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Nature is structural instead of random, correlation is just approximation of causal-
ity, and data is not science: the more we reveal the more we revere nature on
our voyage of unprecedented discovery. We argue that the soul(s) or exotic soul(s)
of quotient Hypercomplex arbifold multiscale Spacetime (HyperSpacetime)’s cor-
responding manifold(s)/general (quotient and non-quotient) HyperSpacetime is
the origin of super/general intelligence, and the metric of super/general intelli-
gence is the complexity of quotient/general HyperSpacetime’s corresponding generic
polynomial. We also argue that the intersecting soul(s) and/or exotic soul(s)
as varieties of quotient HyperSpacetime’s corresponding manifold(s), when their
maximal/minimum sectional curvatures approaching positive infinity and/or neg-
ative infinity as singularities, is the origin of quantum entanglement. We further
argue that the maximal/minimum sectional curvatures of the same intersecting
soul(s) and/or exotic soul(s), is the origin of convergent evolution through confor-
mal transformation. We derive even N-dimensional HyperSpacetime, a M-open (

M = C
I

I+N
, I,N,M → ∞ ) arbifold as generalized orbifold with the structure

of a algebraic variety A, without or with loop group action as A = [M/LG]
(M as complex manifold, LG as loop group), it arises from I-degree (power
of 2) hypercomplex even N-degree generic polynomial continuous/discrete func-
tion/functor as nonlinear action functional in hypercomplex HC∞ useful for generic

neural networks: F(Sj , Tj) =
∏N

n=1(wnSn(Tn)+bn+γ
∑j

k=1 F(Sk−1, Tk−1)) where

j = 1, . . . , N , Si = s0e0 +
∑I−1

i=1 siei, Ti = t0e0 +
∑I−1

i=1 tiei over noncommutative

nonassociative loop group. Its sectional curvature is κ =
|F ′′(X)|

(1+[F ′(X)]2)
3
2

if F(X)

is smooth, or κ = κmaxκmin if nonsmooth, by correlating general relativity with
quantum mechanics via extension from 3+1 dimensional spacetime R4 to even N-
dimensional HyperSpacetime HC∞. By directly addressing multiscale, singulari-
ties, statefulness, nonlinearity instead of via activation function and backpropaga-
tion, HyperSpacetime with its corresponding generic polynomial determining the
complexity of ANN, rigorously models curvature-based 2nd order optimization in
arbifold-equivalent neural networks beyond gradient-based 1st order optimization
in manifold-approximated adopted in AI. We establish HyperSpacetime generic
equivalence theory by synthesizing Generalized Poincaré conjecture, soul theorem,
Galois theory, Fermat’s last theorem, Riemann hypothesis, Hodge conjecture, Eu-
ler’s theorem, Euclid theorem and universal approximation theorem. Our theory
qualitatively and quantitatively tackles the black box puzzle in AI, quantum en-
tanglement and convergent evolution. Our future work includes HyperSpacetime
refinement, complexity reduction and synthesis as our ongoing multiversal endeavor.

Keywords: Multiscale, Arbifold, Hypercomplex, Spacetime, Relativity, Entan-
glement, Evolution, Deep reinforcement learning, Complex analysis, Noncommu-
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dard model, Wormhole, Exotic matter, Number theory, Orbifold, Manifold, Tensor,
Gradient, Curvature, Polynomial, Loop group, Variety, Functor, PDE, Poincaré
conjecture, Soul theorem, Universal approximation, Riemann hypothesis, Hodge
conjecture, Galois theory, Fermat’s theorem, Eulers theorem, Euclid theorem
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I. INTRODUCTION

Far from the Madding Cloud

When groups of ants in haystack as agents
Descending along curvatures instead of gradients
Not powerful enough in overhauling environments
Evolving as adapters instead of gamers
Exploring and exploiting various actions
Searching and researching optimal states
Do they know they are on earth in universe multiverse

And the same as frogs in well hawks under sky
And dog’s year different to human’s year
And elephant in your eyes not the same as mine
Human in arbifolds just like ants in haystack
Hindsight insight foresight aspiration inspiration passion
Hate bacteria virus war all gone with wind
No hard times only great expectations

On the journey of human being’s searching for beauty, simplicity and unification, es-
pecially in physics132,133 and mathematics13, from synthesis perspective, whether logic
synthesis, physical synthesis, chemical synthesis, or biological synthesis, are all under
the umbrella of commutative/noncommutative geometry22,27,29, or Euclidean, Rieman-
nian/elliptic/spherical and Lobachevsky/hyperbolic (same hyperbolic as Tanh91) geometries65

as higher dimensional non Euclidean geometry with zero, positive and negative Gaus-
sian/sectional curvature respectively, all supported by commutative/noncommutative al-
gebra, associative/nonassociative algebra, such as Clifford algebra, tensor algebra136, spin
(Dirac, Pauli) algebra, and von Neumann algebra23,49,67,127. More specifically, universal ge-
ometry, quantum geometry48, and biological geometry103,140 like conformal geometry42,94,
are the outcome of physical laws and biological laws in modeling nonlinear physical and
biological dynamics. Their significant applications adopting higher dimensional nonlinear
manifold leveraging geometrization power frequently encountered in machine learning84 such
as linear regression107, logistical regression, random forest, gradient boosting74, Support
vector machines (SVM)/kernel, decision trees, naive Bayes/prior, Nearest Neighbor, deep
learning68, whether supervised such as classification with labeled data, unsupervised such
as clustering and Principal component analysis (PCA) with unlabeled data, self-supervised
(context-based/temporal-based/contrasive-based), and semi-supervised like GAN39 as well
as reinforcement learning with no predefined data or even no data at all if with completely
fixed rules, ranging from policy-based (deterministic/stochastic), value-based, model-
based/model-free (trial-and-error), to actor-critic73,120. In most cases they may choose
stochastic subgradient/gradient-descent or gradient-free approaches2,12,30,31,50,70,141,142, or
even Hessian matrix or Hessian free as well as orbifold with (as negative-curvature descent)
or without adopting curvature-based approaches for higher dimensional unconstrained non-
convex optimization3,8,71,77–79,82,87,89,124, all gear towards one single goal, that is, seeking
causality from correlation through approximation. So far so good.

With radical paradigm shift and impressive progress in both hardware and software, now
we can adopt various Artificial/Deep/Feedforward/Convolution/Recurrent (ANN/DNN/
FNN/CNN/RNN) neural networks with billions of connections, billions of parameters,
and hundreds of layers for real-life applications on facial recognition, speech recognition,
language translation through universal function approximation, since the breakthrough
made by AlexNet pioneered by LeNet and powered by GPU, along with its same all man-
made successors including, AlexNet7, VGGNet113, GoogleNet121, ResNet46, DenseNet57,
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ShuffleNet139, SqueezeNet59, MobileNet56, DeepComplexNet123, DeepQuaternionNet38,
DeepOctonionNet135, and NALU125 on ImageNet benchmarks, as well as RNN/LSTM/seq2seq
(end-to-end RNN)/RNN+attention (reinforcement learning/gradient descent)/transformer
(full attention: non-self/self, hard-stochastic/soft-deterministic/multi-head, global/local)51,53,63

based NLP applications such as GPT-2101, BERT40, ALBERT66, Transformer-XL26,
XLNet137, RoBERTa72, CTRL104, Megatron-LM90. However, the matter of fact is the
degree of intelligence demonstrated by AI including deep learning15 originated from
perceptron, reinforcement learning, deep reinforcement learning,83, AutoML58 with or
without37 hyperparameter optimization, meta-learning, and neural architecture search
(NAS)143 and AutoDL all having exploration-exploitation trade-off dilemma, still falls far
behind human intelligence in most cases. AI in adopting continuous optimization-centric
gradient/subgradient-based deep reinforcement learning augmented with novel game theory
such as mean field games, stochastic games, evolutionary games, beyond traditional and
zero-sum game, and Convergent Evolution Strategies, as well as discrete optimization-
centric gradient-free population-based genetic algorithms, has demonstrated awesome ca-
pability on beating human being in specific categories such as gaming. Since life is a game,
so there is nothing wrong in tackling AI starting from gaming adopting deep reinforce-
ment learning and evolution strategies as an alternative105: AlphaGo111 AlphaZero,112

DeepStack,16 DeepCubeA,116, and AlphaStar5,129.

Despite of its wild success in certain domains, AI, particularly deep learning, has a few
issues such as handcrafted neural network architecture, overwhelming number of weights,
sensitivity of activation function86,91, model size blowup, performance bottleneck, repro-
ducibility crisis, and manual labor on labeling data for supervised learning and reward
function design for reinforcement learning: imitation learning 100X more slower than hu-
man on learning how to drive, and much worse than that, reinforcement learning is 1,000X
more slower than that of human. Even with the help of dedicated hardware like GPU
and TPU, as well as better distributed processing middleware in favor of HPC-flavor MPI-
type as opposed to cloud/data center-flavor RPC-type with shared memory burden and
TCP/UDP overhead, there is still significant gap. We believe that the root cause of all of
those problems is due to the black box nature of current AI practice. Even though there
were a few attempts108,110 in tackling the issue, however here we are dealing with more gen-
eral open systems, hence conservation laws such as free-energy principle for closed systems
do not apply any more.

II. A NEW PERSPECTIVE ON KNOWLEDGE

Human knowledge possesses a long and rich history: The very first sentence of Genesis
1:1, the Old Testament of the Holy Bible originally written roughly approximately in the
1660s B.C. to the 400s B.C., says, in the beginning God created the heaven and the earth.
Sage Laozi, in his book titled Tao Te Ching written in the 600s B.C., says, Tao begets
One (Taiji), One begets Two, Two begets Three, Three begets Everything. Coincidentally
around the similar time frame, Greek philosopher Pythagoras believed multiverse (musica
universalis) governed by mathematical equations, and metempsychosis (transmigration of
souls) holding soul (gene in modern concept) being immortal as cycling among different
living bodies as life.

Genes are DNA sequences that encode instructions for the synthesis of proteins, the total
amount of DNA in a cell is referred to as genome, which lives in sequence space. There
are approximately 60 trillion cells in human being. At any moment, human genome, which
consists of 6.4 billion letters encoded in A (Adenine), C (Cytosine), G (Guanine), and
T (Thymine), is being decoded to produce 20 possible amino acids for protein synthesis.
Human genome contains the ensemble of the genetic heredity, and the instructions for
both construction and operation. Through heredity, variations between individuals can
accumulate and cause species to evolve As of today, the roles of most functional sequences
in human genome still remain not completely decoded yet.
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When Darwinism was developed, there was no concept of gene yet, and Darwinism ad-
dresses neither the source of life, nor the driver of life. Neo-Darwinism, also called the
modern evolutionary synthesis, just like synthesis in EDA, generally denotes the integra-
tion of Charles Darwin’s theory of evolution by natural selection, Gregor Mendel’s theory of
genetics by mutation as the basis for biological inheritance, and mathematical population
genetics. General natural selection encompasses both external (environmentally driven)
Darwinian natural selection, and internal self-organizing selection. Quantum Darwinism144

even goes further, it aspires to explain the emergence of the classical world from quantum
world as the superposition, entanglement, and environment as witness.

Knowledge as power has to be further powered by intelligence. Knowledge as gene of any
living being, whether implicit or explicit, evolution-dependent or development-independent,
agent-dependent or environment-dependent, formal such as DBpedia and Freebase62 or in-
formal, online (through web mining/data mining such as various search engines and do-
main specific apps, or crowd sourcing such as Wikipedia) or off-line, commonsense such as
CYC69 and Open Mind Common Sense114,126 or niche, deduction-based or induction-based.
Knowledge is not just power, it is mankind’s gene passing from generation to generation.
Knowledge is of paramount importance for any agent in dealing with uncertain environments
without fixed rules, otherwise it is another story, for example, the success of AlphaGo and
alike. Any living being who has genes, regardless with or without brain like virus and
bacteria, possesses certain degree of intelligence. A lot of research on AI claims its inspira-
tion comes from human brain, the fact is most of them are only related to visual cortex in
cerebral instead. Brain, specifically cerebral cortex, used to be regarded as the sole origin
of intelligence, unfortunately it is not. It has 16 billion neurons in contrast to cerebellum’s
69 billion neurons. These neurons are connected to each other in a complex, recurrent
fashion. It is still far away to completely understand how human brain exactly functions in
demonstrating intelligence through brain science at present, and we don’t know whether it
is an open-end or dead-end.

Is human intelligence as well as other natural intelligence inborn by design via gene or
developed through environment by learning? The answer is both, and that also applies to
all living beings. According to one of latest research on human brain, human hippocam-
pal neurogenesis drops sharply in children at age 13 to undetectable levels in adults, that
explains exactly why children older than 13 cannot easily adapt to new languages. For
example, epistemology is the branch of philosophy concerned with the theory of knowledge.
Ontology in philosophy means the combination of subject and object, hence we can divide
epistemology into intrinsic epistemology and extrinsic epistemology, as well as ontology into
intrinsic ontology and extrinsic ontology. Both Intrinsic Epistemology and Intrinsic Ontol-
ogy are pre-determined by gene as soul, and both Extrinsic Epistemology and Extrinsic On-
tology are acquired after living being’s birth by learning from environment. Being intrinsic
means via heredity, evolution-dependent (agent-dependent) and development-independent,
and being extrinsic means both environment-dependent and development-dependent. For
HyperSpacetime based open systems, entropy cannot be conserved, hence it does not make
any sense in discussing anything related with it such as information entropy.

III. SPACETIME AT A GLANCE

In physics, spacetime, Spacetime in recognizing the union of three spatial dimensions and
one time dimension is well known for its adoption in general relativity,33 which provides
a unified description of gravity as a geometric property of continuous spacetime45 at the
largest scales such as universe, by generalizing special relativity and Newtonian theory. This
is contrary to quantum mechanics81 where spacetime is discrete and viewed as quantum
many-body system. as a mathematical model, in recognizing the union of space and time,
combines the three dimensions of space and the one dimension of time into a single 4-
D continuum. Initially spacetime was proposed by Minkowski as a way to reformulate
Einsteins special relativity (a special case of general relativity) right after its debut.
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There are four types of fundamental interactions/forces in nature: gravity electromag-
netism weak Interaction and strong Interaction. General relativity34 leads to spectacu-
lar predictions as black holes, gravitational waves, and the big bang in early universe in
macroscopic way, as what quantum mechanics does in microscopic way. Various efforts
on developing Grand unified theory such as quantum electrodynamics (QED), quantum
chrome-modynamics (QCD), and the standard model in unifying weak force, strong force
and electromagnetism, and gravity, with the ultimate goal as unifying quantum mechincs
and general relativity QM = GR19,119, have been made, yet results are not perfect so far.
In general relativity the gravitational field is encoded in spacetime as elliptic (Lorentzian)
pseudo-Riemannian manifold. However, general relativity only models stand-alone systems,
there are boundary-induced genuine spacetime singularities-triggered concerns at big bang
and inside black holes95. Furthermore, when the curvature of spacetime becomes large
enough on reaching the order of 1

P 2
l

, quantum effects60 have to be taken into consideration

as they start to dominates general relativity effects so that such curvature induced coor-
dinate quantum singularities-triggered64 concerns can be eliminated. At Planck scale, we
must use an extended version of spacetime that fit for both general relativity and quantum
physics. There are efforts on extending 3+1 dimensional spacetime model such as Kaluza-
Klein model by introducing extra space dimension(s), but never goes to infinite or close to
infinite space dimensions, and never extend time dimension beyond one, let alone allow time
reversal. The traditional claims on the impossibility of going beyond 4-D spacetime is due
to their linear partial differential equations (PDE) assumption while nature is inherently
nonlinear122. A nonlinear dynamical system often can be described in nonlinear differential
equations, such as Yang-Mills equation in quantum field theory, Boltzmann equation in sta-
tistical mechanics, Navier-Stokes equations in fluid dynamics, Lotka-Volterra equations in
ecology, and Michaelis-Menten equations in enzyme kinetics. The hardness on solving those
PDEs exactly in continuous optimization space, is similar to solve NP-complete and NP-
hard problems in discrete optimization space. Amazingly as Planck scale is man-made, we
can go even smaller physically by introducing HyperSpacetime model in higher dimensional
non-Euclidean geometry beyond pseudo-manifold model in Riemannian geometry.

IV. GENERALIZING GENERAL RELATIVITY IN HC∞

Based on general relativity, the Einstein field equations are formulated as follows and
Wheeler130 precisely summarize it as: matter tells spacetime how to curve, and spacetime
tells matter how to move. In other words, gravity is geometry, matter sources gravity.

Gµν + Λgµν = 8π
G

C4
Tµν (1)

Gµν ≡ Rµν −
1

2
Rgµν (2)

µ, ν = 1, 2, 3, 4 in elliptic (Lorentzian) pseudo-Riemannian manifold based 3+1 dimensional
curved spacetime R4 on the action of Lie group SO(1,3) with metric signature ( - + + +)
adopting spacetime algebra47, a Special Orthogonal (SO) finite dimensional Clifford algebra
Cl1,3(R). Here gµν is metric tensor.

The initial value boundary problem in general relativity only gives us the metric on a
patch of the spacetime. Other methods must be used to find the true global extension of
that spacetime. Therefore, Einstein field equations alone cannot tell you the topology of
the spacetime. Even ignore the above limitation, being nonlinear in nature, The general
relativity Einstein field equations describe the relation between the geometry of a 3+1
dimensional elliptic (Lorentzian) pseudo-Riemannian manifold as Einstein manifold.

As nonlinear PDEs in modeling dynamical systems, Einstein field equations are very
difficult to solve. de Sitter spacetime is a solution of the vacuum Einstein equations with a
positive cosmological , and it is the maximally symmetric spacetime as elliptic (Lorentzian)
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pseudo-Riemannian manifold with positive curvature. Anti-de Sitter (Ads) spacetime80 is
a solution of the vacuum Einstein equations with a negative cosmological , and it is the
maximally symmetric spacetime as hyperbolic (Lorentzian) pseudo-Riemannian manifold
with negative curvature. There are other solutions, such as Schwarzschild solution, Reissner-
Nordstrom solution, Kerr solution, and Friedmann solution.

General relativity and quantum cosmology are invariant under general spacetime dif-
feomorphisms (isomorphism of smooth manifolds). The quantum state of the universe is
invariant under a time reversal change. The semi-classical state of the universe, has one
definite direction of time (arrow of time). The processes occurring in the opposite direction
of time seem to have disappeared in the actual universe. However, quantum entanglement
may be telling us that they have not disappeared but they can be in a region of the space-
time that is not accessible for us. In fact, the time reversal invariance of the spacetime is
broken in the semi-classical universe but a time symmetric solution always coexists because
the time reversal invariance of the Friedmann equation. Therefore, if one consider that
these two universes are created in entangled pairs, then, the time reversal symmetry does
not disappear, it only lives in an inaccessible region.

The introduction of imaginary time131 motivates us to extend (Lorentzian) pseudo-
Riemannian manifold based 3+1 curved spacetime R4 to even N-dimensional curved Hy-

perSpacetime in corresponding to M-open arbifold ( M = C
I

I+N
, I,N,M →∞) over HC∞

in both imaginary time and imaginary space61,102,106 over noncommutative nonassociative
loop group constrained by multiscale6,10,17,117 as opposed to planck scale.

gµν(x) =

g11
(x) g

12
(x) g

13
(x) g

14
(x)

g
21

(x) g
22

(x) g
23

(x) g
24

(x)
g
31

(x) g
32

(x) g
33

(x) g
34

(x)
g
41

(x) g
42

(x) g
43

(x) g
44

(x)

 (3)

=⇒

gαβ(X) =


g11(X) g12(X) g13(X) g14(X) . . . g

1N
(X)

g21(X) g22(X) g23(X) g24(X) . . . g
2N

(X)
g31(X) g32(X) g33(X) g34(X) . . . g

3N
(X)

g41(X) g42(X) g43(X) g44(X) . . . g
4N

(X)
. . . . . . . . . . . . . . .

g
N1

(X) g
N2

(X) g
N3

(X) g
N4

(X) . . . g
NN

(X)

 (4)

Here real number x becomes even I-degree hypercomplex number11,106 X in hypercomplex
number system, a generalization of complex numbers in higher dimension: X = x0 +∑I−1

i=1(xiei)

With that, in even N-dimensional HyperSpacetime HC∞ ( M = C
I

I+N
, I,N,M →∞ and

I as hypercomplex degree), the interval between two events ds can be defined as:

ds2 = c2
∑N
t=1(Xt2 −Xt1)2 −

∑N
s=1(Xs2 −Xs1)2

and HyperSpacetime interval r can be defined as:

r =
√
c2
∑N
t=1(Xt2 −Xt1)2 +

∑N
s=1(Xs2 −Xs1)2

Operations on hypercomplex numbers, such as noncommutative quaternions, noncom-
mutative plus nonassociative octonions as well as sedonions, and keep on going in 2n as
hypernions.

With that the Extended Einstein field equations are formulated as follows:

Gαβ + Λgαβ = 8π
G

C4
Tαβ (5)

Gαβ ≡ Rαβ −
1

2
Rgαβ (6)

Where α, β = 1, 2, . . . , N all in hypercomplex HC∞ over the action of noncommutative

nonassociative loop group ( M = C
I

I+N
, I,N,M →∞).
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V. EXTENDING QUANTUM MECHANICS IN HC∞

Early quantum theory was profoundly re-conceived by Schródinger, Heisenberg, Born.
There are two mathematical formalization for quantum mechanics which are equivalent:
One is Heisenberg Picture, in which only the operators (observables and others) evolve in
time, but the state vectors are constant with respect to time, an arbitrary fixed basis rigidly
underlying the theory. The other is Schródinger Picture. in which only the state vectors
evolve in time. but the operators (observables and others) are constant with respect to
time. Dirac reconciliated the two pictures in Hilbert space and proved their equivalence28

taking special relativistic effect into consideration. In classical mechanics observable (e.g.
energy, position, momentum, etc.) is a function on a manifold called the phase space of
the system. In contrary, quantum mechanical observable is an operator on a Hilbert space.
Thus the commutative algebra of functions on it is replaced by the noncommutative algebra
on a Hilbert space. Now it is von Neumann who gave the first complete mathematical
formulation of this approach in terms of operators in Hilbert space, known as the Dirac-
von Neumann axioms and von Neumann algebra. It is amazing from pure mathematical
point of view, the infinite-dimensional state space in quantum mechanics offers a genuine
multiverse/many-worlds interpretation of nature.

The Dirac equation was generalized to 3+1 dimensional curved spacetime4 over R4 im-
posed by Planck scale, and like in what we do with spacetime in general relativity, we
can easily further generalize it to even N-dimensional in corresponding to M-open arbifold

M = C
I

I+N
, I,N,M →∞ and I as hypercomplex degree. curved complex HyperSpacetime

imposed by HyperSpacetime scale instead of Planck scale by making both imaginary time
and imaginary space extensions as follows:

iγaeµaDµΨ−mΨ = 0 (7)

It is written by using Vierbein (frame) field/generalized Vierbein field, a set of 4 or N
orthonormal vector fields interpreted as a model of 3+1 dimensional spacetime R4 or even
N-dimensional HyperSpacetime HC∞, and the gravitational spin connection. The Vierbein
defines a local rest frame, allowing the N ∗N as opposed to 4 ∗ 4 constant Dirac matrices
γa to act at each spacetime point. Here µ = 1, . . . , N , a = 1, . . . , N both for even N-
dimensional HyperSpacetime over HC∞ as opposed to µ = 1, 2, 3, 4, a = 1, 2, 3, 4 both for
3+1 dimensional spacetime over R4, eµa is the Vierbein with eµae

ν
a = gµν as metric tensor in

general relativity, and Dµ is the covariant derivative for fermionic fields defined as follows:

Dµ = ∂µ −
i

2
ωabµ σab where σab is the commutator of N ∗ N as opposed to 4 ∗ 4 Dirac

matrices: σab = i
2 [γa, γb] and ωabµ are the spin connection components.

VI. HYPERSPACETIME GENERIC EQUIVALENCE

Axiom VI.1 HyperSpacetime uncertainty axiom:

∆x∆t > Cs → 0 (8)

with Cs as HyperSpacetime scale, a close to zero sub-Planck size, which makes Planck scale
effect imposed by Heisenberg’s Uncertainty principle irrelevant18,32. So does the string
scale effect imposed in quantum gravity (Loops, M-theory including strings and branes
where spacetime is not fundamental and time only has one-dimension55,138). The reason

behind it is because the fine structure constant α = e2

~c '
1

137 is still a mystery instead of a
proved physical constant.

Proposition VI.1 HyperSpacetime generic equivalence theorem: Even N-dimensional Hy-
perSpacetime corresponding to M-open (connected, complete, noncompact, with no bound-

ary) arbifold A (M = C
I

I+N
, I,N,M → ∞ ) with the structure of algebraic variety
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arising from I-degree (power of 2) hypercomplex even N-degree generic polynomial dis-
crete/continuous function/functor F as nonlinear action functional in hypercomplex HC∞:

F(Sj , Tj) =

N∏
n=1

(wnSn(Tn) + bn + γ

j∑
k=1

F(Sk−1, Tk−1)) (9)

where j = 1, . . . , N , and hypercomplex number Si = s0e0 +
∑I−1

i=1 siei, Ti = t0e0 +
∑I−1

i=1 tiei.

Its sectional curvature is κ =
|F ′′(X)|

(1+[F ′(X)]2)
3
2

if F(X) is smooth, or as κ = κmaxκmin with

κϕ = κmax cos2 ϕ+ κmin sin2 ϕ where ϕ as the angle between the minimum principle plane
with curvature κmax and maximum principle plane with curvature κmin if nonsmooth. Arb-
ifold A can be Euclidean, spherical or hyperbolic depending on its underlying generic poly-
nomial.

Arbifold A as M-open generalized orbifold is a quotient arbifold corresponding to quo-
tient HyperSpacetime ⇐⇒ ∃ complex manifold(s) M and loop group(s) LG, 3 arbifold
with loop group action as A = [M/LG]. Otherwise Arbifold A is a non-quotient arbifold
corresponding to non-quotient HyperSpacetime. Furthermore, A is a quotient arbifold ⇐⇒
A’s corresponding manifold(s) M obey(s) Generalized Poincaré conjecture.

TABLE I. HyperSpacetime Generic Polynomial’s Applications on AI

F(Sj , Tj) Si Ti wn bn γ (Recurrent/Reinforcement)
Deep Learning FNN continuous space time weight bias 0
Deep Learning CNN discrete space time weight bias 0
Deep Learning RNN discrete space time weight bias 1
Reinforcement Learning discrete/continuous action state weight bias 0 < γ < 1

The above proposition is synthesized from the established axiom and the following theorems,
solved conjecture as lemmas as well as conjectures.

Lemma VI.2 Universal approximation theorem25,54: Let ϕ(.) be a nonconstant, bounded,
and monotonically-increasing continuous function. Let Im denote the m-dimensional unit
hypercube [0, 1]m. The space of continuous functions on Im0 is denoted by C(Im). Then,
given any function f ∈ C(Im) and ε > 0, there exist an integer N and sets of real constants
αi, bi ∈ R, wi ∈ Rm, where i = 1,. . . ,N such that we may define:

F (x) =
∑N

i=1 αiϕ
(
wTi x+ bi

)
as an approximate realization of the function f; that is, |F (x)f(x)| < ε for all x ∈ Im.

Lemma VI.3 Fermat’s last theorem134: There are no positive integers x, y, z, and N ≥ 3
such that xN + yN = zN .

Lemma VI.4 Euler’s theorem: Let ϕ be the angle, in the tangent plane, measured coun-
terclockwise from the direction of minimum curvature κ1 of minimum principle plane, and
maximum curvature κ2 of maximum principle plane. Then the normal curvature κn(ϕ) in
direction ϕ is given by κn(ϕ) = κ1 cos2 ϕ+ κ2 sin2 ϕ.

Lemma VI.5 Euclid theorem: For any finite set of prime numbers, there exists a non-
quotient number not in that set. In other words, there are infinitely many prime numbers,
and there is no largest prime number.

Lemma VI.6 Fundamental theorem of Galois theory85: Let L/K be a finite Galois ex-
tension. Let Gal(L/K) denote the Galois group of the extension L/K. Let H denote a
subgroup of Gal(L/K) and F denote an intermediate field. The mappings: H 7−→ LH, and
F 7−→ Gal(L/F ) are inclusion-reversing and inverses. Moreover, these maps induce a bi-
jection between the normal subgroups of Gal(L/K) and the normal, intermediate extensions
of L/K. .
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The above lemma’s application on solutions of rational polynomial equation as follows: A
polynomial equation is solvable by radicals ⇐⇒ its underlying Galois group is a solvable
group. Hence for polynomial equations with degree N > 4, they are not solvable by radicals
as there is no underlying Galois group being a solvable group.

Conjecture VI.7 Hodge conjecture52: On a projective non-singular algebraic variety over

CN

, any Hodge class is a rational linear combination of classes cl(Z) of algebraic cycles.

Conjecture VI.8 Riemann hypothesis: The Riemann zeta-function ζ(s) is a function of a
complex variable defined by : ζ(s) =

∑∞
n=1

1
ns using analytical continuation for all complex

s 6= 1, and all of the nontrivial zeroes of this function ζ(s) = 0 lie on a vertical straight line
with real part equal to exactly 1/2.

Lemma VI.9 Generalized Poincaré conjecture (solved)36,97–99,115 Every homotopy sphere
(a closed N-manifold which is homotopy equivalent to the N-sphere) in the chosen category,
i.e. topological manifolds, piecewise linear manifolds, or differential manifolds, is isomor-
phic to the standard N-sphere. The above claim is true in all dimensions for topological
manifolds; true in dimensions other than 4; unknown in 4 for piecewise linear manifolds;
false generally, true in some dimensions including 1,2,3,5, and 6, unsettled in 4 for differ-
ential manifolds.

Proposition VI.10 Generalized soul proposition: Suppose that (M, g) is an open (con-
nected, complete, noncompact, with no boundary) manifold M with nonnegative (when M
being spherical) or nonpositive (when M being hyperbolic) sectional curvature g, then M
contains a soul (when M being spherical) or exotic soul (when M being hyperbolic) S ⊂M ,
which is a compact, totally geodesic, totally convex (when M being spherical) or nonconvex
(when M being hyperbolic) subarbifold; otherwise M contains no soul. Furthermore, M is
diffeomorphic (when M being spherical) or diffeomorphic when M being hyperbolic) to the
total space of the normal bundle of the S in M .

The above proposition is synthesized from the following Soul theorem21,41,44,96 as lemma
and Exotic soul proposition:

Proposition VI.11 Exotic soul proposition: Suppose that (M, g) is an open (connected,
complete, noncompact, with no boundary) Riemannian manifold M of nonpositive sectional
curvature g, then M contains an exotic soul Sa ⊂M , which is a compact, totally geodesic,
totally nonconvex submanifold. Furthermore, M is diffeomorphic to the total space of the
normal bundle of the Sa in M . If (M, g) has negative sectional curvature, then any exotic
soul of M is a point, and consequently M is diffeomorphic to RN .

The above proposition is synthesized from the following Soul theorem as lemma:

Lemma VI.12 Soul theorem: Suppose that (M, g) is an open (connected, complete, non-
compact, with no boundary) Riemannian manifold M of nonnegative sectional curvature
g, then M contains a soul S ⊂ M , which is a compact, totally geodesic, totally convex
submanifold. Furthermore, M is diffeomorphic to the total space of the normal bundle of
the S in M . If (M, g) has positive sectional curvature, then any soul of M is a point, and

consequently M is diffeomorphic to RN

.

Proposition VI.13 Metric of super/general intelligence proposition: The complexity of
quotient/general HyperSpacetime’s corresponding generic polynomial is the metric of su-
per/general intelligence.

Conjecture VI.14 Origin of super/general intelligence conjecture: The soul(s) or exotic
soul(s) of quotient/general HyperSpacetime’s corresponding manifold(s) is the origin of su-
per/general intelligence.
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Conjecture VI.15 Origin of quantum entanglement conjecture: The intersecting soul(s)
and/or exotic soul(s) as varieties of quotient HyperSpacetime’s corresponding manifold(s),
when their maximum sectional curvatures approaching positive infinity and/or negative in-
finity as singularities, is the origin of quantum entanglement1,9,14,20,24,35,43,75,76,88,92,93,100,109,118,128.

The above conjecture is partially generalized from ER = EPR conjecture on the possibility
of bridging EPR quantum entanglement as black holes and ER bridge as wormholes.

Conjecture VI.16 Origin of convergent evolution conjecture: The maximum sectional cur-
vatures of intersecting soul(s) and/or exotic soul(s) as algebraic varieties in quotient Hy-
perSpacetime’s corresponding manifold(s), is the origin of convergent evolution.

TABLE II. Dimension of I-degree Polynomial N-degree HyperSpacetime M-Abifold

M = CI
I+N

= (I+N)!
I!N !

N = 6 N = 8 N = 10 N = 12 N = 14 N = 16

I=2(Complex) 28 45 66 91 120 153
I=4(Quaternion) 210 495 1001 1820 3060 4845
I=8(Octonion) 3003 12870 43758 125970 319770 735471
I=16(Sedonion) 74613 735,471 5311735 30421744 145422675 601080390

TABLE III. Measuring General Intelligence of CNNs

CNN Complexity of Underlying Equivalent Generic Polynomial
AlexNet left for its authors
VGGNet left for its authors
GoogleNet left for its authors
ResNet left for its authors
DenseNet left for its authors
ShuffleNet left for its authors
SqueezeNet left for its authors
MobileNet left for its authors
DeepComplexNet left for its authors
DeepQuaternionNet left for its authors
DeepOctonionNet left for its authors

TABLE IV. Measuring General Intelligence of Transformers

Transformer Complexity of Underlying Equivalent Generic Polynomial
GPT-2 left for its authors
BERT left for its authors
ALBERT left for its authors
Transformer-XL left for its authors
XLNet left for its authors
RoBERTa left for its authors
CTRL left for its authors
Megatron-LM left for its authors
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140M Zheng, A Allard, P Hagmann, and M Á Serrano. Geometric renormalization unravels self-similarity

of the multiscale human connectome. 2019.
141Pan Zhou, Xiao-Tong Yuan, and Jiashi Feng. Faster first-order methods for stockastic non-convex

optimization on riemannian manifolds, 2018.
142Tianyi Zhou, Dacheng Tao, and Xindong Wu. Manifold elastic net: a unified framework for sparse

dimension reduction. Data Mining and Knowledge Discovery, 22:340–371, 2010.
143Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2016.
144W. H. Zurek. Quantum darwinism and envariance, 2003.


