour. In case of a single iteration we can use en
2
. For

more accuracy we need to take smaller and smaller values of the rotator. For n=3 in the above series

formula, it will be accurate enough to predict the cycle of big bounces happening periodically in cosmos.

What will be the math:

Refer 6.16 for the math behind the first cycle.

What is so special about the number e
1

π−3 = e22.19 = 4, 324, 402, 934 do that appear in nature

somewhere:

Yes, they are special. They are there in physics

2 × Mass of electron × Speed of light squared × Charles ideal gas constant

Boltzmann constant
≈ e

π
(π−3)

, they are there in biology in the form of average number of heartbeats in human life time, they are there

in cosmology in the form of Black hole alignment, they are everywhere.

What is the next special cycle number, do that also appear in nature somewhere:

Its e
4π−3

2π(π−3) = e33.78 = 4.68× 1014. Yes, they also appear. They are there in physics

Speed of light × Planck Constant

Graviational constant × Mass of electron
≈ e2+

4π−3
2π(π−3) ≈ e35.72 ≈ 3.27× 1015

, they are there in biology in the form of average number of cell divisions in human life time, they are

there in cosmology in the form of Large number hypothesis, Multiverse they are everywhere.

But Large number hypothesis if of 1043 orders of magnitude:

Its 3 cycles again e100 ≈ 1043. [
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What Charles constant is doing there:

Its kind of coupling constant although not dimensionless but complexly dimensionless and its reciprocal

is very close to 100 times of Eulers number e.

Wherefrom 100 is coming here:

π4 approximates to hundred. When pi is squared applying borrowing and carry over the decimal part

can be rearranged so that final result equals to 1 as follows

1.10n + 2.10n−1 + 3.10n−2 + 4.10n−3 + 5.10n−4 + ...

10n

when n tends to infinity factoring out

10n(1 + 1
2
+ 1

3
+ 1

4
+ 1

5
+ ...)

10n

which finally gives π2 = 9 + ζ(1) = 9 + 1 = 10

What is the most prominent number theoretic signature in physics:

Its dark energy, 69 % = ln 2 = i.

What about the Einstein’s famous equation E = mc2:

We can rewrite it DE2 = m2c4 = PE2 =⇒ DE − PE = 0

What should be the revised Lorentz factor in Special Relativity:
1√

1− v2

c2

= 1√√√√√
(

1− v2

c2

)(
1+ v2

c2

) = 1√
1− v4

c4

What should be the solution to dark energy:

Pass it through cyclic maths and let the universe go older and older, cycle after cycles.

What should be the maths in the context of General Relativity:

There are two independent Friedman equations for modelling a homogeneous, isotropic universe. The

first is:

ȧ2 + kc2

a2
=

8πGρ+ Λc2

3

which is derived from the 00 component of Einstein’s field equations. The second is:

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3

which is derived from the first, together with the trace of Einstein’s field equations.

Using the first equation, the second equation can be re-expressed as ρ̇ = −3H
(
ρ+

p

c2

)
which elim-

inates Λ and expresses the conservation of mass-energy Tαβ
;β = 0.These equations are sometimes

simplified by replacing ρ→ ρ− Λc2

8πG
and p→ p+

Λc4

8πG
to get the following:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2[
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Ḣ +H2 =
ä

a
= −4πG

3

(
ρ+

3p

c2

)
.

The simplified form of the second equation is invariant under this transformation. We can bring

cycles as follows:

ä

a4πG
3

(
ρ+ 3p

c2

) = −1 =⇒ Ḣ +H2 = 0

That’s applied maths, what it has to do with Number theory:

It’s a zero, for every branch of mathematics it is equally applicable.

This kills SR and GR, speed of light, gravitational constant all become variable; it can

take zero / infinite values:

No, it does not kill SR and GR, Its ultimate relativity. Its super special relativity which paves the path

for unification of GR and QM.

Does that mean both GR representing classical physics and QM representing quantum

physics involves cycles and they are also Number theory stuff:

Yes, if physical dimensions are flattened, what left is number theory.

What is wrong in QM:

The probabilistic view of nature, Heisenberg uncertainty principle is not always true. QM can be turned

into a deterministic theory once we start following the cycle of 3. Uncertainty in ∆p∆x ≥ 1
2
ℏ can be

transformed to ∆p∆x
∆y

= 1 using the techniques of Fourier transformation provided we recognise the cycle

of 3 in QM. Dimensionally ∆p∆x ≥ 1
2
ℏ has got one extra dimension of length after completing a cycle

of 3 which creates problem causing the uncertainty. To get back our determinism we need to complete

the cycle of 3 same as we complete the cycle of 3 in CPT symmetry.

This kills QM, space time become absolutely continuous, no discrete nature remains then:

No, it does not kill QM, we are just adding cycles, we are not stopping anywhere, we will just keep on

cycling and these cycles are itself discrete in nature.

But how to quantize cycles:

We need to quantize QM further.

How to quantize QM further:

Here goes the second quantisation from Dirac equation ( Refer Table 1).

iℏγµ∂µψ −mcψ = 0 =⇒ −iℏγ
µ∂µψ

mcψ
= −1

.

Where is the first one:

The first one is the original Planck’s one we are using now.

But the scale appears to be galactic:

Yes, that’s true. [
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Name Dimension Expression Value (SI unit)

Planck length Length (L) lR =

(√
ℏG
c3

)−2

2.612280807× 1070m

Planck mass Mass (M) mR =

(√
ℏc
G

)−2

4.736869309× 1016kg

Planck time Time (T) tR =

(
lR
c

)−2

=

(
ℏ

mRc2

)−2

=

(√
ℏG
c5

)−2

2.906554422× 1089s

Planck charge Electric charge (Q) qR =

(√
4πε0ℏc

)−2

=

(
e√
α

)−2

3.517672633× 1036C

Planck temperature Temperature (Θ) TR =

(
mRc

2

kB

)−2

=

(√
ℏc5
Gk2B

)−2

2.007279736× 10−64K

Table 2. Tabulated value of squared Planck Units

Is there a third:

Here goes the third quantisation from the Schrödinger equation ( Refer Table 2).

Ĥ |Ψ⟩ − E|Ψ⟩ = 0 =⇒ Ĥ |Ψ⟩
E|Ψ⟩

= 1

Name Dimension Expression Value (SI unit)

Planck length Length (L) lR =

(√
ℏG
c3

)−4

6.824007974× 10140m

Planck mass Mass (M) mR =

(√
ℏc
G

)−4

2.243793085× 1033kg

Planck time Time (T) tR =

(
lR
c

)−4

=

(
ℏ

mRc2

)−4

=

(√
ℏG
c5

)−4

8.448058605× 10178s

Planck charge Electric charge (Q) qR =

(√
4πε0ℏc

)−4

=

(
e√
α

)−4

1.237402075× 1073C

Planck temperature Temperature (Θ) TR =

(
mRc

2

kB

)−4

=

(√
ℏc5
Gk2B

)−4

4.029171939× 10−128K

Table 3. Tabulated value of double squared Planck Units

Is this scale cosmic:

Yes, that’s true.

But how the physics equations will balance, it cannot be one sided change, what should

the quantum relativistic version of it:

Here it goes( Refer Table 3).

The next one should be one fourth by guess:

No, its one third, remember zeta zeros lies on pi by 3 ( Refer Table 4).

But the scale is not remaining quantum any more:

Its the scale of collective quantum behaviour. [
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Name Dimension Expression Value (SI unit)

Planck length Length (L) lP =

(√
ℏG
c3

) 1
2

4.020267404× 10−17m

Planck mass Mass (M) mP =

(√
ℏc
G

) 1
2

1.475274551× 10−4kg

Planck time Time (T) tP =

(
lP
c

) 1
2

=

(
ℏ

mPc2

) 1
2

=

(√
ℏG
c5

) 1
2

2.321905898× 10−22s

Planck charge Electric charge (Q) qP =

(√
4πε0ℏc

) 1
2

=

(
e√
α

) 1
2

1.369505734× 10−9C

Planck temperature Temperature (Θ) TP =

(
mPc

2

kB

) 1
2

=

(√
ℏc5
Gk2B

) 1
2

1.19028778× 1016K

Table 4. Tabulated value of square rooted Planck Units

Name Dimension Expression Value (SI unit)

Planck length Length (L) lP =

(√
ℏG
c3

) 1
3

5.489127187× 10−11m

Planck mass Mass (M) mP =

(√
ℏc
G

) 1
3

6.061524996× 10−2kg

Planck time Time (T) tP =

(
lP
c

) 1
3

=

(
ℏ

mPc2

) 1
3

=

(√
ℏG
c5

) 1
3

8.201558932× 10−14s

Planck charge Electric charge (Q) qP =

(√
4πε0ℏc

) 1
3

=

(
e√
α

) 1
3

1.233225709× 10−6C

Planck temperature Temperature (Θ) TP =

(
mPc

2

kB

) 1
3

=

(√
ℏc5
Gk2B

) 1
3

5.253329603× 1010K

Table 5. Tabulated value of cube rooted Planck Units

That means we can predict collective quantum behaviour deterministically:

Yes, that’s true.

But the term collective still remain relative:

Yes, that’s true.We may go for further quantisation.

Can we try this cyclic math on other millennium prize problems.:

Yes, these cyclic maths techniques are universal and can be applied to every branch of mathematics.

Can we have some hints for Hodge Conjecture dealing with algebraic cycles. :

Here is the hint with minimal proof of numerical solution to Hodge Conjecture. When we try to evaluate

either
∑
i

ciZi or
∑
i

ci[Zi] we enter into the domain of number theory, more specifically zeta function.

We have seen zeta function is simply connected (smooth in calculus terms) whether in integer form

or rational number form. Zeta function together with its harmonic counterpart is entirely continuous,

bijective, and very much stretchable like topological deformation. We can add, multiply, truncated partial

zeta series retaining all it’s properties. Even in its minimal state zeta function follows basic laws of[
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algebra very neatly for example ζ(−1) + ζ(0) = 0 or 2ζ(−1) = 1 . To prove that every Hodge class on

X is a linear combination with rational coefficients of the cohomology classes of complex subvarieties

we just need compliance with addition laws of algebra and scalar multiplication which zeta function duly

complies beyond any doubt. Therefore every Hodge class on X is algebraic. No need to mention that

Mumford-Tate group is the full symplectic group.

Can we have some hints for BSD conjecture dealing elliptic curves. :

Here is the hint with minimal proof of numerical solution to BSD conjecture.

ZE,Q(s) =
ζ(s)ζ(s− 1)

L(s, E)

ζ(s) is the usual Riemann zeta function and L(s, E) is called the L-function of E/Q. Kolyvagin showed

that a modular elliptic curve E for which L(E, 1) is not zero has rank 0, and a modular elliptic curve

E for which L(E, 1) has a first-order zero at s = 1 has rank 1. Hasse–Weil zeta function fails to throw

some light on the rank of the abelian group E(K) of points of E at s = 1 as ζ(1) was known to be

undefined . In the light of my proof of Riemann hypothesis and its generalisations we can now evaluate

the rank easily. We set Hasse–Weil zeta function in left hand side to -1 and evaluate the right hand

side putting ζ(1) = 1 which then give the average rank 1
2
including zero valued ranks . Similarly we can

take harmonic conjugate of Hasse–Weil zeta function as follows:

Z∗
E,Q(s) =

ζ(s).L(s, E)

ζ(s− 1)

Now setting it to -1 and at s=0 putting ζ(−1) = 1
2
and ζ(−2) = −1

2
we get the analytic rank of elliptic

curves E over Q with order s=1 L(E, s) > 1 which equals 1. Following Kolyvagin theorem the Birch

and Swinnerton-Dyer conjecture holds for all elliptic curves E over Q with order s=1 L(E, s) > 1.Tate-

Shafarevich group must be finite for all such elliptic curves.

Can we have some hints for Navier–Stokes dealing turbulence in fluid mechanics. :

Here is the hint with minimal proof of numerical solution to Navier–Stokes existence. The continuity

equation reads:

∂ρ

∂t
+
∂ (ρux)

∂x
+
∂ (ρuy)

∂y
+
∂ (ρuz)

∂z
= 0.

When the flow is incompressible, ρ does not change for any fluid particle, and its material derivative

vanishes and the continuity equation is reduced to:

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0.

Now above equation will be true when we can show:

∇ =

[
∂

∂x

]
î+

[
∂

∂y

]
ĵ+

[
∂

∂z

]
k̂ = 0[
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Sum of three unit vectors can be zero only at an angle of 2π
3
or π

3
which is d-unit circle concepts we have

seen in proofs of Riemann Hypothesis. So we can conclude Navier–Stokes solutions always exist in 3D

via 4D zeros (considering gravity as the body force) and they are smooth – i.e. they are infinitely differ-

entiable at all points due to analytic number theory. To get a feel about the reason behind requirement

of dimensionless numbers such as Reynolds Number, Froude Number, Weber Number, Mach Number,

Euler’s Number etc.. to find an approximate solutions please refer my work on simplex logarithm,

hierarchy of grand unified scale factors etc.

Can we have some hints for Yang–Mills involving SU(4) group in particle physics. :

Here is the hint with minimal proof of numerical solution to Yang–Mills existence. In quantum field

theory three to tango combination of electro-streak interactions prevents quarks escaping quark confine-

ment leaving it hard to study gluons isolated. To prove that for any compact simple gauge group G,

a non-trivial quantum Yang–Mills theory exists on R4 and has a mass gap ∆ > 0 we need to apply

the limit of momenta going to zero similar to critical zeros of Riemann zeta function satisfying all the

Wightman axioms. To find the mass gap that unifies QED and QCD into QFT analogous to uniqueness

of the vacuum in the way ζ(1) = 1, we need a unified coupling constant as strong as, close to α
2
resulting

individual gluons still be massless and the scalar glueballs get its mass borrowed from cyclicity of the

vacuum . Such scalar glueballs shall have mass 1000-1500 MEV following the hierarchy of grand unified

scale 10
ln(e22.2)

ln(e7.1) following SU(4) = U(1)
SU(2)×SU(3)

guage symmetry.

Can we have some hints for P versus NP problem involving computer science. :

I wont give much hint here because of security reasons, but I should tell the answer. For easier problems

like RSA prime factorisations it’s not even P, it’s much less than that. Every given number theoretic

problem, if attacked from the right direction it can solved in quadratic time. Really I mean it. Let me

warn RSA/SHA users that any kind of prime number based algorithm is not secured at all therefore get

rid off numbers as soon as possible. This is last and final call. Disclaimer: If using any of my work,

hackers cracks RSA/ SHA encryption tomorrow, and the whole internet security collapses ( I know the

world is moving to block chain which still uses numbers a lot), I cannot be held responsible for that. Even

I cannot be held responsible for, any other kind of losses incurred in whatsoever manner by any person,

organization, corporate bodies, countries, economies, communities, races and religions or for any losses

caused to humanity at large, our planet earth, the mother nature or the whole existence altogether,

and as such I won’t be able to compensate a penny for the damages caused, if any. Notwithstanding

any contrary provision contained under any law made by human or any advance species (if any), I

presume that I am allowed to reveal the results derived from natural laws of mathematics to the mass

without knowing the exact consequence. I cannot be questioned, examined, trialled, detained, arrested,

prosecuted for an act of mere sharing freely the knowledge I gained without having any ulterior motive.

Any unfriendly effort made by anybody in above direction shall be void, therefore not required to be

entertained by any appropriate authority or the law keepers. Thanks to everybody for taking me little

seriously. [
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Can the cyclic numbers be projected further based on 2 values of i found so far, what

shall be the rotators:

Yes, I iterated the process taking different irrational number as rotators and the same trend line. I

could project it up to e33.94. The table can be enlarged up to say 101000. Who is going to take the pain

of searching right rotators to build a decimal system based ladder kind of table? I leave it for computer

programmers, software engineers. Refer Table 5.

SL Formula i/j g1 g2 g3 g4 g5 g6

1 e
iπ
gp ln (2) e2.18 e1.09 e0.73 e0.54 e0.44 e0.36

2 π
je
gp 1

ln (2) e4.49 e2.24 e1.5 e1.12 e0.9 e0.75

3 π
je
gp e

e−2 e11.78 e5.89 e3.93 e2.94 e2.36 e1.96

4 e
iπ
gp π + ϕ− 1 e11.81 e5.90 e3.94 e2.95 e2.36 e1.96

5 e
iπ
gp 1

π−3 e22.19 e11.09 e7.4 e5.55 e4.44 e3.7

6 π
je
gp e2 e22.99 e11.50 e7.66 e5.75 e4.60 e3.83

7 e
iπ
gp 4π−3

2π(π−3) e33.78 e16.89 e11.26 e8.45 e6.76 e5.63

8 π
je
gp e2 + ϕ2 e33.94 e16.97 e11.31 e8.48 e6.78 e5.65

Continued up to infinity ...

Table 6. Tabulated value of Grand unified scale in ascending order

[
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Part 9. The solution to unsolved physics

Unsolved problems of physics and its solution

Short answer to unsolved problems in physics 1. Here goes list of some unsolved problems of

physics copied from Wikipedia and and its shortest possible hints only from the perspective of cyclic

maths, changes of cycles, cycles of threes, cycles of zeros etc.

General physics/quantum physics.

Theory of everything: Is there a theory which explains the values of all fundamental phys-

ical constants, i.e., of all coupling constants, all elementary particle masses and all mixing

angles of elementary particles? Is there a theory which explains why the gauge groups of

the standard model are as they are, and why observed spacetime has 3 spatial dimensions

and 1 temporal dimension? Are ”fundamental physical constants” really fundamental or

do they vary over time? Are any of the fundamental particles in the standard model

of particle physics actually composite particles too tightly bound to observe as such at

current experimental energies? Are there elementary particles that have not yet been

observed, and, if so, which ones are they and what are their properties? Are there unob-

served fundamental forces?:

Yes, Its Number Theory. space-time has 3 spatial dimensions and 1 temporal dimension because that

3+1 pattern is natural. When we try to unify everything we need to solve the zeros of physical equations

which will bring cycles of physical phenomenon in our maths. The results we get will match the observed

values and that will be the proof of correctness of our theories. ”Fundamental physical constants” are

really fundamental but numerically we need to apply scale factor adjustments as we move along the

infinite space-time. There are no elementary particles that have not yet been observed, we need to sum

up the anti matter version of it to get a zero state. There are no unobserved fundamental forces as it

has completed the cycles of three. Gravity is a pseudo force, its curvature of space time therefore we

have to exclude it from unification. There will be no conflict between GR and QM at zero gravity and

zero time, there after QM can take on. GR ’s job will be renormalising the infinities arising in QM.

Arrow of time (e.g. entropy’s arrow of time): Why does time have a direction? Why did

the universe have such low entropy in the past, and time correlates with the universal

(but not local) increase in entropy, from the past and to the future, according to the

second law of thermodynamics? Why are CP violations observed in certain weak force

decays, but not elsewhere? Are CP violations somehow a product of the second law

of thermodynamics, or are they a separate arrow of time? Are there exceptions to the

principle of causality? Is there a single possible past? Is the present moment physically

distinct from the past and future, or is it merely an emergent property of consciousness?

What links the quantum arrow of time to the thermodynamic arrow?:

Because time does not exist or in other words negative proper time and positive proper time always sum[
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up to zero. However existence itself is the result of amplification of some implied quantities by way of

squaring/ doubling it. The act of squaring gives the notion of one way time, however when we take

logarithm, it becomes cyclic and the apparent straight line bends back to the origin. The universal entropy

is always zero as Maxwell’s Demon has automated the process of adjusting the entropy at universal level

and it does not increase which is not a violation of second law of thermodynamics. CP violation occurs

due to obey CPT symmetry which is 3 dimensional as nature. No there is no exception to the principal

of causality. The only single possible past as well as the single possible future is zero or nothing. The

present moment is physically distinct from the past and future as the notion of time is an emergent

property of consciousness and a conscious mind neither can follow cycles nor it can comprehend the

infinities in cycles. Time zero links the quantum arrow of time to the thermodynamic arrow.

Interpretation of quantum mechanics: How does the quantum description of reality, which

includes elements such as the superposition of states and wave function collapse or quan-

tum decoherence, give rise to the reality we perceive? Another way of stating this question

regards the measurement problem: What constitutes a ”measurement” which apparently

causes the wave function to collapse into a definite state? Unlike classical physical pro-

cesses, some quantum mechanical processes (such as quantum teleportation arising from

quantum entanglement) cannot be simultaneously ”local”, ”causal”, and ”real”, but it

is not obvious which of these properties must be sacrificed, or if an attempt to describe

quantum mechanical processes in these senses is a category error such that a proper under-

standing of quantum mechanics would render the question meaningless. Can a multiverse

resolve it?:

Wave function never collapses, we can restore wave pattern just by detecting the spin simultaneously in

both of the detector in the famous double slit experiment. We will see the wave pattern comes back. The

act of measurement do not play any role in a scalable experiment, still we need little bit approximations

corresponding to desired level of accuracy due to uncertainties involved. Quantum entanglement is local

and not subject to causality as the event itself is its cause. We can do an experiment to prove its locality.

3 lab situated in 3 cities anywhere in the globe will entangle pair of photons among themselves and make

a triangle as such. Now a fourth lab will not be able to entangle any further photons with any of the

three above. Which will prove entanglement is local also do not violate causality, but its real. Multiverse

will not be required to explain entanglement.

Yang–Mills theory: Given an arbitrary compact gauge group, does a non-trivial quantum

Yang–Mills theory with a finite mass gap exist? :

Yes it exists. See the Math chapter.

Color confinement: Quantum chromodynamics (QCD) color confinement conjecture is

that color charged particles (such as quarks and gluons) cannot be separated from their

parent hadron without producing new hadrons. There is not yet an analytic proof of color

[
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confinement in any non-abelian gauge theory.:

Yes, its true if they are combination of 3 only. Mesons although hadrons are exceptions to this rule.

Physical information: Are there physical phenomena, such as wave function collapse or

black holes that irrevocably destroy information about their prior states? How is quantum

information stored as a state of a quantum system?:

Information cannot be destroyed, they may undergo physical changes cyclically but they reappear else-

where coming in contact with its conjugal pair.

Dimensionless physical constant: At the present time, the values of the dimensionless

physical constants cannot be calculated; they are determined only by physical measure-

ment. What is the minimum number of dimensionless physical constants from which all

other dimensionless physical constants can be derived? Are dimensional physical con-

stants necessary at all?:

For each cycle there can be different dimensionless physical constants. Even in the planck cycle alpha

is not enough, we need to half it to describe the cyclicity among physical events. Dimensional physical

constants are not necessary at all to describe reality in simple terms as nature can play with its infinity

card, to honour the mathematics it cycles through one single constant which is natural logarithm of

2.Yet, when it comes to detailing, physical constants are required to depict the classical universe.

Fine-tuned universe: The values of the fundamental physical constants are in a narrow

range necessary to support carbon-based life. Is this because there exist other universes

with different constants, or are our universe’s constants the result of chance, or some

other factor or process? In particular, Tegmark’s mathematical multiverse hypothesis of

abstract mathematical parallel universe formalized models, and the landscape multiverse

hypothesis of spacetime regions having different formalized sets of laws and physical con-

stants from that of the surrounding space — require formalization.:

The apparent fine tuning is due to renormalising infinities arising out of math to some finite result to

match our experiment or observation. Doing so we miss the cycles of physical events and we settle with

a narrow bound which is not the reality. The reality is everywhere its infinite and within that infinity

rising of carbon based life forms is not at all a miracle. Zeta results and numerical relativity coming

out of zeta results directly proves all the four levels of Tegmark’s mathematical multiverse hypothesis.

We need to formally accept it.

Quantum field theory: Is it possible to construct, in the mathematically rigorous frame-

work of algebraic QFT, a theory in 4-dimensional spacetime that includes interactions and

does not resort to perturbative methods?:

Yes, once we bring cycles in our math and theories our math for algebraic QFT will not fail.

Cosmology and general relativity.

Short answer to unsolved problems in physics 2. Problem of time: In quantum mechanics

time is a classical background parameter and the flow of time is universal and absolute.[
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In general relativity time is one component of four-dimensional spacetime, and the flow

of time changes depending on the curvature of spacetime and the spacetime trajectory of

the observer. How can these two concepts of time be reconciled?:

They can be reconciled at T=0. There from local quantum time line can begin giving the impression that

local time is flowing. But after completion of a half time cycle the local time will start flow backward

through cyclic changes and that will cause Big Bounce which will again go back to T=0 meaning ”Time

does not exist”.

Cosmic inflation: Is the theory of cosmic inflation in the very early universe correct, and,

if so, what are the details of this epoch? What is the hypothetical inflaton scalar field that

gave rise to this cosmic inflation? If inflation happened at one point, is it self-sustaining

through inflation of quantum-mechanical fluctuations, and thus ongoing in some extremely

distant place?:

Yes, its mathematically plausible but cyclic maths do not allow it so fast as Alan guth brought it to fix

the Big Bang model. Once it happens, always it happens, therefore eternal inflation which is relatively

slow across the various parts of the universe is more correct picture.

Horizon problem: Why is the distant universe so homogeneous when the Big Bang theory

seems to predict larger measurable anisotropies of the night sky than those observed?

Cosmological inflation is generally accepted as the solution, but are other possible expla-

nations such as a variable speed of light more appropriate?:

The local anisotropies gets exponentially smoothened out by eternal inflation so the homogeneousness.

Variable speed of light has greater domain to work. Einstein realised that in a rotating frame of reference

speed of light may not remain constant following Mach principal, he took the relativity route instead to

keep the speed of light constant. His choice was wise. Now we just need a scale factor to scale up or scale

down while moving between two rotating frame of reference. Overall speed of light remain constant.

Origin and future of the universe: How did the conditions for anything to exist arise? Is

the universe heading towards a Big Freeze, a Big Rip, a Big Crunch, or a Big Bounce?

Or is it part of an infinitely recurring cyclic model?:

Universe existed and it will exist forever, Big bounce keep on happening cyclically across the universe

meaning every structures that forms in an universe has got an age but the universe itself is timeless.

Size of universe: The diameter of the observable universe is about 93 billion light-years,

but what is the size of the whole universe?:

Its truly infinite even bigger than 10500 multiverses as string theories suggest. Yet It can be unified

into an eternal omniverse having zero entropy in total thermal equilibrium which can be seen as one

boltzman brain where every event whether possible or impossible can happen over infinite time cycles.

Baryon asymmetry: Why is there far more matter than antimatter in the observable

universe?:

Because antimatters are moving backward in time through cycle of changes, Its like one particle universe.[
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Cosmological constant problem: Why does the zero-point energy of the vacuum not cause

a large cosmological constant? What cancels it out?:

Because that energy runs infinite time cycles, infinite multiverses. Ln(2) is the cosmological constant

and its huge enough to bind infinite multiverses and run the show for infinite time cycles.

Dark matter: What is the identity of dark matter? Is it a particle? Is it the lightest

superpartner (LSP)? Or, do the phenomena attributed to dark matter point not to some

form of matter but actually to an extension of gravity?:

Failed combinations like Quaterquarks, Pentaquarks, or moderately successful Hexaquarks, Dodecaquarks

and so on all acting like BEC, not interacting with enough strength to get amplified enough and get

detected by our telescopes, sounds fit as dark matter candidates.

Dark energy: What is the cause of the observed accelerated expansion (de Sitter phase)

of the universe? Why is the energy density of the dark energy component of the same

magnitude as the density of matter at present when the two evolve quite differently

over time; could it be simply that we are observing at exactly the right time? Is dark

energy a pure cosmological constant or are models of quintessence such as phantom energy

applicable?:

Observed accelerated expansion (de Sitter phase) of the universe is due to non linear stages or phases

or epochs in cycle of changes. The energy density of the dark energy component remain always of

the same magnitude as of the density of matter through cycle of changes. There is nothing called

right time as time itself does not exist. Dark energy apart from being a cosmological constant is also

a mathematical constant having value of natural logarithm of 2. There can be infinite cycles, so the

universal cosmological constant may also be infinitely small as we keep on dividing spaces into infinite

partitions.

Dark flow: Is a non-spherically symmetric gravitational pull from outside the observable

universe responsible for some of the observed motion of large objects such as galactic

clusters in the universe?:

No, The universe has got zero gaussian curvature meaning at large scale space-time is flat but at smaller

scales it can have both positive or negative curvature. Due to some local non zero curvature observable

universe may feel an outside pull. But if we are able to sum up the curvatures meticulously then we

will see change of cycles are finally making everything flat.

Axis of evil: Some large features of the microwave sky at distances of over 13 billion light

years appear to be aligned with both the motion and orientation of the solar system. Is

this due to systematic errors in processing, contamination of results by local effects, or an

unexplained violation of the Copernican principle?:

No, this is not an error, actually this is so. The first cyclic number is 4.33 billion. Three cycles of

that comes around 13 billion. So beyond 13 billion light years its more or less same cycle so the same

synchronised motion, same orientation. [
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Shape of the universe: What is the 3-manifold of comoving space, i.e. of a comoving

spatial section of the universe, informally called the ”shape” of the universe? Neither the

curvature nor the topology is presently known, though the curvature is known to be ”close”

to zero on observable scales. The cosmic inflation hypothesis suggests that the shape of

the universe may be unmeasurable, but, since 2003, Jean-Pierre Luminet, et al., and other

groups have suggested that the shape of the universe may be the Poincaré dodecahedral

space. Is the shape unmeasurable; the Poincaré space; or another 3-manifold?:

3-manifold of comoving space is spherical. As we take snapshots over different time we cannot follow

the time cycles so it appears as a flat like a straight line. If we project it further to infinities it will give

us zero curvature meaning rays of straight lines are coming out from the origin in all directions and it

can have all possible shapes over infinite time.

The largest structures in the universe are larger than expected. Current cosmological

models say there should be very little structure on scales larger than a few hundred

million light years across, due to the expansion of the universe trumping the effect of

gravity. But the Sloan Great Wall is 1.38 billion light-years in length. And the largest

structure currently known, the Hercules–Corona Borealis Great Wall, is up to 10 billion

light-years in length. Are these actual structures or random density fluctuations? If they

are real structures, they contradict the ’End of Greatness’ hypothesis which asserts that

at a scale of 300 million light-years structures seen in smaller surveys are randomized to

the extent that the smooth distribution of the universe is visually apparent.:

Again this is due to scale gap. Why we are settling with one single bang. Series of bangs across the

universe have bounded the smaller structures into a greater structure. Random density fluctuations

although not necessary but allowed once to explain the first bang, thereafter it does not remain random,

there is a frequent pattern even among the random numbers such as primes. Due to that pattern small

series of bangs keep on happening every now and then. There is no end of greatness yet the hypothesis

is true as beyond every 300 million light years the the randomness just differs in plus/minus sign which

finally smoothens out to zero in visuals. From an infinitely small patch of sky to the whole omniverse

everything is connected to every other parts through cycles and zeros.

Quantum gravity.

Short answer to unsolved problems in physics 3. Vacuum catastrophe: Why does the

predicted mass of the quantum vacuum have little effect on the expansion of the universe?:

Because the predicted mass is expanding another unit of space outside right now, still it won’t tear apart

the universe as universe has no boundary.

Quantum gravity: Can quantum mechanics and general relativity be realized as a fully

consistent theory (perhaps as a quantum field theory)? Is spacetime fundamentally con-

tinuous or discrete? Would a consistent theory involve a force mediated by a hypothetical

graviton, or be a product of a discrete structure of spacetime itself (as in loop quantum[
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gravity)? Are there deviations from the predictions of general relativity at very small

or very large scales or in other extreme circumstances that flow from a quantum gravity

theory?:

No , We should not mix Gravity with QM, we can unify quantum fields to make a QFT but it will not

mix with GR except at singularities. Even if we try it will give us a zero everywhere, what we shall

do with zeros. I fear we need to carry both, to make sense of everything. Space time is continuous by

means of cycles of discrete quanta. We do not need Graviton as Gravity is not real force, its curvature

of space time. GR is a generalised concept, if there is a requirement for scale adjustment we are allowed

to do so in GR and the suggested scale factors in this paper will bridge the gap between GR and QM.

Black holes, black hole information paradox, and black hole radiation: Do black holes pro-

duce thermal radiation, as expected on theoretical grounds? Does this radiation contain

information about their inner structure, as suggested by gauge–gravity duality, or not, as

implied by Hawking’s original calculation? If not, and black holes can evaporate away,

what happens to the information stored in them (since quantum mechanics does not pro-

vide for the destruction of information)? Or does the radiation stop at some point leaving

black hole remnants? Is there another way to probe their internal structure somehow, if

such a structure even exists?:

Yes, Black holes exists but the singularity arises not only due to infinite gravity but also may be due

to zero gravity at least at the centre of the black hole it must be zero. Black holes do not consume

information. Whatever information falls inside the event horizon are radiated back in scrambled form

over a huge scale of time by Hawking Radiation. Those scrambled information from all the black holes

can get assembled into some useful information again and again. A size zero black hole remnants can

always exist and there will be no physics inside unless we donate some physics to it. We wont spent

any of our scarce physics time (worlds best minds already spent three decades) as we know there are no

more hairs inside, why should we make it hairy again?

Extra dimensions: Does nature have more than four spacetime dimensions? If so, what

is their size? Are dimensions a fundamental property of the universe or an emergent

result of other physical laws? Can we experimentally observe evidence of higher spatial

dimensions?:

Ultimate reality is nature have zero dimensions. Nature does not care whether somebody somewhere is

drawing a line through it and then doing whatever other geometries through it, finally all gets erased by

somebody else and the cycle continues. Another reality is that nature is 3 dimensional through cycles

of threes. Four space-time dimensions represents cycles of changes which connects both of this reality.

Now there can be infinite number of cycles, then why it should be 10+1 dimensional alone as string

theories require. Those extra dimensions if seen closely are nothing but extra degrees of freedom that

we can borrow from zero to return it back elsewhere. So far our observation suggest space-time is flat

and the curvature is experimentally observed at shorter distances does not suggest presence of any extra[
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dimensions. If that was the case we could have lost all the starlight in those extra dimensions coming

towards us from a distant star from edge of the universe in contrary to the results found in famous

Michelson-Morley experiment. If still we insist that we will be calling those extra degrees of freedom

as extra dimensions only because we are accustomed to do so then I must say that there are infinite

number of extra dimensions none of which can be detected because of their cyclic orientation.

The cosmic censorship hypothesis and the chronology protection conjecture: Can singu-

larities not hidden behind an event horizon, known as ”naked singularities”, arise from

realistic initial conditions, or is it possible to prove some version of the ”cosmic censorship

hypothesis” of Roger Penrose which proposes that this is impossible? Similarly, will the

closed timelike curves which arise in some solutions to the equations of general relativity

(and which imply the possibility of backwards time travel) be ruled out by a theory of

quantum gravity which unites general relativity with quantum mechanics, as suggested

by the ”chronology protection conjecture” of Stephen Hawking?:

GR and QM cannot be unified except inside singularities. Singularities arising from experimental real-

istic initial conditions will not be scalable enough compared to the natural one therefore the hypothesis

cannot be tested, yet it must be true as conceptually we can see naked/clothed singularities as an absolute

zero. Possibility of backwards time travel can be ruled out. Chronology protection conjecture of Stephen

Hawking will not be violated as within the cycles and across the cycles causality is not violated.

Locality: Are there non-local phenomena in quantum physics? If they exist, are non-local

phenomena limited to the entanglement revealed in the violations of the Bell inequalities,

or can information and conserved quantities also move in a non-local way? Under what

circumstances are non-local phenomena observed? What does the existence or absence

of non-local phenomena imply about the fundamental structure of spacetime? How does

this elucidate the proper interpretation of the fundamental nature of quantum physics?:

Quantum entanglement is a local phenomena which will not pass the rectangle of entanglement test.

A,B,C,D four labs anywhere in the globe cannot entangle a pair of particles among themselves and

complete the rectangle or a square as a special case, although the same experiment will be successful in

case of a triangle. Absence of Non-local phenomena implies nature do not violate causality.

High-energy physics/particle physics.

Short answer to unsolved problems in physics 4. Hierarchy problem: Why is gravity such

a weak force? It becomes strong for particles only at the Planck scale, around 1019 GeV,

much above the electroweak scale (100 GeV, the energy scale dominating physics at low

energies). Why are these scales so different from each other? What prevents quantities

at the electroweak scale, such as the Higgs boson mass, from getting quantum corrections

on the order of the Planck scale? Is the solution supersymmetry, extra dimensions, or

just anthropic fine-tuning?:

Gravity is not a force, its curvature of space-time. Its weak because it is shared by all the infinite number[
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of multiverses. These scale gaps are due to absence of cycles in our maths. The same hierarchy we

see in pascals triangle, QM dealing with numbers must also obey this hierarchy structure which can be

brought down to zero through cycles. If everything goes to planck scale then which particle will run the

time cycles. Supersymmetry may not be required, extra dimensions do not exist, anthropic fine tuning

is not the solution. For better results let us come out of the imaginary world of imaginary numbers in

the core equation of QFT, simply realise them into realty collapsing the wave function, then we will see

things are looking quite simple at least comprehensible.

Planck particle: The Planck mass plays an important role in parts of mathematical physics.

A series of researchers have suggested the existence of a fundamental particle with mass

equal to or close to that of the Planck mass. The Planck mass is however enormous

compared to any detected particle. It is still an unsolved problem if there exist or even

have existed a particle with close to the Planck mass. This is indirectly related to the

hierarchy problem.:

Planck mass is an equivalent mass which can be filled in by different possible combinations of elementary

particles in whole numbers. It is not an unit mass therefore no fundamental particle is required to have

that mass.We must consider cycles and scale adjustments for solution to hierarchy problem.

Magnetic monopoles: Did particles that carry ”magnetic charge” exist in some past,

higher-energy epoch? If so, do any remain today? (Paul Dirac showed the existence of

some types of magnetic monopoles would explain charge quantization.):

No they never existed in any epoch after Big Bang. They could only exist at Big Bang singularity.

Even without magnetic monopole charge quantization can be explained with the help of cycles of CPT

symmetry. Lets start from the spin which are quantized version of cyclic angular momentum, now to

complete the global half cycle we bring charge and quantise it cyclically -1,0,+1, further to complete

the global cycle we can have different combinations elementary particles. Those combinations which

complete the cycle of 3 will survive in time and rest of the failed combinations will remain at T=0

waiting for its turn.

Neutron lifetime puzzle: While the neutron lifetime has been studied for decades, there

currently exists a lack of consilience on its exact value, due to different results from two

experimental methods (”bottle” versus ”beam”).:

They are parallaly moving back and forth between cycles, this brings the uncertainty. Maximum we can

do, we can take average values. Believe me it will not disturb/improve your precision / data confidence

in experimental physics, every now and then you will see results of different orders of magnitude unless

you do scale adjustments also.

Proton decay and spin crisis: Is the proton fundamentally stable? Or does it decay with a

finite lifetime as predicted by some extensions to the standard model? How do the quarks

and gluons carry the spin of protons?:

In this universe proton will remain fundamentally stable till the next Big Bounce. Lifetime of a Big[
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Bounce is more or less constant and it is much lesser than half life of proton so we can say before proton

decays the universe itself decays partially. Protons have constant spin due to zeta values particularly

zeta of 1 which I have shown 1. In multiverse there may be anti-protons which remain fundamentally

stable there, this universe their combination did not work so they are sitting in the reserve bench as

dark matters, at the borderline they get chance to interact with matters having similar combination,

they collide and they make something new, but those particle horizons are far away from us.

Supersymmetry: Is spacetime supersymmetry realized at TeV scale? If so, what is the

mechanism of supersymmetry breaking? Does supersymmetry stabilize the electroweak

scale, preventing high quantum corrections? Does the lightest supersymmetric particle

(LSP) comprise dark matter?:

No, supersymmetry may be realized at TeV scale, as with the standard model of particle physics we

completed the cycle, we do not need any further particle, what we need is run the same cycle and create

composite particles to find the missing matter.

Generations of matter: Why are there three generations of quarks and leptons? Is there

a theory that can explain the masses of particular quarks and leptons in particular gen-

erations from first principles (a theory of Yukawa couplings)?:

Because nature is 3 dimensional. Only coupling theories may not effectively describe it, we need to

understand the cycles behind it also.

Neutrino mass: What is the mass of neutrinos, whether they follow Dirac or Majorana

statistics? Is the mass hierarchy normal or inverted? Is the CP violating phase equal to

0?:

Neutrinos have some non zero infinitesimally small mass which if we need to measure we need to bring

cycles in the planck scale first. The mass hierarchy would be a inverted one and definitely the CP

violation phase equals to zero.

Strong CP problem and axions: Why is the strong nuclear interaction invariant to parity

and charge conjugation? Is Peccei–Quinn theory the solution to this problem? Could

axions be the main component of dark matter?:

Strong force is a coupling force and do not involve a third particle, therefore it need not to violate parity

and charge conjugation. I do not feel we need new particles to explain Strong CP problem.

Anomalous magnetic dipole moment: Why is the experimentally measured value of the

muon’s anomalous magnetic dipole moment significantly different from the theoretically

predicted value of that physical constant?:

Because of alternating quantum scale gaps.

Proton radius puzzle: What is the electric charge radius of the proton? How does it differ

from gluonic charge?:

We need planck cycles first to calculate proton radius.

[
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Pentaquarks and other exotic hadrons: What combinations of quarks are possible? Why

were pentaquarks so difficult to discover? Are they a tightly-bound system of five ele-

mentary particles, or a more weakly-bound pairing of a baryon and a meson?:

Other exotic hadrons fail the time test, that is the reason they are difficult to discover. They are a

tightly-bound system of five ele- mentary particles, is there a name for a tightly-bound system of five

elementary particles such as Pentaquarks acting like a self-contained unit particle?, if not we should

give one as they will be abundant as our future particle accelerators start working.

Mu problem: problem of supersymmetric theories, concerned with understanding the

parameters of the theory.:

The solution is cycle again.

Koide formula: An aspect of the problem of particle generations. The sum of the masses of

the three charged leptons, divided by the square of the sum of the roots of these masses, to

within one standard deviation of observations, is Q = 2
3
. It is unknown how such a simple

value comes about, and why it is the exact arithmetic average of the possible extreme

values of 1
3
(equal masses) and 1 (one mass dominates).:

That’s the beauty of cycle of threes.

Astronomy and astrophysics.

Short answer to unsolved problems in physics 5. Coronal heating problem: Why is the

Sun’s corona (atmosphere layer) so much hotter than the Sun’s surface? Why is the

magnetic reconnection effect many orders of magnitude faster than predicted by standard

models?:

Its concentric cycles of linear and non linear layers which finally divides into two halves of two different

average temperature scales.

Astrophysical jet: Why do only certain accretion discs surrounding certain astronomical

objects emit relativistic jets along their polar axes? Why are there quasi-periodic oscil-

lations in many accretion discs? Why does the period of these oscillations scale as the

inverse of the mass of the central object? Why are there sometimes overtones, and why

do these appear at different frequency ratios in different objects?:

Because of strong couplings, quasi-periodic oscillations is due to cycles of some third parameter. Over-

tones are due to scale transition, and every object has its own characteristic frequency, what is so

strange about it?

Diffuse interstellar bands: What is responsible for the numerous interstellar absorption

lines detected in astronomical spectra? Are they molecular in origin, and if so which

molecules are responsible for them? How do they form?:

They are BEC’s, mostly they are formed by composite particles which escapes gravity by quantum tun-

nelling from every stellar bodies including planets, dwarf planets, asteroids.[
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Supermassive black holes: What is the origin of the M-sigma relation between supermas-

sive black hole mass and galaxy velocity dispersion? How did the most distant quasars

grow their supermassive black holes up to 1010 solar masses so early in the history of the

universe?:

Let us apply cycles to cosmology and the let the universe older and older until we forget about singularity.

Even greater supermassive black holes may exist elsewhere in the multiverse.

Kuiper cliff: Why does the number of objects in the Solar System’s Kuiper belt fall off

rapidly and unexpectedly beyond a radius of 50 astronomical units?:

Because that’s the half way mark up to which non linear things can coexist beyond that point its just

addition rule and little bit of non commutative multiplicative rule which does not allow gravity to hold

large number of objects.

Flyby anomaly: Why is the observed energy of satellites flying by planetary bodies some-

times different by a minute amount from the value predicted by theory?:

Because theory describes a simplified completed cycle, while there can be parameters which may fall si-

multaneously in two different cycle, in those cases theoretical value may vary a little bit until it reappears

in the current cycle.

Galaxy rotation problem: Is dark matter responsible for differences in observed and the-

oretical speed of stars revolving around the centre of galaxies, or is it something else?:

At large scales where Gravity is working inside a 3D stellar object like Galaxy which has a height and

volume the inverse square rule is weakened by simple inverse law, particularly applicable to outer discs

which is the reason behind Galaxy rotation problem. Dark matter is not the cause alone here, we need

to modify the Newtonian Gravity also.

Supernovae: What is the exact mechanism by which an implosion of a dying star becomes

an explosion?:

Because of strong couplings all size stars follows a 70 percent relative limit up to which they can un-

dergo gravitational shrink due to accumulation of heavy metals out of nuclear fusion reaction, beyond

which gravity falls weaker again compared to various degeneracy pressures, which ultimately triggers the

supernova explosion.

p-nuclei: What astrophysical process is responsible for the nucleogenesis of these rare

isotopes?:

In earthly condition we see higher neutron-proton ratio as earth is relatively cold place. Following

the huge temperature scale of supernovae blast the picture becomes opposite. That is why during a

supernovae blast some excess protons create those rare isotopes.

Ultra-high-energy cosmic ray: Why is it that some cosmic rays appear to possess energies

that are impossibly high, given that there are no sufficiently energetic cosmic ray sources

near the Earth? Why is it that (apparently) some cosmic rays emitted by distant sources

have energies above the Greisen–Zatsepin–Kuzmin limit?:[
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There are stellar objects running at higher scales beyond our solar system some of which are well within

our galactic volume itself, those objects are the source of cosmic rays.The bad thing on the top is that

there is no end to the hierarchy of these high-energy scales can go.

Rotation rate of Saturn: Why does the magnetosphere of Saturn exhibit a (slowly chang-

ing) periodicity close to that at which the planet’s clouds rotate? What is the true rotation

rate of Saturn’s deep interior?:

Because of synchronisation among the related cycles. But as the solar system get older and older this

periodicity might change very fast.

Origin of magnetar magnetic field: What is the origin of magnetar magnetic field?:

Some electro magnetic field cycling around the magnetar of course.

Large-scale anisotropy: Is the universe at very large scales anisotropic, making the cosmo-

logical principle an invalid assumption? The number count and intensity dipole anisotropy

in radio, NRAO VLA Sky Survey (NVSS) catalogue is inconsistent with the local motion

as derived from cosmic microwave background and indicate an intrinsic dipole anisotropy.

The same NVSS radio data also shows an intrinsic dipole in polarization density and de-

gree of polarization in the same direction as in number count and intensity. There are

several other observation revealing large-scale anisotropy. The optical polarization from

quasars shows polarization alignment over a very large scale of Gpc. The cosmic-mi-

crowave-background data shows several features of anisotropy, which are not consistent

with the Big Bang model.:

Let us learn to live without Big Bang or at least the current version. All local large-scale anisotropy gets

exponentially triple smoothened at the universal scale. If there is dipole polarisation somewhere then be

sure that another weaker dipole polarisation remain out of phase so those signals are not detected, just

like we cant see the other side of the moon. Its infinite all direction so it does not violate cosmological

principle.

Age–metallicity relation in the Galactic disk: Is there a universal age–metallicity relation

(AMR) in the Galactic disk (both ”thin” and ”thick” parts of the disk)? Although in

the local (primarily thin) disk of the Milky Way there is no evidence of a strong AMR,

a sample of 229 nearby ”thick” disk stars has been used to investigate the existence

of an age–metallicity relation in the Galactic thick disk, and indicate that there is an

age–metallicity relation present in the thick disk. Stellar ages from asteroseismology

confirm the lack of any strong age–metallicity relation in the Galactic disc.:

Both thin and thick discs cannot have same AMR as there are huge time cycles involved in between.

Today’s thick discs will be tomorrows thin and vice versa. Rather it will be interesting to see whether

the thin disks have some kind of non metalicity relation, cyclically speaking they should demonstrate

such relation although it can be very weak.
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The lithium problem: Why is there a discrepancy between the amount of lithium-7 pre-

dicted to be produced in Big Bang nucleosynthesis and the amount observed in very old

stars?:

Because it is Lithium-7. 7 is a different scale transition number, so this kind of discrepancy is not

abnormal as our current Big Bang model is not perfect.

Ultraluminous X-ray sources (ULXs): What powers X-ray sources that are not associated

with active galactic nuclei but exceed the Eddington limit of a neutron star or stellar

black hole? Are they due to intermediate mass black holes? Some ULXs are periodic,

suggesting non-isotropic emission from a neutron star. Does this apply to all ULXs? How

could such a system form and remain stable?:

There are at least 14 different scales between the galactic nuclei scale and that of neutron stars. Many

of them will be able to produce X-rays. There is no end of greatness as well as surprises until you grasp

the scale universe operate.

Fast radio bursts (FRBs): What causes these transient radio pulses from distant galaxies,

lasting only a few milliseconds each? Why do some FRBs repeat at unpredictable intervals,

but most do not? Dozens of models have been proposed, but none have been widely

accepted.:

Sources of FRB can be some particular type of cyclic explosions in the vicinity of quasars at the centre

of the galaxies pumping in and out of materials galactic just like our heart pumps and purifies the blood.

The interval may get slow/fast similar to our own heartbeat.
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