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ABSTRACT

We consider the problem of restorating images from blur and
noise. We find the minimum of the primal energy function,
which has two terms, related to faithfulness to the data, and
smoothness constraints, respectively. In general, we do not
know and we have to estimate the discontinuities of the ideal
image. We require that the obtained images are piecewise
continuous and with thin edges. We associate with the pri-
mal energy function a dual energy function, which treats dis-
continuities implicitly. We determine a dual energy function,
which is convex and takes into account non-parallelism con-
straints, in order to have thin edges. The proposed dual en-
ergy can be used as initial function in a GNC (Graduated
Non-Convexity)-type algorithm, to obtain reconstructed im-
ages with Boolean discontinuities. In the experimental re-
sults, we show that the formation of parallel lines is inhibited.

Index Terms— Image denoising, image edge detection,
image restoration, minimization methods.
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1. INTRODUCTION

In the literature, there have been several studies about the
problem of reconstruction of images, which have various ap-
plications in different areas of science, for example medical
diagnostic methods (see also [16, 17, 30]), civil and military
engineering and thermography (see also [2, 12, 13, 14, 15,
24]). This problem, in general is ill–conditioned and/or ill–
posed in the Hadamard sense (see also [5, 18, 21]). Using
suitable regularization techniques (see also [3, 18, 19]), it is
possible to bring it to a well–posed problem, whose solution
is the minimum of the primal energy function. This function
is formed by a term which deals with the faithfulness of the
solution to the data and another term, related to regularity of
the solution (see for instance [18, 20]). We deal with discon-
tinuities in the intensity field (see also [20]), since in real im-
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ages some discontinuities are present in correspondence with
edges of different objects. To examine such discontinuities,
we use some line variables (see also [20]). It is possible to
minimize the primal energy function in these variables, in or-
der to construct a dual energy function (see also [9, 11, 19]),
which consider discontinuities implicitly.

To have better deblurred images, it is possible to consider
some constraints in order to avoid close parallel discontinu-
ities and inhibit thick boundaries between the smooth areas
(see also [22]). Indeed, in [4, 9] it was shown that the im-
ages reconstructed by such techniques are more similar to the
ideal images. In this paper we give a new duality theorem
(see also [1, 3, 4, 6, 7, 8, 9, 19], in order to consider also these
kinds of constraints, and construct a new potential function,
which treats the non-parallelism constraints and is convex in
a suitably large subset of a Euclidean space. To get better
images, we deal with a dual energy function which considers
implicitly Boolean line variables. It is possible to apply the
given duality theorem also to such function. In general, the
dual energy function is not convex. So, in order to find its
minimum, we give a GNC (Graduated Non-Convexity)-type
technique (see for instance [4, 9, 23, 25, 26, 27, 28]), using as
first convex approximation the proposed convex dual energy
function. Our experimental results confirm that, by means of
such techniques, it is possible to obtain images not having
parallel lines.

2. THE PROBLEM OF RECONSTRUCTION OF
IMAGES

Let x, y, n be vectors of dimension n2 and A be a matrix of
order n2×n2. We suppose that the intensity values of the as-
sociated pixels are in one column, following the lexicographic
order. The formulation of the direct problem is y = Ax+ n,
where x and y indicate the original and the observed blurred
image, respectively, and n is the noise on the image, which is
supposed to be independent, identically distributed and Gaus-
sian, and to have zero mean and known variance σ2. The
matrix A represents the blur acting on the image.

The problem of restoring images is to find a reconstruc-
tion x blurred image y, the matrix A and the variance of the
noise σ2. In general, this problem is ill–conditioned and/or
ill–posed in the Hadamard sense (see also [5, 18, 21, 29]).



Observe that, as studied in [8, 9], if we want to have a sat-
isfactory output both of costs and of exactness of the recon-
structed images, it is convenient to consider second order fi-
nite differences. To this aim, we introduce the cliques, which
are the sets of the points of a square grid on which finite dif-
ferences of second order are defined. We denote by C the set
of all cliques and by bc the Boolean line variable related to
the clique c ∈ C; in particular, the value zero corresponds to
a discontinuity of the involved image in c. The vector b is the
set of all line variables bc. We denote the second order finite
difference operator of the vector x associated with the clique
c by Dcx.

A regularized solution of the studied problem is the argu-
ment of the minimum of the primal energy function, defined
by

E(x,b) = ‖y −Ax‖2 +
∑
c∈C

[
λ2(Dcx)

2bc + β(bc)
]
, (1)

where β is a non-increasing function (balancing function),
and ‖ · ‖ is the Euclidean norm. The first term in the right
hand of (1) is associated with confidence of the solution with
the data and the last one is associated with a regularity con-
dition on x. The parameter λ2 is related to faithfulness to the
data and regularization of the solutions. When λ2 is close to
0, we describe a wide confidence with the data, while when
λ2 tends to +∞ we indicate a faithfulness to the a priori in-
formations.

In order to minimize the function in (1), we first compute
the minimum with respect to b. So, the dual energy function
Ed(x) is given as

Ed(x) = inf
b∈B|C|

E(x,b), (2)

where |C| denotes the cardinality of the set C (see, for in-
stance, [6, 7, 9, 19]). Note that, by [10, Theorem 1], the quan-
tity Ed is well-defined. We have

Ed(x) = ‖y −Ax‖2 +
∑
c∈C

g(Dcx), (3)

where

g(t) = inf
b∈B

(λ2bt2 + β(b)) (4)

is the potential function, which to every value of the finite dif-
ference operator associates a suitable cost, and is independent
of the involved clique (see also [19]).

3. THE CONSTRAINT OF NON-PARALLELISM

In order to inhibit the formation of parallel lines, which could
be generated by the blur, we consider the possible relations
between near cliques. So, in (1), we add a term Q(b), which

represents this kind of constraint (see for example [4, 9, 20,
22]). We define a partial order � on C, by

{(i, j), (i− 1, j), (i− 2, j)} �
{(h, j), (h− 1, j), (h− 2, j)} ⇔ i ≤ h,

{(i, j), (i, j − 1), (i, j − 2)} �
{(i, h), (i, h− 1), (i, h− 2)} ⇔ j ≤ h.

We indicate with c−1 and c−2 the cliques which precede im-
mediately c and c− 1, respectively (if they exist). Since each
clique includes three near pixels, when there are two close ar-
eas with different second partial derivatives are present, them
at least one line variable bc and the corresponding one bc−1
take low values. We want that the further previous line vari-
able bc−2 does not assume too low values, because in this case
we do not have a completely deblurred reconstructed image.
So, we assume that

Q(b) =
∑
c∈C

ρ(bc, bc−2), (5)

where ρ = ρ(u, v) is a suitable function, not constant and
non-increasing in both variables. If c− 2 is not defined, then
we set bc−2 = 0 in in (5).

From (1) we get

E(x,b) = ‖y −Ax‖2 +
∑
c∈C

(
λ2(Dcx)

2bc (6)

+ β(bc)
)
+Q(b),

where Q is as in (5). In general, it is difficult to calculate
explicitly the dual energy function. Thus, as in [8] and [9],
we consider an approximation ξc−2(x) of bc−2, given by

ξc−2(x) = argc−2 min
b∈B|C|

E(x,b) (7)

= arg min
b∈B

(λ2(Dc−2(x))
2b+ β(b)),

where E is as in (1). As ξc−2 depends only on Dc−2(x), then
ξc−2(x) can be expressed as ξc−2(x) = φ(Dc−2(x)), where
φ is a non-increasing function (see also [8, 9]). So, the primal
energy in (6) can be approximated by

E(x,b) = ‖y −Ax‖2 +
∑
c∈C

[
λ2(Dcx)

2bc

+ β(bc) + ρ(bc, φ(Dc−2(x)))
]
,

by assuming that, if c−2 does not exist, then ρ(bc, φ(Dc−2(x)))
is null. Set now

γ(b, t2) = β(b) + ρ(b, φ(t2)), b, t2 ∈ R. (8)

Note that the function ρ is not constant and non-increasing, γ
is not constant, and γ is even and non-decreasing on R+

0 with
respect to the variable t2. Moreover, to have a constraint of



line variable continuation, we suppose that γ is not constant,
and that γ is even and non-increasing on R+

0 with respect to
t2 (see also [8, 9]). Furthermore, we have

Ed(x) = ‖y −Ax‖2 +
∑
c∈C

ϕ(Dc(x), Dc−2(x)), (9)

where

ϕ(u, v) = inf
b∈B

(λ2bu2 + β(b) + ρ(b, φ(v))). (10)

Also in this case, the functions ϕ and γ in (10) and (8) are
called potential and balancing function, respectively.

In [8] we proved the following duality theorem, giving a
relation between primal and dual energies which includes the
non-parallelism constraint.

Theorem 3.1 (a) Let λ ∈ R \ {0} and ϕ : R × R → R ∪
{−∞}. For every t2 ∈ R, set gt2(t1) = ϕ(t1, t2), suppose
that gt2(0) ∈ R, sup

t1∈R+
0

gt2(t1) > 0 and assume that

3.1.1) gt2 is upper semicontinuous and even on R and non-
decreasing on R+

0 ;

3.1.2) the function ft2 : R→ R ∪ {−∞} defined by

ft2(t1) =

{
ϕ(
√
t1, t2), if t1 ≥ 0,

−∞, if t1 < 0,

is concave on R+
0 , and lim

t1→+∞

ft2(t1)

t1
= 0 for every

t2 ∈ R;

3.1.3) ϕ is not constant, and the function t2 7→ ϕ(t1, t2) is
even on R and non-decreasing on R+

0 for any t1 ∈ R+
0 .

Then there is a function γ : R×R→ R+
0 ∪ {+∞} such that,

if βt2 : R → R+
0 ∪ {+∞} is defined by βt2(b) = γ(b, t2), b,

t2 ∈ R, then

3.1.4) βt2(b) < +∞ for each b > 0 and t2 ∈ R, and
βt2(b) = +∞ for every b < 0 and t2 ∈ R.

3.1.5) γ(b, t2) = βt2(b) = sup
t1∈R+

0

(−λ2bt1 + ϕ(
√
t1, t2)) for

any b, t2 ∈ R;

3.1.6) ϕ(t1, t2) = inf
b∈R

(λ2b t21 + γ(b, t2)) for each t1, t2 ∈
R;

for any t2 ∈ R, we get

3.1.7) βt2 is non-increasing on R;

3.1.8) βt2 is convex and lower semicontinuous on R;

3.1.9) lim
b→+∞

βt2(b) ∈ R;

3.1.10) γ is not constant, and the function t2 7→ γ(b, t2) is
even on R and non-decreasing on R+

0 for any b ∈ R.

(b) Conversely, if γ : R× R → R+
0 ∪ {+∞} satisfies 3.1.4),

3.1.7), 3.1.8), 3.1.9), 3.1.10), then there is a function ϕ : R×
R → R ∪ {−∞}, with ϕ(0, t2) ∈ R for every t2 ∈ R, such
that the conditions 3.1.1), 3.1.2), 3.1.3), 3.1.5), 3.1.6) hold.

4. THE POTENTIAL FUNCTIONS

Now we propose a potential function ϕ, according to (10),
convex in a suitable domain of R × R and fulfilling the hy-
potheses of Theorem 3.1. So, the dual energy turns to be con-
vex on a large enough subset of Rn2

(see also [8]). Fix λ2,
ε > 0 and δ ∈ (0, 1), and let ϕ : R× R→ R be defined by

ϕ(t1, t2) = ϕδ(t1, t2) = λ2(εt22 + 1)|t1|2−δ. (11)

Note that ε is a positive parameter related to the non-
parallelism constraint.

In order to consider Boolean line variables for improving
the results, we can take the following potential function

ϕ̃(t1, v) =

 g̃(t1, 0), if |v| < s =
√
α
λ ,

g̃(t1, ε), otherwise,

(12)

where α > 0 is a suitable parameter related to an edge in the
reconstructed image, s is a threshold for introducing a discon-
tinuity, ε is associated with the constraint of non-parallelism,
and g̃ : R× (−α,∞)→ R+

0 is given by

g̃(t1, v) =

 λ2t21, if |t1| <
√
α+v
λ ,

α+ v, otherwise

(see also [8, 9]). Observe that the function ϕ̃ in (12) fulfils the
hypotheses of Theorem 3.1.

To minimize the energy function

Ẽd(x) = ‖y −Ax‖2 +
∑
c∈C

ϕ̃(Dc(x), Dc−2(x)),

we use a GNC (Graduated Non-Convexity) technique, since
Ẽd is not convex (see also [4, 8, 9, 23, 25, 26, 27, 28]). As first
convex approximation, we use the dual energy in (9), where
ϕ is as in (11). Note that, differently than in [9], the first con-
vex approximation inhibits parallel lines, since our proposed
function satisfies Theorem 3.1.

5. EXPERIMENTAL RESULTS

In this section we show, by means of experimental results,
the role of the non-parallelism constraint in the used GNC
algorithm in avoiding the formation of triple lines in the re-
construct image.

In Figure 1 (a) we present an ideal real image, while Fig-
ure 1 (b) contains the data deteriorated image. In Figure 1



(c) there is the reconstruction without the constraint of non-
parallelism, and Figure 1 (d) contains the line elements of the
reconstruction. Note that there are still several triple edges.
In Figure 1 (e) we reconstruct the image taking into account
the non-parallelism constraint. In Figure 1 (f), the triple edges
are almost completely eliminated.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. (a) The original 256×256 image; (b) the image blurred
by a uniform blur mask of dimension 5 corrupted by a Gaus-
sian noise with variance σ2 = 9; (c) restoration by the GNC
algorithm using the parameters λ = 0.3, α = 3 · 10−4, ε = 0
(mean square error equal to 6.4732217), and (d) its line ele-
ments; (e) restoration by the GNC algorithm using the param-
eters λ = 0.3, α = ε = 3 · 10−4 (mean square error equal to
5.9848682), and (f) its line elements.

6. CONCLUSIONS

We dealt with the problem of reconstruction of images cor-
rupted by blur and noise. We studied the problem of mini-
mizing the primal energy function consisting in the sum of
the terms, associated with faithfulness with the data and the
smoothness constraints, respectively. The obtained images
are requested to be piecewise continuous and with thin edges.
We investigated some fundamental properties of the dual en-
ergy function, which treats discontinuities implicitly. We gave
a Fenchel-type duality theorem and found a convex dual en-
ergy function, in connection with the non-parallelism con-
straint and in order to treat implicitly Boolean discontinuities.
In order to minimize it, we presented a GNC-type technique
which uses as first convex approximation the proposed con-
vex energy function. In the experimental results, it is shown
that by means of the proposed method it is possible to obtain
reconstructed images, which do not present incorrect parallel
edges.
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