Analyzing some Ramanujan's differential equations: new possible mathematical connections with $\phi, \zeta(2)$, and various parameters of Particle Physics

Michele Nardelli ${ }^{1}$, Antonio Nardelli ${ }^{2}$

Abstract

In this paper we have described some Ramanujan's differential equations: new possible mathematical connections with $\phi, \zeta(2)$, and various parameters of Particle Physics

[^0]
$\underline{\text { https://mobygeek.com/features/indian-mathematician-srinivasa-ramanujan-quotes- }}$ 11012

We want to highlight that the development of the various equations was carried out according an our possible logical and original interpretation

From:

AUTOMORPHISM OF SOLUTIONS TO RAMANUJAN'S DIFFERENTIAL EQUATIONS AND OTHER RESULTS

MATTHEW RANDALL - arXiv:1806.07544v1 [math.CA] 20 Jun 2018
We have the following Ramanujan's differential equations:

We say that the triple of functions $(p(x), q(x), r(x))$ of the variable x satisfies Ramanujan's differential equations if the following set of equations are satisfied for the functions $p(x), q(x)$ and $r(x)$ in the triple:

$$
\begin{align*}
\frac{\mathrm{d} p}{\mathrm{~d} x} & =\frac{1}{6}\left(p^{2}-q\right), \\
\frac{\mathrm{d} q}{\mathrm{~d} x} & =\frac{2}{3}(p q-r), \tag{1.1}\\
\frac{\mathrm{d} r}{\mathrm{~d} x} & =p r-q^{2} .
\end{align*}
$$

Theorem 1.1. Suppose $(P(x), Q(x), R(x))$ satisfies Ramanujan's differential equations, i.e. we have

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} x} P & =\frac{1}{6}\left(P^{2}-Q\right), \\
\frac{\mathrm{d}}{\mathrm{~d} x} Q & =\frac{2}{3}(P Q-R), \tag{1.2}\\
\frac{\mathrm{d}}{\mathrm{~d} x} R & =P R-Q^{2} .
\end{align*}
$$

Let $T=R+\sqrt{R^{2}-Q^{3}}$ and consider the quantities

$$
v=\frac{3}{2} T^{\frac{1}{3}}+\frac{3}{2} \frac{Q}{T^{\frac{1}{3}}}, \quad u= \pm \sqrt{3}\left(\frac{Q^{2}}{T^{\frac{2}{3}}}+Q+T^{\frac{2}{3}}\right)^{\frac{1}{2}} .
$$

Then the following holds. The triples

$$
\begin{aligned}
& \left(p_{2}, q_{2}, r_{2}\right) \\
& =\left(P+\frac{u+v}{2}, \frac{8}{9} u(u+v)+\frac{1}{36}(v-u)^{2}, \frac{1}{54}(3 u+v)\left(16 u(u+v)-\left(\frac{v-u}{2}\right)^{2}\right)\right) \text {, } \\
& \left(p_{3}, q_{3}, r_{3}\right) \\
& \left.=\left(\begin{array}{c}
P, \begin{array}{c}
v-u \\
2
\end{array}, \left.{ }_{9}^{8} u\left(\begin{array}{ll}
u & v
\end{array}\right) \right\rvert\,{ }_{36}^{1}(v \mid u)^{2}, \\
54
\end{array}\left(\begin{array}{ll}
v & 3 u
\end{array}\right)\left(\begin{array}{ll}
16 u(u & v
\end{array}\right) \quad\binom{u+v}{2}^{2}\right)\right),
\end{aligned}
$$

also satisfy Ramanujan's differential equations (1.1), and furthermore so does the triple

$$
\left(p_{u}, q_{0}, r_{0}\right)-\left(P+\frac{1}{2} T^{\frac{1}{3}}+\frac{1}{2} \frac{Q}{T_{3}^{13}}, \frac{3}{2} Q+\frac{5}{4} T^{\frac{2}{3}}+\frac{5}{4} \frac{Q^{2}}{T_{3}^{2}}, \frac{11}{4} R+\frac{21}{8} Q T^{\frac{1}{3}}+\frac{21}{8} \frac{Q^{2}}{T_{3}^{1}}\right) .
$$

We now assume
that we know a solution of (1.2) given by

$$
\begin{aligned}
& P=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}=E_{2}, \\
& Q=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}=E_{4}, \\
& R=1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n}=E_{6} .
\end{aligned}
$$

Here E_{2} is a quasi-modular form given by the Eisenstein series of weight 2, while E_{4} and E_{6} are modular forms given by the Eisenstein series of weight 4 and 6 respectively. The functions here involve $\sigma_{1}(n)$ the sum of divisor function, $\sigma_{3}(n)$ the sum of cube of divisor function and $\sigma_{5}(n)$ the sum of fifth powers of divisor function. Also $q=e^{2 \pi i x}$ is the nome, and with $\mathrm{d} q=2 \pi i \mathrm{~d} x$, this gives

$$
\frac{\mathrm{d}}{\mathrm{~d} x}=2 \pi i q \frac{\mathrm{~d}}{\mathrm{~d} q}
$$

as a change of variable, so that the Ramanujan system (1.2) can be rewritten as

$$
\begin{aligned}
& \pi i q \frac{\mathrm{~d}}{\mathrm{~d} q} P=\frac{1}{12}\left(P^{2}-Q\right), \\
& \pi i q \frac{\mathrm{~d}}{\mathrm{~d} q} Q=\frac{1}{3}(P Q-R), \\
& \pi i q \frac{\mathrm{~d}}{\mathrm{~d} q} R=\frac{1}{2}\left(P R-Q^{2}\right) .
\end{aligned}
$$

Now given $\left(p_{1}, q_{1}, r_{1}\right)-(P, Q, R)$, we compute and find that

$$
\begin{array}{ccccc}
p_{2}=4 & 96 q^{4} & 288 q^{8} & 384 q^{12} & 672 q^{16}
\end{array} \quad \ldots=4 P\left(q^{4}\right),,
$$

with $p_{0}=\frac{1}{3} P(q)+\frac{4}{3} P\left(q^{4}\right)+\frac{1}{3} P(-q)=2 P\left(q^{2}\right)$. In the case for p_{2}, we see that identifying $\vec{q}-q^{4}$ gives back the solution (P, Q, K) to the differential equations (1.2) with an appropriate constant rescaling and likewise for the casc p_{3}, the variable to be identified is $\tilde{q}--q$. Similarly, in the case of p_{0}, identifying $\tilde{q}-q^{2}$ gives us back a constant rescaling of (P, Q, R). Taking the triple

$$
\left(p_{0}, q_{0}, r_{0}\right)=\left(2 P\left(q^{2}\right), 4 Q\left(q^{2}\right), 8 R\left(q^{2}\right)\right)
$$

satisfying (1.1), we can apply Theorem 1.1 to iterate the process and get the triples

$$
\begin{aligned}
& \left(p_{4}, q_{4}, r_{4}\right)=\left(8 P\left(q^{8}\right), 64 Q\left(q^{8}\right), 512 R\left(q^{8}\right)\right), \\
& \left(p_{5}^{5}, q_{5}, r_{5}\right)=\left(2 P\left(-q^{2}\right), 4 Q\left(-q^{2}\right), 8 R\left(-q^{2}\right)\right),
\end{aligned}
$$

Now, we want to analyze

$$
\begin{gathered}
p_{2}=4-96 q^{4}-288 q^{8}-384 q^{12}-672 q^{16}-\ldots=4 P\left(q^{4}\right), \\
p_{3}=1+24 q-72 q^{2}+96 q^{3}-168 q^{4}+144 q^{5}-\ldots=P(-q),
\end{gathered}
$$

From

$$
p_{2}=4-96 q^{4}-288 q^{8}-384 q^{12}-672 q^{16}-\ldots=4 P\left(q^{4}\right)
$$

For $q=\exp (2 \mathrm{Pi})$ and $i x>0 ; i x=1$, we obtain:
$4-96(\exp (2 \mathrm{Pi}))^{\wedge} 4-288(\exp (2 \mathrm{Pi}))^{\wedge} 8-384(\exp (2 \mathrm{Pi}))^{\wedge} 12-672(\exp (2 \mathrm{Pi}))^{\wedge} 16$

Input:

$4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)$

Exact result:

$4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}$

Decimal approximation:

$-3.071939059472546249872465816978889345928093931818818 \ldots \times 10^{46}$
$-3.07193905947 \ldots * 10^{46}$

Property:

$4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& 4-96\left(e^{8 \pi}+3 e^{16 \pi}+4 e^{24 \pi}+7 e^{32 \pi}\right) \\
& -4\left(-1+24 e^{8 \pi}+72 e^{16 \pi}+96 e^{24 \pi}+168 e^{32 \pi}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}{ }^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)= \\
& 4-96 e^{32 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-288 e^{64 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}- \\
& \quad 384 e^{96 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-672 e^{128 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)} \\
& 4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)= \\
& -4\left(-1+24\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{8 \pi}+72\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{16 \pi}+96\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{24 \pi}+168\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{32 \pi}\right)
\end{aligned}
$$

$4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)=$

$$
\begin{array}{r}
-4\left(-1+24\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{8 \pi}+72\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{16 \pi}+\right. \\
\left.96\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{24 \pi}+168\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{32 \pi}\right)
\end{array}
$$

Integral representations:

$$
\left.\begin{array}{l}
4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)= \\
-4\left(-1+24 e^{16} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+72 e^{32} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right.
\end{array}+\quad 96 e^{48} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+168 e^{64} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right) .
$$

From

$$
p_{3}=1+24 q-72 q^{2}+96 q^{3}-168 q^{4}+144 q^{5}-\ldots=P(-q)
$$

We obtain:
$1+24(\exp (2 \mathrm{Pi}))-72(\exp (2 \mathrm{Pi}))^{\wedge} 2+96(\exp (2 \mathrm{Pi}))^{\wedge} 3-168(\exp (2 \mathrm{Pi}))^{\wedge} 4+144(\exp (2 \mathrm{Pi}))^{\wedge} 5$

Input:

$1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)$

Exact result:

$1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}$

Decimal approximation:

$6.3267375433611884352116573214139903457434872875754344 \ldots \times 10^{15}$
$6.32673754336 \ldots * 10^{15}$

Property:

$1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}$ is a transcendental number

Alternate form:

$1+24 e^{2 \pi}\left(1-3 e^{2 \pi}+4 e^{4 \pi}-7 e^{6 \pi}+6 e^{8 \pi}\right)$

Series representations:

$$
\begin{aligned}
& 1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)= \\
& 1+24 e^{8} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k) \\
& \\
& 96 e^{24 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-168 e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+ \\
& 1+24 \exp (2 \pi)-72 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k) \\
& \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 e^{40 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)} \\
& 1+24\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}-72\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4 \pi}+96\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{6 \pi}-168\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{8 \pi}+144\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{10 \pi} \\
& 1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)= \\
& 1+24\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}-72\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{6 \pi}+ \\
& 96\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{6 \pi}-168\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{8 \pi}+144\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{10 \pi}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)= \\
& 1+24 e^{4} \int_{1}^{\infty} 1 /\left(1+t^{2}\right) d t-72 e^{8} \int_{0}^{\infty 1} 1 /\left(1+t^{2}\right) d t+ \\
& 96 e^{12} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t-168 e^{16} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+144 e^{20} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t \\
& 1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)= \\
& 1+24 e^{4} \int_{0}^{\infty} \sin (t) / t d t-72 e^{8} \int_{0}^{\infty} \sin (t) / t d t+ \\
& 96 e^{12} \int_{0}^{\infty} \sin (t) t / t d t-168 e^{16} \int_{0}^{\infty} \sin (t) / t d t+144 e^{20} \int_{0}^{\infty \sin (t) / t d t} \\
& 1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)= \\
& 1+24 e^{8} \int_{0}^{1} \sqrt{1-t^{2}} d t-72 e^{16} \int_{0}^{1} \sqrt{1-t^{2}} d t+ \\
& 96 e^{24} \int_{0}^{11} \sqrt{1-t^{2}} d t-168 e^{32} \int_{0}^{1} \sqrt{1-t^{2}} d t+144 e^{40} \int_{0}^{1} \sqrt{1-t^{2}} d t
\end{aligned}
$$

From the ratio of the two expressions, we obtain:

$$
\begin{aligned}
& -\left(\left(\left(4-96(\exp (2 \mathrm{Pi}))^{\wedge} 4-288(\exp (2 \mathrm{Pi}))^{\wedge} 8-384(\exp (2 \mathrm{Pi}))^{\wedge} 12-\right.\right.\right. \\
& \left.\left.\left.672(\exp (2 \mathrm{Pi}))^{\wedge} 16\right)\right)\right) /\left(\left(\left(1+24(\exp (2 \mathrm{Pi}))-72(\exp (2 \mathrm{Pi}))^{\wedge} 2+96(\exp (2 \mathrm{Pi}))^{\wedge} 3-\right.\right.\right. \\
& \left.\left.\left.168(\exp (2 \mathrm{Pi}))^{\wedge} 4+144(\exp (2 \mathrm{Pi}))^{\wedge} 5\right)\right)\right)
\end{aligned}
$$

Input:

$$
-\frac{4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)}{1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)}
$$

Exact result:

$$
\frac{-4+96 e^{8 \pi}+288 e^{16 \pi}+384 e^{24 \pi}+672 e^{32 \pi}}{1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}}
$$

Decimal approximation:

$4.8554867946055584972746530643858724287361861476141402 \ldots \times 10^{30}$
4.8554867946...*10 0^{30}

Property:

$\frac{-4+96 e^{8 \pi}+288 e^{16 \pi}+384 e^{24 \pi}+672 e^{32 \pi}}{1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}}$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{96\left(e^{8 \pi}+3 e^{16 \pi}+4 e^{24 \pi}+7 e^{32 \pi}\right)-4}{1+24 e^{2 \pi}\left(1-3 e^{2 \pi}+4 e^{4 \pi}-7 e^{6 \pi}+6 e^{8 \pi}\right)} \\
& -\frac{4}{1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}}+ \\
& \frac{96 e^{8 \pi}}{1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}}+ \\
& \frac{288 e^{16 \pi}}{1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}}+ \\
& \frac{384 e^{24 \pi}}{1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}}+ \\
& \frac{672 e^{32 \pi}}{1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}}
\end{aligned}+
$$

Series representations:

```
\(-\frac{4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)}{1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)}=\)
    \(\left(4\left(-1+24 e^{32 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+72 e^{64 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+\right.\right.\)
        \(\left.\left.96 e^{96 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+168 e^{128 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\right) /\)
    \(\left(1+24 e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-72 e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+96 e^{24 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-\right.\)
    \(\left.168 e^{32 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+144 e^{40 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\)
```

$$
\begin{aligned}
& -\frac{4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)}{1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)}= \\
& \left(4\left(-1+24\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{8 \pi}+72\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{16 \pi}+96\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{24 \pi}+168\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{32 \pi}\right)\right) / \\
& \left(1+24\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}-72\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4 \pi}+96\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{6 \pi}-168\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{8 \pi}+144\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{10 \pi}\right) \\
& -\frac{4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)}{1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)}= \\
& \left(4 \left(-1+24\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{8 \pi}+72\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{16 \pi}+\right.\right. \\
& \left.\left.96\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{24 \pi}+168\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{32 \pi}\right)\right) / \\
& \left(1+24\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}-72\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{4 \pi}+96\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{6 \pi}-\right. \\
& \left.168\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{8 \pi}+144\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{10 \pi}\right)
\end{aligned}
$$

Integral representations:

$$
\left.\begin{array}{l}
-\frac{4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)}{1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)}= \\
\left(4\left(-1+24 e^{16} \int_{0}^{\infty} \sin (t) / t d t+72 e^{32 \int_{0}^{\infty} \sin (t) / t d t}+96 e^{48} \int_{0}^{\infty} \sin (t) / t d t+168 e^{64} \int_{0}^{\infty} \sin (t) / t d t\right)\right) / \\
\left(1+24 e^{4} \int_{0}^{\infty} \sin (t) / t d t\right. \\
\left(72 e^{8} \int_{0}^{\infty} \sin (t) / t d t\right. \\
96 e^{12} \int_{0}^{\infty} \sin (t) / t d t \\
\left(168 e^{16} \int_{0}^{\infty} \sin (t) / t d t\right. \\
\left(144 e^{20} \int_{0}^{\infty} \sin (t) / t d t\right) \\
-\frac{4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)}{1+24 \exp ^{2}(2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)}= \\
\left(4 \left(-1+24 e^{16} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right.\right. \\
\left(42 e^{32} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right.
\end{array}\right) .
$$

$$
\begin{aligned}
& -\frac{4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)}{1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)}= \\
& \left(4 \left(-1+24 e^{16} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t+72 e^{32} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t+\right.\right. \\
& \left.\left.96 e^{48} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t+168 e^{64} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t\right)\right) / \\
& \left(1+24 e^{4} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t-72 e^{8} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t+96 e^{12} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t\right. \\
& \left.168 e^{16} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t+144 e^{20} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t\right)
\end{aligned}
$$

From which:
$1 / 3 * 1 / 10^{\wedge} 30\left[-\left(\left(\left(4-96(\exp (2 \mathrm{Pi}))^{\wedge} 4-288(\exp (2 \mathrm{Pi}))^{\wedge} 8-384(\exp (2 \mathrm{Pi}))^{\wedge} 12-\right.\right.\right.\right.$ $\left.\left.\left.672(\exp (2 \mathrm{Pi}))^{\wedge} 16\right)\right)\right) /\left(\left(\left(1+24(\exp (2 \mathrm{Pi}))-72(\exp (2 \mathrm{Pi}))^{\wedge} 2+96(\exp (2 \mathrm{Pi}))^{\wedge} 3-\right.\right.\right.$ $\left.\left.\left.\left.168(\exp (2 \mathrm{Pi}))^{\wedge} 4+144(\exp (2 \mathrm{Pi}))^{\wedge} 5\right)\right)\right)\right]$

Input:

$\frac{1}{3} \times \frac{1}{10^{30}}$

$$
\left(-\frac{4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)}{1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)}\right)
$$

Exact result:

$\left(-4+96 e^{8 \pi}+288 e^{16 \pi}+384 e^{24 \pi}+672 e^{32 \pi}\right) /$
(3000000000000000000000000000000

$$
\left.\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right)
$$

Decimal approximation:

1.618495598201852832424884354795290809578728715871380076005 .
1.6184955982...

Property:

$$
\left(-4+96 e^{8 \pi}+288 e^{16 \pi}+384 e^{24 \pi}+672 e^{32 \pi}\right) /
$$

(3000000000000000000000000000000

$$
\left.\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right)
$$

is a transcendental number

Alternate forms:

$\left(-1+24 e^{8 \pi}+72 e^{16 \pi}+96 e^{24 \pi}+168 e^{32 \pi}\right) /$
(750000000000000000000000000000

$$
\left.\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right)
$$

$$
\left(24\left(e^{8 \pi}+3 e^{16 \pi}+4 e^{24 \pi}+7 e^{32 \pi}\right)-1\right) /(750000000000000000000000000000
$$

$$
\left(1+24 e^{2 \pi}\left(1-3 e^{2 \pi}+4 e^{4 \pi}-7 e^{6 \pi}+6 e^{8 \pi}\right)\right)
$$

$-(1 /(750000000000000000000000000000$

$$
\left.\left.\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right)\right)+
$$

$e^{8 \pi} /(31250000000000000000000000000$

$$
\left.\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right)+
$$

$\left(3 e^{16 \pi}\right) /(31250000000000000000000000000$

$$
\left.\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right)+
$$

$e^{24 \pi} /(7812500000000000000000000000$

$$
\left.\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right)+
$$

$\left(7 e^{32 \pi}\right) /(31250000000000000000000000000$

$$
\left.\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right)
$$

Series representations:

$$
\begin{aligned}
& -\left(\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right) /\right. \\
& \left(\left(1 0 ^ { 3 0 } \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right.\right.\right. \\
& \left.\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right) 3\right)\right)= \\
& \left(-1+24 e^{32 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+72 e^{64 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+96 e^{96 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+\right. \\
& \left.168 e^{128 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right) /
\end{aligned}
$$

(750000000000000000000000000000

$$
\begin{aligned}
& \left(1+24 e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-72 e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+96 e^{24 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-\right. \\
& \left.\left.\quad 168 e^{32 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+144 e^{40 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\right)
\end{aligned}
$$

$$
-\left(\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right) /\right.
$$

$$
\left(\left(1 0 ^ { 3 0 } \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right.\right.\right.
$$

$$
\left.\left.\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right) 3\right)\right)=
$$

$$
\left(-1+24\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{8 \pi}+72\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{16 \pi}+96\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{24 \pi}+168\left(\sum_{\substack{k=0 \\ k!}}^{\infty} \frac{1}{n^{2}}\right)^{32 \pi}\right) /
$$

$$
\left(7 5 0 \left(1+24\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}-\right.\right.
$$

$$
\left.\left.72\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4 \pi}+96\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{6 \pi}-168\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{8 \pi}+144\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{10 \pi}\right)\right)
$$

$$
\begin{aligned}
& -\left(\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right) /\right. \\
& \left(\left(1 0 ^ { 3 0 } \left(1+24 \exp ^{2}(2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right.\right.\right. \\
& \left.\left.\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right) 3\right)\right)= \\
& \left(-1+24\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{8 \pi}+72\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{16 \pi}+96\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{24 \pi}+\right. \\
& \left.168\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{32 \pi}\right) /
\end{aligned}
$$

$(750000000000000000000000000000$

$$
\begin{aligned}
& \left(1+24\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}-72\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{4 \pi}+96\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{6 \pi}-\right. \\
& \left.\left.168\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{8 \pi}+144\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{10 \pi}\right)\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& -\left(\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right) /\right. \\
& \left(\left(1 0 ^ { 3 0 } \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right.\right.\right. \\
& \left.\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right) 3\right)\right)= \\
& \left(-1+24 e^{16} \int_{0}^{\infty} \sin (t) / t d t+72 e^{32} \int_{0}^{\infty} \sin (t) / t d t+96 e^{48} \int_{0}^{\infty} \sin (t) / t d t+168 e^{64} \int_{0}^{\infty} \sin (t) / t d t\right) / \\
& \left(7 5 0 \left(1+24 e^{4} \int_{0}^{\infty \sin (t))(t d t}-72 e^{8} \int_{0}^{\infty \sin (t) / t d t}+\right.\right. \\
& \left.\left.96 e^{12} \int_{0}^{\infty} \sin (t) / t d t-168 e^{16} \int_{0}^{\infty} \sin (t) / t d t+144 e^{20} \int_{0}^{\infty \sin (t) / t d t}\right)\right) \\
& -\left(\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right) /\right. \\
& \left(\left(1 0 ^ { 3 0 } \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right.\right.\right. \\
& \left.\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right) 3\right)\right)= \\
& \left(-1+24 e^{16} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+72 e^{32} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+96 e^{48} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+\right. \\
& \left.168 e^{64 \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right) / \\
& \text { (750000000000000000000000000000 } \\
& \left(1+24 e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t-72 e^{8} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+96 e^{12} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t-\right. \\
& \left.\left.168 e^{16} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+144 e^{20} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\left(\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right) /\right. \\
& \left(\left(1 0 ^ { 3 0 } \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right.\right.\right. \\
& \left.\left.\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right) 3\right)\right)= \\
& \left(-1+24 e^{16} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t+72 e^{32 \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t}+96 e^{48} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t+\right. \\
& \left.168 e^{64} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t\right) / \\
& (750000000000000000000000000000 \\
& \left(1+24 e^{4} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t-72 e^{8} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t+96 e^{12} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t-\right. \\
& \left.\left.168 e^{16} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t+144 e^{20} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t\right)\right)
\end{aligned}
$$

Multiplying the two expressions, we obtain:
$\left[-\left(\left(\left(4-96(\exp (2 \mathrm{Pi}))^{\wedge} 4-288(\exp (2 \mathrm{Pi}))^{\wedge} 8-384(\exp (2 \mathrm{Pi}))^{\wedge} 12-\right.\right.\right.\right.$
$\left.\left.\left.672(\exp (2 \mathrm{Pi}))^{\wedge} 16\right)\right)\right)^{*}\left(\left(\left(1+24(\exp (2 \mathrm{Pi}))-72(\exp (2 \mathrm{Pi}))^{\wedge} 2+96(\exp (2 \mathrm{Pi}))^{\wedge} 3-\right.\right.\right.$
$\left.\left.\left.\left.168(\exp (2 \mathrm{Pi}))^{\wedge} 4+144(\exp (2 \mathrm{Pi}))^{\wedge} 5\right)\right)\right)\right]$

Input:

$$
\begin{aligned}
& -\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right) \\
& \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)
\end{aligned}
$$

Exact result:

$$
\begin{gathered}
-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right) \\
\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)
\end{gathered}
$$

Decimal approximation:

$1.9435352178482616998828447744596032866982152813185806 \ldots \times 10^{62}$
$1.9435352178 \ldots * 10^{62}$

Property:

$$
\begin{aligned}
& -\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right) \\
& \quad\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right) \text { is a transcendental number }
\end{aligned}
$$

Alternate forms:

$4\left(1+24 e^{2 \pi}\left(1-3 e^{2 \pi}+4 e^{4 \pi}-7 e^{6 \pi}+6 e^{8 \pi}\right)\right)\left(24\left(e^{8 \pi}+3 e^{16 \pi}+4 e^{24 \pi}+7 e^{32 \pi}\right)-1\right)$

$$
\begin{aligned}
& -4-96 e^{2 \pi}+288 e^{4 \pi}-384 e^{6 \pi}+768 e^{8 \pi}+1728 e^{10 \pi}-6912 e^{12 \pi}+ \\
& 9216 e^{14 \pi}-15840 e^{16 \pi}+20736 e^{18 \pi}-20736 e^{20 \pi}+27648 e^{22 \pi}- \\
& 48000 e^{24 \pi}+50688 e^{26 \pi}-27648 e^{28 \pi}+36864 e^{30 \pi}-63840 e^{32 \pi}+ \\
& 71424 e^{34 \pi}-48384 e^{36 \pi}+64512 e^{38 \pi}-112896 e^{40 \pi}+96768 e^{42 \pi} \\
& 4\left(-1-24 e^{2 \pi}+72 e^{4 \pi}-96 e^{6 \pi}+192 e^{8 \pi}+432 e^{10 \pi}-1728 e^{12 \pi}+\right. \\
& 2304 e^{14 \pi}-3960 e^{16 \pi}+5184 e^{18 \pi}-5184 e^{20 \pi}+6912 e^{22 \pi}- \\
& 12000 e^{24 \pi}+12672 e^{26 \pi}-6912 e^{28 \pi}+9216 e^{30 \pi}-15960 e^{32 \pi}+ \\
& \left.17856 e^{34 \pi}-12096 e^{36 \pi}+16128 e^{38 \pi}-28224 e^{40 \pi}+24192 e^{42 \pi}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& -\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right) \\
& \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+14 \exp ^{5}(2 \pi)\right)= \\
& 4\left(1+24\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}-72\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4 \pi}+96\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{6 \pi}-168\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{8 \pi}+144\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{10 \pi}\right) \\
& \left(-1+24\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{8 \pi}+72\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{16 \pi}+96\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{24 \pi}+168\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{32 \pi}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right) \\
& \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)= \\
& 4\left(1+24\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}-72\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{4 \pi}+96\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{6 \pi}-\right. \\
& \left.168\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{8 \pi}+144\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{10 \pi}\right)\left(-1+24\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{24 \pi}+\right. \\
& \left.72\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{16 \pi}+96\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{32 \pi}+168\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{3 \pi}\right)
\end{aligned}
$$

$-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)$
$\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)=$ $-4-96 e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+288 e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-384 e^{24 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+$ $768 e^{32 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+1728 e^{40 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-6912 e^{48 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+$ $9216 e^{56 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-15840 e^{64 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+20736 e^{72 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-$
$20736 e^{80 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+27648 e^{88 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-$
$48000 e^{96 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+50688 e^{104 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}$
$27648 e^{112 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+36864 e^{120 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-$
$63840 e^{128 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+71424 e^{136 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-$
$48384 e^{144 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+64512 e^{152 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-$
$112896 e^{160 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+96768 e^{168 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}$

Integral representations:

```
-(4-96 \mp@subsup{\operatorname{ep}}{}{4}(2\pi)-288 \mp@subsup{\operatorname{exp}}{}{8}(2\pi)-384 \mp@subsup{\operatorname{exp}}{}{12}(2\pi)-672 \mp@subsup{\operatorname{exp}}{}{16}(2\pi))
    (1+24 exp(2\pi) - 72 exp}\mp@subsup{}{2}{2}(2\pi)+96\mp@subsup{\operatorname{exp}}{}{3}(2\pi)-168\mp@subsup{\operatorname{exp}}{}{4}(2\pi)+144\mp@subsup{\operatorname{exp}}{}{5}(2\pi))
    -4-96 e}\mp@subsup{e}{}{4}\mp@subsup{\int}{0}{\infty}\operatorname{sin}(t)/tdt+288\mp@subsup{e}{}{8}\mp@subsup{\int}{0}{\infty}\operatorname{sin}(t)/tdt - 384 e 12 \0 sin(t)/tdt +
```



```
    9216 e
```



```
    64512 e}\mp@subsup{e}{}{76}\mp@subsup{\int}{0}{\infty}\operatorname{sin}(t)/tdt -112896 e 80 \int0 msin(t)/tdt +96768 e 84 \int0 msin(t)/t dt
-(4-96 \mp@subsup{\operatorname{exp}}{}{4}(2\pi)-288 \mp@subsup{\operatorname{exp}}{}{8}(2\pi)-384 \mp@subsup{\operatorname{exp}}{}{12}(2\pi)-672 \mp@subsup{\operatorname{exp}}{}{16}(2\pi))
    (1+24 exp(2\pi) - 72 exp}\mp@subsup{}{2}{2}(2\pi)+96\mp@subsup{\operatorname{exp}}{}{3}(2\pi)-168\mp@subsup{\operatorname{exp}}{}{4}(2\pi)+144\mp@subsup{\operatorname{exp}}{}{5}(2\pi))
    -4-96 e}\mp@subsup{e}{}{4}\mp@subsup{\int}{0}{\infty}\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt+288\mp@subsup{e}{}{8}\mp@subsup{\int}{0}{\infty}\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt -384 e 12 \int0 \mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt 
    768 e}\mp@subsup{e}{}{16}\mp@subsup{\int}{0}{\infty}\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt+1728\mp@subsup{e}{}{20}\mp@subsup{\int}{0}{\infty}\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt - 6912 e e 24 \int0 क\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt
```



```
    20736 e}\mp@subsup{e}{}{40}\mp@subsup{\int}{0}{\infty}\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt +27648\mp@subsup{e}{}{44 \int0 \mp@subsup{s}{}{\infty}\mp@subsup{\operatorname{sin}}{}{2}2t)/\mp@subsup{t}{}{2}dt}-48000\mp@subsup{e}{}{48}\mp@subsup{\int}{0}{\infty}\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt 
    50688 e}\mp@subsup{e}{}{52 \int\mp@subsup{\int}{0}{\infty}\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt}-27648\mp@subsup{e}{}{56}\mp@subsup{\int}{0}{\infty\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt}+36864\mp@subsup{e}{}{60}\mp@subsup{\int}{0}{\infty>\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt
    63840e}\mp@subsup{e}{}{64}\mp@subsup{\int}{0}{\infty}\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt+71424\mp@subsup{e}{}{68}\mp@subsup{\int}{0}{\infty}\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt -48384\mp@subsup{e}{}{72}\mp@subsup{\int}{0}{\infty}\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt
    64512 e}\mp@subsup{e}{}{76}\mp@subsup{\int}{0}{\infty0}\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt - 112896 e 80 \int0 क\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}dt +96768 e 84 \int0 क\mp@subsup{\operatorname{sin}}{}{2}(t)/\mp@subsup{t}{}{2}d
-(4-96 \mp@subsup{\operatorname{ep}}{}{4}(2\pi)-288 \mp@subsup{\operatorname{exp}}{}{8}(2\pi)-384\mp@subsup{\operatorname{exp}}{}{12}(2\pi)-672 \mp@subsup{\operatorname{exp}}{}{16}(2\pi))
    (1+24 \operatorname{exp}(2\pi) - 72 \mp@subsup{\operatorname{exp}}{}{2}(2\pi)+96 \mp@subsup{\operatorname{exp}}{}{3}(2\pi)-168\mp@subsup{\operatorname{exp}}{}{4}(2\pi)+144\mp@subsup{\operatorname{exp}}{}{5}(2\pi))=
    -4-96 e}\mp@subsup{e}{}{4}\mp@subsup{\int}{0}{\infty}1/(1+\mp@subsup{t}{}{2})dt+288\mp@subsup{e}{}{8}\mp@subsup{\int}{0}{\infty}1/(1+\mp@subsup{t}{}{2})dt - 384 e 12 \int0 m 1/(1+\mp@subsup{t}{}{2})dt 
    768 e}\mp@subsup{e}{}{16}\mp@subsup{\int}{0}{\infty}1/(1+\mp@subsup{t}{}{2})dt +1728\mp@subsup{e}{}{20}\mp@subsup{\int}{0}{\infty}1/(1+\mp@subsup{t}{}{2})dt - 6912\mp@subsup{e}{}{24}\mp@subsup{\int}{0}{\infty}1/(1+\mp@subsup{t}{}{2})dt 
    9216 e}\mp@subsup{e}{}{28}\mp@subsup{\int}{0}{\infty}1/((1+\mp@subsup{t}{}{2})dt -15840\mp@subsup{e}{}{32}\mp@subsup{\int}{0}{\infty}1/(1+\mp@subsup{t}{}{2})dt+20736\mp@subsup{e}{}{36}\mp@subsup{\int}{0}{\infty}1/(1+\mp@subsup{t}{}{2})dt 
    20736 e}\mp@subsup{e}{}{40}\mp@subsup{\int}{0}{\infty}1/(1+\mp@subsup{t}{}{2})dt +27648\mp@subsup{e}{}{44}\mp@subsup{\int}{0}{\infty}1/(1+\mp@subsup{t}{}{2})dt -48000\mp@subsup{e}{}{48}\mp@subsup{\int}{0}{\infty}1/(1+\mp@subsup{t}{}{2})dt 
```



```
    63840e}\mp@subsup{e}{}{64}\mp@subsup{\int}{0}{\infty}1/(1+\mp@subsup{t}{}{2})dt+71424\mp@subsup{e}{}{68}\mp@subsup{\int}{0}{\infty}1/(1+\mp@subsup{t}{}{2})dt -48384\mp@subsup{e}{}{72}\mp@subsup{\int}{0}{\infty}1/(1+\mp@subsup{t}{}{2})dt
    64512 e}\mp@subsup{e}{}{76}\mp@subsup{\int}{0}{\infty}1/(1+\mp@subsup{t}{}{2})dt - 112896 e 80 \mp@subsup{\int}{0}{\infty\infty}1/(1+\mp@subsup{t}{}{2})dt +96768 e 84 \mp@subsup{\int}{0}{\infty}1/(1+\mp@subsup{t}{}{2})d
```

From which:
$\ln \left[-\left(\left(\left(4-96(\exp (2 \mathrm{Pi}))^{\wedge} 4-288(\exp (2 \mathrm{Pi}))^{\wedge} 8-384(\exp (2 \mathrm{Pi}))^{\wedge} 12-\right.\right.\right.\right.$
$\left.\left.\left.672(\exp (2 \mathrm{Pi}))^{\wedge} 16\right)\right)\right)^{*}\left(\left(\left(1+24(\exp (2 \mathrm{Pi}))-72(\exp (2 \mathrm{Pi}))^{\wedge} 2+96(\exp (2 \mathrm{Pi}))^{\wedge} 3-\right.\right.\right.$
$\left.\left.\left.\left.168(\exp (2 \mathrm{Pi}))^{\wedge} 4+144(\exp (2 \mathrm{Pi}))^{\wedge} 5\right)\right)\right)\right]-4$

Input:

$$
\begin{aligned}
& \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
& \quad\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)-4
\end{aligned}
$$

Exact result:

$$
\begin{array}{r}
\log \left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right. \\
\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)-4
\end{array}
$$

Decimal approximation:

139.4247843576145914748302687134829253257201197086829325614...
139.4247843576...

Alternate forms:

$$
\begin{aligned}
& \log \left(\left(-1-24 e^{2 \pi}+72 e^{4 \pi}-96 e^{6 \pi}+168 e^{8 \pi}-144 e^{10 \pi}\right)\right. \\
& \left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)-4 \\
& -4+\log \left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)+ \\
& \log \left(-4+96 e^{8 \pi}+288 e^{16 \pi}+384 e^{24 \pi}+672 e^{32 \pi}\right) \\
& \log \left(4\left(1+24 e^{2 \pi}\left(1-3 e^{2 \pi}+4 e^{4 \pi}-7 e^{6 \pi}+6 e^{8 \pi}\right)\right)\right. \\
& \left.\left(24\left(e^{8 \pi}+3 e^{16 \pi}+4 e^{24 \pi}+7 e^{32 \pi}\right)-1\right)\right)-4
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
& \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
& \left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)-4=-4+ \\
& \log _{e}\left(-\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right. \\
& \left.\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right) \\
& \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
& \left.\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)- \\
& 4=-4+\log (a) \log _{a}(\\
& -\left(1+24 \exp ^{2}(2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right) \\
& \left.\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
& \left.\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)- \\
& 4=-4+2 i \pi\left|\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right|+\log \left(z_{0}\right)- \\
& \sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right. \\
& \left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)-z_{0}\right)^{k} z_{0}^{-k}
\end{aligned}
$$

$$
\begin{aligned}
& \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
& \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
& \left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)-4= \\
& -4+2 i \pi\left[\frac { 1 } { 2 \pi } \operatorname { a r g } \left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right.\right. \\
& \left.\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)-x\right)\right]+\log (x)- \\
& \sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right. \\
& \left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)-x\right)^{k} x^{-k} \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
& \left.\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)- \\
& 4=-4+\log \left(-1-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right. \\
& \left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)- \\
& \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{-1-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)}\right)^{k}}{k}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
& \left(1+24 \exp ^{2}(2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
& \left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)-4= \\
& -4+\int_{1}^{4\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\left(-1+24 e^{8 \pi}+72 e^{16 \pi}+96 e^{24 \pi}+168 e^{32 \pi}\right) \frac{1}{t} d t} \\
& \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
& \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
& \left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)-4= \\
& -4-\frac{i}{2 \pi} \int_{-i \infty+\gamma}^{i \infty \infty \gamma} \frac{1}{\Gamma(1-s)}\left(-1-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right. \\
& \left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)^{-s} \\
& \Gamma(-s)^{2} \Gamma(1+s) d s \text { for }-1<\gamma<0
\end{aligned}
$$

$\ln \left[-\left(\left((4-96(\exp (2 \mathrm{Pi})))^{\wedge} 4-288(\exp (2 \mathrm{Pi}))^{\wedge} 8-384(\exp (2 \mathrm{Pi}))^{\wedge} 12-\right.\right.\right.$ $\left.\left.\left.672(\exp (2 \mathrm{Pi}))^{\wedge} 16\right)\right)\right)^{*}\left(\left(\left(1+24(\exp (2 \mathrm{Pi}))-72(\exp (2 \mathrm{Pi}))^{\wedge} 2+96(\exp (2 \mathrm{Pi}))^{\wedge} 3-\right.\right.\right.$ $\left.\left.\left.\left.168(\exp (2 \mathrm{Pi}))^{\wedge} 4+144(\exp (2 \mathrm{Pi}))^{\wedge} 5\right)\right)\right)\right]-18$

Input:

$$
\begin{aligned}
& \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
& \left.\quad\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)-18
\end{aligned}
$$

Exact result:

$$
\begin{array}{r}
\log \left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right. \\
\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)-18
\end{array}
$$

Decimal approximation:

125.4247843576145914748302687134829253257201197086829325614...
125.4247843576...

Alternate forms:

$$
\begin{gathered}
\log \left(\left(-1-24 e^{2 \pi}+72 e^{4 \pi}-96 e^{6 \pi}+168 e^{8 \pi}-144 e^{10 \pi}\right)\right. \\
\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)-18 \\
-18+\log \left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)+ \\
\log \left(-4+96 e^{8 \pi}+288 e^{16 \pi}+384 e^{24 \pi}+672 e^{32 \pi}\right) \\
\log \left(4\left(1+24 e^{2 \pi}\left(1-3 e^{2 \pi}+4 e^{4 \pi}-7 e^{6 \pi}+6 e^{8 \pi}\right)\right)\right. \\
\left.\left(24\left(e^{8 \pi}+3 e^{16 \pi}+4 e^{24 \pi}+7 e^{32 \pi}\right)-1\right)\right)-18
\end{gathered}
$$

Alternative representations:

$$
\begin{aligned}
& \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
& \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
& \left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)-18=-18+ \\
& \log _{e}\left(-\left(1+24 \exp ^{2}(2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right. \\
& \left.\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right) \\
& \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
& \left.\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)- \\
& 18=-18+\log (a) \log a(\\
& \left.-\left(1+24 \exp ^{(} 2 \pi\right)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right) \\
& \left.\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
& \left.\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)- \\
& 18=-18+2 i \pi\left[\left.\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \right\rvert\,+\log \left(z_{0}\right)-\right. \\
& \sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right. \\
& \left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)-z_{0}\right)^{k} z_{0}^{-k}
\end{aligned}
$$

$$
\begin{aligned}
& \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
& \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
& \left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)-18= \\
& -18+2 i \pi\left[\frac { 1 } { 2 \pi } \operatorname { a r g } \left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right.\right. \\
& \left.\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)-x\right)\right]+\log (x)- \\
& \sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right. \\
& \left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)-x\right)^{k} x^{-k} \text { for } x<0
\end{aligned}
$$

$$
\log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right.
$$

$$
\left.\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)-
$$

$$
18=-18+\log \left(-1-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right.
$$

$$
\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)-
$$

$$
\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{-1-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)}\right)^{k}}{k}
$$

Integral representations:

$$
\begin{aligned}
& \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
& \left(1+24 \exp ^{2} \pi\right)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)- \\
& \left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)-18= \\
& -18+\int_{1}^{4\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\left(-1+24 e^{8 \pi}+72 e^{16 \pi}+96 e^{24 \pi}+168 e^{32 \pi}\right)} \frac{1}{t} d t \\
& \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
& \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
& \left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)-18= \\
& -18-\frac{i}{2 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{1}{\Gamma(1-s)}\left(-1-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right. \\
& \left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)^{-s} \\
& \Gamma(-s)^{2} \Gamma(1+s) d s \text { for }-1<\gamma<0
\end{aligned}
$$

$12 \ln \left[-\left(\left(\left(4-96(\exp (2 \mathrm{Pi}))^{\wedge} 4-288(\exp (2 \mathrm{Pi}))^{\wedge} 8-384(\exp (2 \mathrm{Pi}))^{\wedge} 12-\right.\right.\right.\right.$
$\left.\left.\left.672(\exp (2 \mathrm{Pi}))^{\wedge} 16\right)\right)\right)^{*}\left(\left(\left(1+24(\exp (2 \mathrm{Pi}))-72(\exp (2 \mathrm{Pi}))^{\wedge} 2+96(\exp (2 \mathrm{Pi}))^{\wedge} 3-\right.\right.\right.$
$\left.\left.\left.\left.168(\exp (2 \mathrm{Pi}))^{\wedge} 4+144(\exp (2 \mathrm{Pi}))^{\wedge} 5\right)\right)\right)\right]+8$

Input:

$$
\begin{gathered}
12 \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)+8
\end{gathered}
$$

$\log (x)$ is the natural logarithm

Exact result:

$$
\begin{gathered}
8+12 \log \left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right. \\
\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)
\end{gathered}
$$

Decimal approximation:

1729.097412291375097697963224561795103908641436504195190736...
1729.0974122913...

Alternate forms:

$$
\begin{gathered}
8+12 \log \left(\left(-1-24 e^{2 \pi}+72 e^{4 \pi}-96 e^{6 \pi}+168 e^{8 \pi}-144 e^{10 \pi}\right)\right. \\
\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right) \\
8+12\left(\log \left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)+\right. \\
\left.\log \left(-4+96 e^{8 \pi}+288 e^{16 \pi}+384 e^{24 \pi}+672 e^{32 \pi}\right)\right) \\
4\left(2+3 \log \left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right.\right. \\
\left.\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)\right)
\end{gathered}
$$

Alternative representations:

$$
\begin{gathered}
12 \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)+8=8+12 \log _{e}(\\
-\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right) \\
\left.\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right)
\end{gathered}
$$

$12 \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right.$

$$
\begin{aligned}
& \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
& \left.\left.\quad 168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)+8=8+12 \log (a) \log _{a}(
\end{aligned}
$$

$$
-\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)
$$

$$
\left.\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right)
$$

Series representations:

$$
\left.\begin{array}{l}
12 \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)+8= \\
8+24 i \pi\left|\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right|+12 \log \left(z_{0}\right)- \\
12 \sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right. \\
\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)-z_{0}\right)^{k} z_{0}^{-k}
\end{array}\right\} \begin{array}{r}
12 \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right. \\
\left(1+24 \exp ^{2 \pi}(2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)+8= \\
8+24 i \pi\left[\frac { 1 } { 2 \pi } \operatorname { a r g } \left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right.\right. \\
\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)-x\right) \mid+12 \log (x)- \\
12 \sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\left(4-96 e^{8 \pi}-\right.\right. \\
\left.\left.288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)-x\right)^{k} x^{-k} \text { for } x<0
\end{array}
$$

$12 \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right.$

$$
\begin{gathered}
\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)+8= \\
8+12 \log \left(-1-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right. \\
\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)- \\
12 \sum_{k=1}^{\infty} \frac{1}{k}\left(-\left(1 /\left(-1-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right.\right.\right. \\
\left.\left.\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)\right)\right)^{k}
\end{gathered}
$$

Integral representations:

$12 \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right.$

$$
\begin{gathered}
\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)+8=8+
\end{gathered}
$$

$12 \int_{1}^{4\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\left(-1+24 e^{8 \pi}+72 e^{16 \pi}+96 e^{24 \pi}+168 e^{32 \pi}\right)} \frac{1}{t} d t$

```
\(12 \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right.\)
    \(\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right.\)
        \(\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)+8=\)
    \(8-\frac{6 i}{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{1}{\Gamma(1-s)}\left(-1-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right.\)
    \(\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)^{-s}\)
    \(\Gamma(-s)^{2} \Gamma(1+s) d s\) for \(-1<\gamma<0\)
```

and:

Input:

$$
\begin{gathered}
\left(1 2 \operatorname { l o g } \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right.\right. \\
\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
\left.\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)+8\right)^{\wedge}(1 / 15)
\end{gathered}
$$

Exact result:

$$
\begin{aligned}
& \left(8+12 \log \left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right.\right. \\
& \left.\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)\right)^{\wedge}(1 / 15)
\end{aligned}
$$

Decimal approximation:

1.643821402783741956534674412152921362427171943366526058309...
1.64382140278...

Alternate forms:

$$
\begin{gathered}
\left(8+12 \log \left(\left(-1-24 e^{2 \pi}+72 e^{4 \pi}-96 e^{6 \pi}+168 e^{8 \pi}-144 e^{10 \pi}\right)\right.\right. \\
\left.\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)\right)^{\wedge}(1 / 15) \\
\left(8+12\left(\log \left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)+\right.\right. \\
\left.\left.\log \left(-4+96 e^{8 \pi}+288 e^{16 \pi}+384 e^{24 \pi}+672 e^{32 \pi}\right)\right)\right)^{\wedge}(1 / 15) \\
\left(8+12 \log \left(4\left(1+24 e^{2 \pi}\left(1-3 e^{2 \pi}+4 e^{4 \pi}-7 e^{6 \pi}+6 e^{8 \pi}\right)\right)\right.\right. \\
\left.\left.\left(24\left(e^{8 \pi}+3 e^{16 \pi}+4 e^{24 \pi}+7 e^{32 \pi}\right)-1\right)\right)\right)^{\wedge}(1 / 15)
\end{gathered}
$$

All 15th roots of $8+12 \log \left(-\left(1+24 \mathrm{e}^{\wedge}(2 \pi)-72 \mathrm{e}^{\wedge}(4 \pi)+96 \mathrm{e}^{\wedge}(6 \pi)-168 \mathrm{e}^{\wedge}(8\right.\right.$ $\left.\left.\pi)+144 \mathrm{e}^{\wedge}(10 \pi)\right)\left(4-96 \mathrm{e}^{\wedge}(8 \pi)-288 \mathrm{e}^{\wedge}(16 \pi)-384 \mathrm{e}^{\wedge}(24 \pi)-672 \mathrm{e}^{\wedge}(32 \pi)\right)\right):$

$$
\begin{aligned}
& e^{0}\left(8+12 \log \left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right.\right. \\
& \left.\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)\right)^{\wedge}(1 / 15) \approx 1.64382 \text { (real, principal root) }
\end{aligned}
$$

```
\(e^{(2 i \pi) / 15}\)
    \(\left(8+12 \log \left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\left(4-96 e^{8 \pi}-288\right.\right.\right.\)
                        \(\left.\left.\left.e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)\right)^{\wedge}(1 / 15) \approx 1.50171+0.6686 i\)
```

$e^{(4 i \pi) / 15}$
$\left(8+12 \log \left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\left(4-96 e^{8 \pi}-288\right.\right.\right.$
$\left.\left.\left.e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)\right)^{\wedge}(1 / 15) \approx 1.0999+1.2216 i$
$e^{(2 i \pi) / 5}$
$\left(8+12 \log \left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\left(4-96 e^{8 \pi}-288\right.\right.\right.$
$\left.\left.\left.e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)\right)^{\wedge}(1 / 15) \approx 0.5080+1.5634 i$
$e^{(8 i \pi) / 15}$
$\left(8+12 \log \left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\left(4-96 e^{8 \pi}-288\right.\right.\right.$
$\left.\left.\left.e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)\right)^{\wedge}(1 / 15) \approx-0.17183+1.63482 i$

Alternative representations:

$\left(12 \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right.\right.$

$$
\begin{aligned}
& \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
& \left.\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)+8\right) \wedge(1 / 15)=
\end{aligned}
$$

$$
\left(8+12 \log _{e}\left(-\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-168 \exp ^{4}(2 \pi)+\right.\right.\right.
$$

$$
\left.144 \exp ^{5}(2 \pi)\right)\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-\right.
$$

$$
\left.\left.\left.384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right)\right)^{\wedge}(1 / 15)
$$

$\left(12 \log \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right.\right.$

$$
\begin{aligned}
& \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
& \left.\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)+8\right)^{\wedge}(1 / 15)=
\end{aligned}
$$

$\left(8+12 \log (a) \log _{a}\left(-\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right.\right.\right.$

$$
\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\left(4-96 \exp ^{4}(2 \pi)-\right.
$$

$$
\left.\left.\left.288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right)\right)^{\wedge}(1 / 15)
$$

Series representations:

$$
\begin{aligned}
& \left(1 2 \operatorname { l o g } \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right.\right. \\
& \left(1+24 \exp ^{(2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-} \begin{array}{l}
\left.\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)+8\right) \wedge(1 / 15)= \\
8+12\left(2 i \pi \left(\left.\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \right\rvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\right.\right. \\
\left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\left(4-96 e^{8 \pi}-\right.\right. \\
\left.\left.\left.288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)-z_{0}\right)^{k} z_{0}^{-k}\right)
\end{array}\right) \wedge(1 / 15)
\end{aligned}
$$

$$
\left.\begin{array}{c}
\left(1 2 \operatorname { l o g } \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right.\right. \\
\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
\left.\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)+8\right) \wedge(1 / 15)= \\
\left(8+12\left(\operatorname { l o g } \left(-1-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right.\right.\right. \\
\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)- \\
\sum_{k=1}^{\infty} \frac{1}{k}\left(-\left(1 /\left(-1-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right.\right.\right. \\
\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-\right. \\
\left.\left.\left.\left.\left.\left.672 e^{32 \pi}\right)\right)\right)\right)^{k}\right)\right) \wedge(1 / 15)
\end{array}\right) . \begin{array}{r}
\left(1 2 \operatorname { l o g } \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right.\right. \\
\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
\left.\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)+8\right)^{\wedge}(1 / 15)= \\
\left(8+12\left(2 i \pi \left\lvert\, \frac{1}{2 \pi} \arg \left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right.\right.\right.\right. \\
\left.\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)-x\right)\right]+ \\
\log (x)-\sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\left(-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+\right.\right. \\
\left.144 e^{10 \pi}\right)\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-\right. \\
\left.\left.\left.\left.672 e^{32 \pi}\right)-x\right)^{k} x^{-k}\right)\right) \wedge(1 / 15) \text { for } x<0
\end{array}
$$

Integral representations:

$$
\begin{aligned}
& \left(1 2 \operatorname { l o g } \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right.\right. \\
& \left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right. \\
& \left.\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)+8\right) \wedge(1 / 15)= \\
& \left(8+12 \int_{1}^{4\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\left(-1+24 e^{8 \pi}+72 e^{16 \pi}+96 e^{24 \pi}+168 e^{32 \pi}\right)} \frac{1}{t}\right. \\
& d t) \wedge(1 / 15)
\end{aligned}
$$

$$
\left(1 2 \operatorname { l o g } \left(-\left(4-96 \exp ^{4}(2 \pi)-288 \exp ^{8}(2 \pi)-384 \exp ^{12}(2 \pi)-672 \exp ^{16}(2 \pi)\right)\right.\right.
$$

$$
\left(1+24 \exp (2 \pi)-72 \exp ^{2}(2 \pi)+96 \exp ^{3}(2 \pi)-\right.
$$

$$
\left.\left.\left.168 \exp ^{4}(2 \pi)+144 \exp ^{5}(2 \pi)\right)\right)+8\right)^{\wedge}(1 / 15)=
$$

$$
\left(8-\frac{6 i}{\pi} \int_{-i \infty+y}^{i \infty+\gamma} \frac{1}{\Gamma(1-s)}\left(-1-\left(1+24 e^{2 \pi}-72 e^{4 \pi}+96 e^{6 \pi}-168 e^{8 \pi}+144 e^{10 \pi}\right)\right.\right.
$$

$$
\left.\left(4-96 e^{8 \pi}-288 e^{16 \pi}-384 e^{24 \pi}-672 e^{32 \pi}\right)\right)^{-5}
$$

$$
\left.\Gamma(-s)^{2} \Gamma(1+s) d s\right) \wedge(1 / 15) \text { for }-1<\gamma<0
$$

From:

$$
p_{0}=\frac{1}{3} P(q)+\frac{4}{3} P\left(q^{4}\right)+\frac{1}{3} P(-q)=2 P\left(q^{2}\right)
$$

for

$$
\begin{aligned}
& \quad p_{2}=4-96 q^{4}-288 q^{8}-384 q^{12}-672 q^{16}-\ldots=4 P\left(q^{4}\right), \\
& -3.071939059472546249872465816978889345928093931818818 \ldots \times 10^{46}
\end{aligned}
$$

and:

$$
p_{3}-1+24 q-72 q^{2}+96 q^{3}-168 q^{4}+144 q^{5}-\ldots-P(-q),
$$

$6.3267375433611884352116573214139903457434872875754344 \ldots \times 10^{15}$

we obtain:
$p_{0}-\frac{1}{3} P(q)+\frac{4}{3} P\left(q^{4}\right)+\frac{1}{3} P(-q)-2 P\left(q^{2}\right)$.
$1 / 3(-6.3267375 \mathrm{e}+15)+4 / 3 * 1 / 4(-3.071939 \mathrm{e}+46)+1 / 3(6.3267375 \mathrm{e}+15)$

Input interpretation:

$\frac{1}{3}\left(-6.3267375 \times 10^{15}\right)+\frac{4}{3} \times \frac{1}{4}\left(-3.071939 \times 10^{46}\right)+\frac{1}{3} \times 6.3267375 \times 10^{15}$

Result:

$-1.023979666 \ldots \times 10^{46}$
$-1.023979666 \ldots * 10^{46}=p_{0}=2 P\left(q^{2}\right)$

From

$$
y=p_{0}=\frac{1}{3}\left(p_{1}+p_{2}+p_{3}\right)
$$

we obtain:
$-1.023979666 \mathrm{e}+46=1 / 3(\mathrm{x}-(3.071939 \mathrm{e}+46)+(6.3267375 \mathrm{e}+15))$

Input interpretation:

$-1.023979666 \times 10^{46}=\frac{1}{3}\left(x-3.071939 \times 10^{46}+6.3267375 \times 10^{15}\right)$

Result:

$-1.02398 \times 10^{46}=\frac{x-3.07194 \times 10^{46}}{3}$

Plot:

Alternate forms:

$-1.02398 \times 10^{46}=0.333333\left(x-3.07194 \times 10^{46}\right)$
$6.66667 \times 10^{36}-\frac{x}{3}=0$

Expanded form:

$-10239796659999999687048012579044993181646061568=$ $\frac{x}{3}-10239796666666665464491487434033063101349232640$

Solution:

$x=19999997332330424564964209759109513216$

Integer solution:

$x=19999997332330424564964209759109513216$

Scientific notation:

$1.9999997332330424564964209759109513216 \times 10^{37}$
$1.999999733233 \ldots * 10^{37}=p_{1}$

Thence, from:

From

$$
y=p_{0}=\frac{1}{3}\left(p_{1}+p_{2}+p_{3}\right)
$$

We obtain:
$1 / 3(1.999999733233 \mathrm{e}+37-(3.071939 \mathrm{e}+46)+(6.3267375 \mathrm{e}+15))$

Input interpretation:

$\frac{1}{3}\left(1.999999733233 \times 10^{37}-3.071939 \times 10^{46}+6.3267375 \times 10^{15}\right)$

Result:

$-1.023979666000000088922333333333122442083333333333333 \ldots \times 10^{46}$
$-1.023979666 \ldots * 10^{46}$ result equal to the previous obtained with the following expression:

$$
p_{0}=\frac{1}{3} P(q)-\frac{4}{3} P\left(q^{4}\right)+\frac{1}{3} P(-q)=2 P\left(q^{2}\right)
$$

Now, we have:
$\ln (((-1 / 3(1.999999733233 \mathrm{e}+37-(3.071939 \mathrm{e}+46)+(6.3267375 \mathrm{e}+15)))))+21$-golden ratio

Input interpretation:

$$
\log \left(-\frac{1}{3}\left(1.999999733233 \times 10^{37}-3.071939 \times 10^{46}+6.3267375 \times 10^{15}\right)\right)+21-\phi
$$

Result:

125.324577...
125.324577...
$\ln (((-1 / 3(1.999999733233 \mathrm{e}+37-(3.071939 \mathrm{e}+46)+(6.3267375 \mathrm{e}+15)))))+34-1 /$ golden ratio

Input interpretation:

$\log \left(-\frac{1}{3}\left(1.999999733233 \times 10^{37}-3.071939 \times 10^{46}+6.3267375 \times 10^{15}\right)\right)+34-\frac{1}{\phi}$

Result:

139.324577..
139.324577...

27*1/2[$\ln (((-1 / 3(1.999999733233 \mathrm{e}+37-$
$(3.071939 \mathrm{e}+46)+(6.3267375 \mathrm{e}+15)))))+21+1 /$ golden ratio $]+7$

Input interpretation:

$27 \times \frac{1}{2}\left(\log \left(-\frac{1}{3}\left(1.999999733233 \times 10^{37}-3.071939 \times 10^{46}+6.3267375 \times 10^{15}\right)\right)+\right.$

$$
\left.21+\frac{1}{\phi}\right)+7
$$

$\log (x)$ is the natural logarithm
ϕ is the golden ratio

Result:

1729.06871..
1729.06871...
(()(27*1/2[1n(((-1/3)1.999999733233e+37-
$(3.071939 \mathrm{e}+46)+(6.3267375 \mathrm{e}+15)))))+21+1 /$ golden ratio $]+7))))^{\wedge} 1 / 15$

Input interpretation:

$\left(27 \times \frac{1}{2}\left(\log \left(-\frac{1}{3}\left(1.999999733233 \times 10^{37}-3.071939 \times 10^{46}+6.3267375 \times 10^{15}\right)\right)+\right.\right.$
$\left.\left.21+\frac{1}{\phi}\right)+7\right) \wedge(1 / 15)$
$\log (x)$ is the natural logarithm ϕ is the golden ratio

Result:

1.643819583...
1.643819583
((()27*1/2[$\ln (((-1 / 3(1.999999733233 \mathrm{e}+37-$
$(3.071939 \mathrm{e}+46)+(6.3267375 \mathrm{e}+15)))))+21+1 /$ golden ratio $]+7))))^{\wedge} 1 / 15-26 / 10 \wedge 3$

Input interpretation:

$$
\begin{gathered}
\left(27 \times \frac{1}{2}\left(\log \left(-\frac{1}{3}\left(1.999999733233 \times 10^{37}-3.071939 \times 10^{46}+6.3267375 \times 10^{15}\right)\right)+\right.\right. \\
\left.\left.21+\frac{1}{\phi}\right)+7\right)^{\wedge}(1 / 15)-\frac{26}{10^{3}}
\end{gathered}
$$

Result:

1.617819583...
1.617819583...

From

On certain arithmetical functions - Srinivasa Ramanujan

Transactions of the Cambridge Philosophical Society, XXII, No.9, 1916, 159 - 184

We have that:

$$
\left.\begin{array}{l}
\left.\Phi_{0, s}(x)=\frac{1^{s} x}{1-x}\left|\frac{2^{s} x^{2}}{1-x^{2}}\right| \frac{3^{s} x^{3}}{1-x^{3}} \right\rvert\, \cdots=S_{s} \quad \frac{1}{2} \zeta(\quad s), \tag{24}\\
\Phi_{1, s}(x)-\frac{1^{s} x}{(1-x)^{2}}+\frac{2^{s} x^{2}}{\left(1-x^{2}\right)^{2}}+\frac{3^{s} x^{3}}{\left(1-x^{3}\right)^{2}}+\cdots
\end{array}\right\}
$$

Further let

$$
\left.\begin{array}{l}
P=-24 S_{1}=1-24\left(\frac{x}{1-x}+\frac{2 x^{2}}{1-x^{2}}+\frac{3 x^{3}}{1-x^{3}}+\cdots\right) *, \\
Q=240 S_{3}=1+240\left(\frac{1^{3} x}{1-x}+\frac{2^{3} x^{2}}{1-x^{2}}+\frac{3^{3} x^{3}}{1-x^{3}}+\cdots\right), \tag{25}\\
R=-540 S_{5}=1-504\left(\frac{1^{5} x}{1-x}+\frac{2^{5} x^{2}}{1-x^{2}}+\frac{3^{5} x^{3}}{1-x^{3}}+\cdots\right)
\end{array}\right\} .
$$

For $\mathrm{x}=\mathrm{q}^{2} ; \mathrm{q}=\mathrm{e}^{\mathrm{xit}}=\mathrm{e}^{\pi} ; \mathrm{q}=(\exp (\mathrm{Pi}))^{\wedge} 2 ; \mathrm{s}=3$, we obtain:
$((\exp (\mathrm{Pi})))^{\wedge} 2 /\left(\left(1-\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)\right)\right)+8^{*}\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2 /\left(\left(1-\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2\right)\right)+$ $27^{*}\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3 /\left(\left(1-\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3\right)\right)$

Input:

$$
\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+8 \times \frac{\exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+27 \times \frac{\exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}
$$

Exact result:

$\frac{e^{2 \pi}}{1-e^{2 \pi}}+\frac{8 e^{4 \pi}}{1-e^{4 \pi}}+\frac{27 e^{6 \pi}}{1-e^{6 \pi}}$

Decimal approximation:

-36.0018990112699319283014094215150659797602208823762981729...
-36.00189901126...

Property:

$\frac{e^{2 \pi}}{1-e^{2 \pi}}+\frac{8 e^{4 \pi}}{1-e^{4 \pi}}+\frac{27 e^{6 \pi}}{1-e^{6 \pi}}$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& -\frac{10+e^{-2 \pi}+37 e^{2 \pi}+36 e^{4 \pi}}{2(\sinh (2 \pi)+\sinh (4 \pi))} \\
& -\frac{e^{2 \pi}}{e^{2 \pi}-1}-\frac{8 e^{4 \pi}}{e^{4 \pi}-1}-\frac{27 e^{6 \pi}}{e^{6 \pi}-1} \\
& -36-\frac{7}{e^{\pi}-1}+\frac{7}{1+e^{\pi}}+\frac{4}{1+e^{2 \pi}}-\frac{9\left(e^{\pi}-2\right)}{2\left(1-e^{\pi}+e^{2 \pi}\right)}+\frac{9\left(2+e^{\pi}\right)}{2\left(1+e^{\pi}+e^{2 \pi}\right)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{8 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}= \\
& -\left(\left(\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\left(1+10\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}+37\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4 \pi}+36\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{6 \pi}\right)\right) /\right. \\
& \quad\left(\left(-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}\right)\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}\right)\right)\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\right) \\
& \left.\left.\quad\left(1-\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\right)\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{8 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}= \\
& -\left(\left(\int 1+10\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}+37\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{4 \pi}+36\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{6 \pi}\right)\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right) / \\
& \left(\left(-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}\right)\left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}\right)\right. \\
& \left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right)\left(1-\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{\left(-1 k^{k}\right.}{k!}}\right)^{2 \pi}\right) \\
& \left.\left.\left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right)\right)\right) \\
& \frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{8 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}=-\left(\left(e^{8} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)\right.\right. \\
& \left.\left(1+10 e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+37 e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+36 e^{24 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\right) / \\
& \left(\left(-1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\right. \\
& \left(1-e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right) \\
& \left(1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1+e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right) \\
& \left(1-e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1+e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right) \\
& \left.\left.\left(1-e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\right)\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{8 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}= \\
& \frac{e^{16 / 3} \int^{\infty} \sin ^{3}(t) / t^{3} d t}{1-e^{16 / 3} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}+\frac{8 e^{32 / 3} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}{1-e^{32 / 3} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}+\frac{27 e^{16} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}{1-e^{16} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t} \\
& \frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{8 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}= \\
& -\left(\left(e^{4} \int_{0}^{\infty} \sin (t) / t d t\left(1+10 e^{4 \int_{0}^{\infty} \sin (t) / t d t}+37 e^{8} \int_{0}^{\infty} \sin (t) / t d t+36 e^{12 \int_{0}^{\infty} \sin (t) / t d t}\right)\right) /\right. \\
& \left(\left(-1+e^{\int_{0}^{\infty} \sin (t) / t d t}\right)\left(1+e^{\int_{0}^{\infty} \sin (t) / t d t}\right)\left(1+e^{2} \int_{0}^{\infty \sin (t) / t d t}\right)\right. \\
& \left(1-e^{-6^{\infty} \sin (t) / t d t}+e^{2} \int_{0}^{\infty} \sin (t) / t d t\right)\left(1+e^{\int^{\infty} \sin (t) / t d t}+e^{2} \int_{5}^{\infty \sin (t) / t d t}\right) \\
& \left.\left.\left(1+e^{4 \int_{0}^{\infty} \sin (t) / t d t}\right)\left(1-e^{2} \int_{0}^{\infty \sin (t) / t d t}+e^{4 \int_{0}^{\infty} \sin (t) t / t d t}\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{8 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}= \\
& -\left(\left(e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\left(1+10 e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+37 e^{8} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+36 e^{12} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\right) /\right. \\
& \quad\left(\left(-1+e^{6_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)\left(1+e^{6_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)\left(1+e^{2} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\right. \\
& \quad\left(1-e^{6_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+e^{2} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\left(1+e^{6_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+e^{2} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right) \\
& \left.\left.\quad\left(1+e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\left(1-e^{2} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\right)\right)
\end{aligned}
$$

$((\exp (\mathrm{Pi})))^{\wedge} 2 /\left(1-\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)\right)^{\wedge} 2+8^{*}\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2 /\left(1-\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2\right)^{\wedge} 2+$ $27^{*}\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3 /\left(1-\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3\right)^{\wedge} 2$

Input:

$\frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}+8 \times \frac{\exp ^{2}(\pi)^{2}}{\left(1-\exp ^{2}(\pi)^{2}\right)^{2}}+27 \times \frac{\exp ^{2}(\pi)^{3}}{\left(1-\exp ^{2}(\pi)^{3}\right)^{2}}$

Exact result:

$\frac{e^{2 \pi}}{\left(1-e^{2 \pi}\right)^{2}}+\frac{8 e^{4 \pi}}{\left(1-e^{4 \pi}\right)^{2}}+\frac{27 e^{6 \pi}}{\left(1-e^{6 \pi}\right)^{2}}$

Decimal approximation:

$0.001902511770982413535314427039665099167434985249917553048 \ldots$
0.0019025117709...

Property:

$\frac{e^{2 \pi}}{\left(1-e^{2 \pi}\right)^{2}}+\frac{8 e^{4 \pi}}{\left(1-e^{4 \pi}\right)^{2}}+\frac{27 e^{6 \pi}}{\left(1-e^{6 \pi}\right)^{2}}$ is a transcendental number

Alternate forms:

$\frac{2(2+\cosh (2 \pi))^{3}}{(\sinh (2 \pi)+\sinh (4 \pi))^{2}}$

$$
\begin{aligned}
& \frac{e^{2 \pi}}{\left(e^{2 \pi}-1\right)^{2}}+\frac{8 e^{4 \pi}}{\left(e^{4 \pi}-1\right)^{2}}+\frac{27 e^{6 \pi}}{\left(e^{6 \pi}-1\right)^{2}} \\
& \frac{e^{2 \pi}\left(1+4 e^{2 \pi}+e^{4 \pi}\right)^{3}}{\left(e^{\pi}-1\right)^{2}\left(1+e^{\pi}\right)^{2}\left(1+e^{2 \pi}\right)^{2}\left(1-e^{\pi}+e^{2 \pi}\right)^{2}\left(1+e^{\pi}+e^{2 \pi}\right)^{2}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}+\frac{8 \exp ^{2}(\pi)^{2}}{\left(1-\exp ^{2}(\pi)^{2}\right)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{\left(1-\exp ^{2}(\pi)^{3}\right)^{2}}= \\
& \left(\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\left(1+4\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4 \pi}\right)^{3}\right) /\left(\left(-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}\right)^{2}\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}\right)^{2}\right. \\
& \left.\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\right)^{2}\left(1-\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\right)^{2}\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\right)^{2}\right) \\
& \frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}+\frac{8 \exp ^{2}(\pi)^{2}}{\left(1-\exp ^{2}(\pi)^{2}\right)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{\left(1-\exp ^{2}(\pi)^{3}\right)^{2}}= \\
& \left(\left(1+4\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{4 \pi}\right)^{3}\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right) / \\
& \left(\left(-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}\right)^{2}\left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}\right)^{2}\left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right)^{2}\right. \\
& \left.\left(1-\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right)^{2}\left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right)^{2}\right) \\
& \frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}+\frac{8 \exp ^{2}(\pi)^{2}}{\left(1-\exp ^{2}(\pi)^{2}\right)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{\left(1-\exp ^{2}(\pi)^{3}\right)^{2}}= \\
& \left(e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\left(1+4 e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)^{3}\right) / \\
& \left(\left(-1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)^{2}\left(1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)^{2}\right. \\
& \left(1+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)^{2}\left(1-e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)^{2} \\
& \left(1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)^{2}\left(1+e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)^{2} \\
& \left(1-e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)^{2}\left(1+e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)^{2} \\
& \left.\left(1-e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)^{2}\right)
\end{aligned}
$$

We note that:
$1+((\exp (\mathrm{Pi})))^{\wedge} 2 /\left(1-\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)\right)^{\wedge} 2+8^{*}\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2 /\left(1-\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2\right)^{\wedge} 2+$ $27 *\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3 /\left(1-\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3\right)^{\wedge} 2$

Input:

$$
1+\frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}+8 \times \frac{\exp ^{2}(\pi)^{2}}{\left(1-\exp ^{2}(\pi)^{2}\right)^{2}}+27 \times \frac{\exp ^{2}(\pi)^{3}}{\left(1-\exp ^{2}(\pi)^{3}\right)^{2}}
$$

Exact result:

$$
1+\frac{e^{2 \pi}}{\left(1-e^{2 \pi}\right)^{2}}+\frac{8 e^{4 \pi}}{\left(1-e^{4 \pi}\right)^{2}}+\frac{27 e^{6 \pi}}{\left(1-e^{6 \pi}\right)^{2}}
$$

Decimal approximation:

1.001902511770982413535314427039665099167434985249917553048...
$1.00190251177 \ldots$. result that is very near to the value of the following RogersRamanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{2 \pi}{5}}}{\sqrt{\varphi \sqrt{5}}-\varphi}=1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\frac{\mathrm{e}^{-6 \pi}}{1+\frac{\mathrm{e}^{-8 \pi}}{1+\ldots}}}} \approx 1.0018674362
$$

Property:

$1+\frac{e^{2 \pi}}{\left(1-e^{2 \pi}\right)^{2}}+\frac{8 e^{4 \pi}}{\left(1-e^{4 \pi}\right)^{2}}+\frac{27 e^{6 \pi}}{\left(1-e^{6 \pi}\right)^{2}}$ is a transcendental number

Alternate forms:

$42+49 \cosh (2 \pi)+13 \cosh (4 \pi)+3 \cosh (6 \pi)+\cosh (8 \pi)$
$1+\frac{e^{2 \pi}}{\left(e^{2 \pi}-1\right)^{2}}+\frac{8 e^{4 \pi}}{\left(e^{4 \pi}-1\right)^{2}}+\frac{27 e^{6 \pi}}{\left(e^{6 \pi}-1\right)^{2}}$
$\frac{1+3 e^{2 \pi}+13 e^{4 \pi}+49 e^{6 \pi}+84 e^{8 \pi}+49 e^{10 \pi}+13 e^{12 \pi}+3 e^{14 \pi}+e^{16 \pi}}{\left(e^{\pi}-1\right)^{2}\left(1+e^{\pi}\right)^{2}\left(1+e^{2 \pi}\right)^{2}\left(1-e^{\pi}+e^{2 \pi}\right)^{2}\left(1+e^{\pi}+e^{2 \pi}\right)^{2}}$
$\cosh (x)$ is the hyperbolic cosine function $\sinh (x)$ is the hyperbolic sine function

Series representations:

$$
\begin{aligned}
& 1+\frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}+\frac{8 \exp ^{2}(\pi)^{2}}{\left(1-\exp ^{2}(\pi)^{2}\right)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{\left(1-\exp ^{2}(\pi)^{3}\right)^{2}}= \\
& 1+\frac{e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}}{\left(1-e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)^{2}}+\frac{8 e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}}{\left(1-e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)^{2}}+\frac{27 e^{24 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}}{\left(1-e^{24 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)^{2}} \\
& 1+\frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}+\frac{8 \exp ^{2}(\pi)^{2}}{\left(1-\exp ^{2}(\pi)^{2}\right)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{\left(1-\exp ^{2}(\pi)^{3}\right)^{2}}= \\
& 1+\frac{\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}}{\left(1-\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{8} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)\right)^{2}}+ \\
& \frac{8\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}}{\left(1-\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{16} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)\right)^{2}}+\frac{27\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{24} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}{\left(1-\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{24} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)\right)^{2}} \\
& 1+\frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}+\frac{8 \exp ^{2}(\pi)^{2}}{\left(1-\exp ^{2}(\pi)^{2}\right)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{\left(1-\exp ^{2}(\pi)^{3}\right)^{2}}= \\
& \left.1+\frac{\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}}{\left(1-\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{8} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)\right.}\right)^{2}+ \\
& 8\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)} \\
& 27\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{24 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)} \\
& \left.\overline{\left(1-\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{16} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)\right.}\right)^{2}+\overline{\left(1-\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{24} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)\right)^{2}}
\end{aligned}
$$

From the ratio of the two previous results, performing the square root, we obtain:
$\left(\left(\left(-36.001899011269931928 /-\left[((\exp (\mathrm{Pi})))^{\wedge} 2 /\left(1-\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)\right)^{\wedge} 2+\right.\right.\right.\right.$ $8^{*}\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2 /\left(1-\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2\right)^{\wedge} 2+27^{*}\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3 /(1-$ $\left.\left.\left.\left.\left.\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3\right)^{\wedge} 2\right]\right)\right)\right)^{\wedge} 1 / 2$

Input interpretation:

$\sqrt{\frac{-36.001899011269931928}{-\left(\frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}+8 \times \frac{\exp ^{2}(\pi)^{2}}{\left(1-\exp ^{2}(\pi)^{2}\right)^{2}}+27 \times \frac{\exp ^{2}(\pi)^{3}}{\left(1-\operatorname{epp}^{2}(\pi)^{3}\right)^{2}}\right)}}$

Result:

137.56217328526607012..
$137.56217328 \ldots$ result practically equal to the golden angle value 137.5 and very near to the inverse of fine-structure constant 137.035
$\left(\left(\left(-36.001899011269931928 /-\left[((\exp (\mathrm{Pi})))^{\wedge} 2 /\left(1-\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)\right)^{\wedge} 2+\right.\right.\right.\right.$ $8^{*}\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2 /\left(1-\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2\right)^{\wedge} 2+27^{*}\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3 /(1-$ $\left.\left.\left.\left.\left.\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3\right)^{\wedge} 2\right]\right)\right)\right)^{\wedge} 1 / 2-13+1 /$ golden ratio

Input interpretation:

$\sqrt{\frac{-36.001899011269931928}{-\left(\frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}+8 \times \frac{\operatorname{cp}^{2}(\pi)^{2}}{\left(1-\exp ^{2}(\pi)^{2}\right)^{2}}+27 \times \frac{\exp ^{2}(\pi)^{3}}{\left(1-\exp ^{2}(\pi)^{3}\right)^{2}}\right)}}-13+\frac{1}{\phi}$

Result:

125.18020727401596497...
125.18020727...
$27^{*} 1 / 2\left(\left(\left(\left(\left(\left(-36.001899011269931928 /-\left[((\exp (\mathrm{Pi})))^{\wedge} 2 /\left(1-\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)\right)^{\wedge} 2+\right.\right.\right.\right.\right.\right.\right.$ $8^{*}\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2 /\left(1-\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2\right)^{\wedge} 2+27^{*}\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3 /(1-$ $\left.\left.\left.\left.\left.\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3\right)^{\wedge} 2\right]\right)\right)\right)^{\wedge} 1 / 2-11+$ golden ratio $\left.\left.)\right)\right)$-sqrt2

Input interpretation:

$27 \times \frac{1}{2}\left(\sqrt{\frac{-36.001899011269931928}{-\left(\frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}+8 \times \frac{\exp ^{2}(\pi)^{2}}{\left(1-\exp ^{2}(\pi)^{2}\right)^{2}}+27 \times \frac{\exp ^{2}(\pi)^{3}}{\left(1-\exp ^{2}(\pi)^{3}\right)^{2}}\right)}}-11+\phi\right)-\sqrt{2}$

Result:

1729.0185846368424320...
1729.0185846...

Series representations:

$$
\begin{aligned}
& \frac{27}{2}\left(\sqrt{\frac{-36.0018990112699319280000}{-\left(\frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}+\frac{8 \operatorname{cxp}^{2}(\pi)^{2}}{\left(1-\exp ^{2}(\pi)^{2}\right)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{\left(1-\exp ^{2}(\pi)^{3}\right)^{2}}\right)}}-11+\phi\right)-\sqrt{2}=-\frac{297}{2}+\frac{27 \phi}{2}+ \\
& 81.0021363595056367688483 \sqrt{-\frac{1}{-\frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}-\frac{8 \exp ^{4}(\pi)}{\left(1-\exp ^{4}(\pi)\right)^{2}}-\frac{27 \exp ^{6}(\pi)}{\left(1-\exp ^{6}(\pi)\right)^{2}}}}- \\
& \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!} \text { for }\left(\operatorname{not}\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right) \\
& \frac{27}{2}\left(\sqrt{\frac{-36.0018990112699319280000}{-\left(\frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}+\frac{8 \exp ^{2}(\pi)^{2}}{\left(1-\exp ^{2}(\pi)^{2}\right)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{\left(1-\exp ^{2}(\pi)^{3}\right)^{2}}\right)}}-11+\phi\right)-\sqrt{2}=-\frac{297}{2}+\frac{27 \phi}{2}+ \\
& 81.0021363595056367688483 \sqrt{-\frac{1}{-\frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}-\frac{8 \exp ^{4}(\pi)}{\left(1-\exp ^{4}(\pi)\right)^{2}}-\frac{27 \exp ^{6}(\pi)}{\left(1-\exp ^{5}(\pi)\right)^{2}}}}- \\
& \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \text { for }(x \in \mathbb{R} \text { and } x<0) \\
& \frac{27}{2}\left(\sqrt{\frac{-36.0018990112699319280000}{-\left(\frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}+\frac{8 \exp ^{2}(\pi)^{2}}{\left(1-\exp ^{2}(\pi)^{2}\right)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{\left(1-\exp ^{2}(\pi)^{3}\right)^{2}}\right)}}-11+\phi\right)-\sqrt{2}=-\frac{297}{2}+\frac{27 \phi}{2}+ \\
& 81.0021363595056367688483 \sqrt{-\frac{1}{-\frac{\exp ^{2}(\pi)}{\left(1-\exp ^{2}(\pi)\right)^{2}}-\frac{8 \operatorname{cxp}^{4}(\pi)}{\left(1-\exp ^{4}(\pi)\right)^{2}}-\frac{27 \exp ^{6}(\pi)}{\left(1-\exp ^{6}(\pi)\right)^{2}}}}- \\
& \left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k!}
\end{aligned}
$$

Now, we have that:

$$
\begin{aligned}
& P=-24 S_{1}=1-24\left(\frac{x}{1-x}+\frac{2 x^{2}}{1-x^{2}}+\frac{3 x^{3}}{1-x^{3}}+\cdots\right) * \\
& Q=240 S_{3}=1+240\left(\frac{1^{3} x}{1-x}+\frac{2^{3} x^{2}}{1-x^{2}}+\frac{3^{3} x^{3}}{1-x^{3}}+\cdots\right), \\
& R=-540 S_{5}=1-504\left(\frac{1^{5} x}{1-x}+\frac{2^{5} x^{2}}{1-x^{2}}+\frac{3^{5} x^{3}}{1-x^{3}}+\cdots\right)
\end{aligned}
$$

For $\mathrm{x}=\mathrm{q}^{2} ; \mathrm{q}=\mathrm{e}^{\pi \mathrm{it}}=\mathrm{e}^{\pi} ; \mathrm{q}^{2}=\mathrm{x}=(\exp (\mathrm{Pi}))^{\wedge} 2 ; \mathrm{s}=3$, we obtain:
$1-24\left[\left((\exp (\mathrm{Pi}))^{\wedge} 2\right) /\left(1-\left(\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)\right)\right)+2\left(\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2\right) /\left(1-\left(\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2\right)\right)+\right.$ $\left.3\left(\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3\right) /\left(1-\left(\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3\right)\right)\right]$

Input:

$1-24\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+2 \times \frac{\exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+3 \times \frac{\exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)$

Exact result:

$1-24\left(\frac{e^{2 \pi}}{1-e^{2 \pi}}+\frac{2 e^{4 \pi}}{1-e^{4 \pi}}+\frac{3 e^{6 \pi}}{1-e^{6 \pi}}\right)$

Decimal approximation:

145.0450703402783870993952756381669543280224256236297787226 .
$\mathrm{P}=145.04507034 \ldots$.

Property:

$1-24\left(\frac{e^{2 \pi}}{1-e^{2 \pi}}+\frac{2 e^{4 \pi}}{1-e^{4 \pi}}+\frac{3 e^{6 \pi}}{1-e^{6 \pi}}\right)$ is a transcendental number

Alternate forms:

$73+12 \tanh (\pi)+36 \operatorname{coth}(\pi)+\frac{48 \sinh (2 \pi)}{1+2 \cosh (2 \pi)}$
$1+\frac{24 e^{2 \pi}}{e^{2 \pi}-1}+\frac{48 e^{4 \pi}}{e^{4 \pi}-1}+\frac{72 e^{6 \pi}}{e^{6 \pi}-1}$
$1-\frac{24 e^{2 \pi}}{1-e^{2 \pi}}-\frac{48 e^{4 \pi}}{1-e^{4 \pi}}-\frac{72 e^{6 \pi}}{1-e^{6 \pi}}$

Series representations:

$$
\begin{aligned}
& 1-24\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{2 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{3 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)= \\
& \left(-1+23\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}+96\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4 \pi}+169\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{6 \pi}+145\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{8 \pi}\right) / \\
& \left(\left(-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}\right)\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}\right)\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\right)\right. \\
& \left.\left(1-\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\right)\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\right)\right)
\end{aligned}
$$

$$
1-24\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{2 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{3 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)=
$$

$$
\left(-1+23\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}+96\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{4 \pi}+\right.
$$

$$
\left.169\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{6 \pi}+145\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{8 \pi}\right) /
$$

$$
\left(\left(-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}\right)\left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}\right)\left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right)\right.
$$

$$
\left.\left(1-\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right)\left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right)\right)
$$

$$
1-24\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{2 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{3 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)=
$$

$$
\left(-1+23 e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+96 e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+169 e^{24 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+\right.
$$

$$
\left.145 e^{32 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right) /\left(\left(-1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\right.
$$

$$
\left(1+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1-e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)
$$

$$
\left(1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1+e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)
$$

$$
\left(1-e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1+e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)
$$

$$
\left.\left(1-e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\right)
$$

Integral representations:

$$
\begin{aligned}
& 1-24\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{2 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{3 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)= \\
& 1-\frac{24 e^{16 / 3} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}{1-e^{16 / 3} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}-\frac{48 e^{32 / 3} \int_{0}^{\infty \sin ^{3}(t) / t^{3} d t}}{1-e^{32 / 3} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}-\frac{72 e^{16} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}{1-e^{16} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}
\end{aligned}
$$

$$
\begin{aligned}
& 1-24\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{2 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{3 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)= \\
& \left(-1+23 e^{4} \int_{0}^{\infty} \sin (t) / t d t+96 e^{8} \int_{0}^{\infty} \sin (t) / t d t+169 e^{12} \int_{0}^{\infty} \sin (t) / t d t+145 e^{16} \int_{0}^{\infty} \sin (t) / t d t\right) / \\
& \left(\left(-1+e^{\int_{0}^{\infty} \sin (t) / t d t}\right)\left(1+e^{\int_{0}^{\infty} \sin (t) / t d t}\right)\left(1+e^{2} \int_{0}^{\infty} \sin (t) / t d t\right)\right. \\
& \left(1-e^{\int_{0}^{\infty} \sin (t) / t d t}+e^{2 \int_{0}^{\infty} \sin (t) / t d t}\right)\left(1+e^{\int_{0}^{\infty} \sin (t) / t d t}+e^{2 \int_{0}^{\infty} \sin (t) / t d t}\right) \\
& \left.\left(1+e^{4 \int_{0}^{\infty} \sin (t) / t d t}\right)\left(1-e^{2} \int_{0}^{\infty} \sin (t) / t d t+e^{4} \int_{0}^{\infty} \sin (t) / t d t\right)\right) \\
& 1-24\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{2 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{3 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)= \\
& \left(-1+23 e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+96 e^{8} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+\right. \\
& \left.169 e^{12 \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+145 e^{16 \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right) / \\
& \left(\left(-1+e^{\int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)\left(1+e^{\int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)\left(1+e^{2} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\right. \\
& \left(1-e^{\int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+e^{2 \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)\left(1+e^{\int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+e^{2} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right) \\
& \left.\left(1+e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\left(1-e^{2} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\right) \\
& 1+240\left[\left((\exp (\mathrm{Pi}))^{\wedge} 2\right) /\left(1-\left(\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)\right)\right)+8\left(\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2\right) /\left(1-\left(\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2\right)\right)+\right. \\
& \left.27\left(\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3\right) /\left(1-\left(\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3\right)\right)\right]
\end{aligned}
$$

Input:

$$
1+240\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+8 \times \frac{\exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+27 \times \frac{\exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)
$$

Exact result:

$1+240\left(\frac{e^{2 \pi}}{1-e^{2 \pi}}+\frac{8 e^{4 \pi}}{1-e^{4 \pi}}+\frac{27 e^{6 \pi}}{1-e^{6 \pi}}\right)$

Decimal approximation:

-8639.45576270478366279233826116361583514245301177031156151...
$\mathrm{Q}=-8639.4557627 \ldots$

Property:

$1+240\left(\frac{e^{2 \pi}}{1-e^{2 \pi}}+\frac{8 e^{4 \pi}}{1-e^{4 \pi}}+\frac{27 e^{6 \pi}}{1-e^{6 \pi}}\right)$ is a transcendental number

Alternate forms:

$-4319-\frac{240(5+19 \cosh (2 \pi)+18 \cosh (4 \pi))}{\sinh (2 \pi)+\sinh (4 \pi)}$
$1-\frac{240 e^{2 \pi}}{e^{2 \pi}-1}-\frac{1920 e^{4 \pi}}{e^{4 \pi}-1}-\frac{6480 e^{6 \pi}}{e^{6 \pi}-1}$
$1-\frac{240 e^{2 \pi}\left(1+10 e^{2 \pi}+37 e^{4 \pi}+36 e^{6 \pi}\right)}{-1-e^{2 \pi}+e^{6 \pi}+e^{8 \pi}}$
$\cosh (x)$ is the hyperbolic cosine function $\sinh (x)$ is the hyperbolic sine function

Series representations:

$$
\begin{aligned}
& 1+240\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{8 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)= \\
& -\left(\left(1+241\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}+2400\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4 \pi}+8879\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{6 \pi}+8639\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{8 \pi}\right) /\right. \\
& \quad\left(\left(-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}\right)\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}\right)\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\right)\right. \\
& \left.\left.\quad\left(1-\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\right)\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\right)\right)\right)
\end{aligned}
$$

$$
1+240\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{8 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)=
$$

$$
-\int\left(1+241\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}+2400\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{4 \pi}+8879\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{6 \pi}+\right.
$$

$$
\left.8639\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{8 \pi}\right) /\left(\left(-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}\right)\left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}\right)\right.
$$

$$
\left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right)\left(1-\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right)
$$

$$
\left.\left.\left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right)\right)\right)
$$

$$
\begin{aligned}
& 1+240\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{8 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)= \\
& -\left(\left(1+241 e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+2400 e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+8879 e^{24 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+\right.\right. \\
& \left.8639 e^{32 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right) /\left(\left(-1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\right. \\
& \quad\left(1+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1-e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right) \\
& \quad\left(1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1+e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right) \\
& \quad\left(1-e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1+e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right) \\
& \left.\left.\quad\left(1-e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\right)\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 1+240\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{8 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)= \\
& 1+\frac{240 e^{16 / 3} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}{1-e^{16 / 3} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}+\frac{1920 e^{32 / 3} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}{1-e^{32 / 3} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}+\frac{6480 e^{16} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}{1-e^{16} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t} \\
& 1+240\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{8 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)= \\
& -\left(\left(1+241 e^{4} \int_{0}^{\infty \sin (t) / t d t}+2400 e^{8} \int_{0}^{\infty} \sin (t) / t d t+8879 e^{12} \int_{0}^{\infty \sin (t) / t d t}+8639\right.\right. \\
& \left.e^{16} \int_{0}^{\infty} \sin (t) / t d t\right) /\left(\left(-1+e^{\int_{0}^{\infty} \sin (t) / t d t}\right)\left(1+e^{\int_{0}^{\infty} \sin (t) / t d t}\right)\left(1+e^{2} \int_{0}^{\infty} \sin (t) / t d t\right)\right. \\
& \left(1-e^{\int_{0}^{\infty} \sin (t) / t d t}+e^{2 \int_{0}^{\infty} \sin (t) / t d t}\right)\left(1+e^{\int_{0}^{\infty} \sin (t) / t d t}+e^{2 \int_{0}^{\infty} \sin (t) / t d t}\right) \\
& \left.\left.\left(1+e^{4} \int_{0}^{\infty} \sin (t) / t d t\right)\left(1-e^{2} \int_{0}^{\infty} \sin (t) / t d t+e^{4} \int_{0}^{\infty} \sin (t) / t d t\right)\right)\right) \\
& 1+240\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{8 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{27 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)= \\
& -\left(\left(1+241 e^{4 \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+2400 e^{8} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+\right.\right. \\
& \left.8879 e^{12 \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+8639 e^{16} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right) / \\
& \left(\left(-1+e^{\int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)\left(1+e^{\int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)\left(1+e^{2} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\right. \\
& \left(1-e^{\int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+e^{2 \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)\left(1+e^{\int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+e^{2} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right) \\
& \left.\left.\left(1+e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\left(1-e^{2} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\right)\right)
\end{aligned}
$$

$1-504\left[\left((\exp (\mathrm{Pi}))^{\wedge} 2\right) /\left(1-\left(\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)\right)\right)+32\left(\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2\right) /\left(1-\left(\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 2\right)\right)+\right.$ $\left.243\left(\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3\right) /\left(1-\left(\left((\exp (\mathrm{Pi}))^{\wedge} 2\right)^{\wedge} 3\right)\right)\right]$

Input:

$$
1-504\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+32 \times \frac{\exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+243 \times \frac{\exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)
$$

Exact result:

$1-504\left(\frac{e^{2 \pi}}{1-e^{2 \pi}}+\frac{32 e^{4 \pi}}{1-e^{4 \pi}}+\frac{243 e^{6 \pi}}{1-e^{6 \pi}}\right)$

Decimal approximation:

139105.9999936875324981309968236586453330169257041446424631...
$\mathrm{R}=139105.9999 \ldots$

Property:

$1-504\left(\frac{e^{2 \pi}}{1-e^{2 \pi}}+\frac{32 e^{4 \pi}}{1-e^{4 \pi}}+\frac{243 e^{6 \pi}}{1-e^{6 \pi}}\right)$ is a transcendental number

Alternate forms:

$69553+\frac{504(17+139 \cosh (2 \pi)+138 \cosh (4 \pi))}{\sinh (2 \pi)+\sinh (4 \pi)}$
$1+\frac{504 e^{2 \pi}}{e^{2 \pi}-1}+\frac{16128 e^{4 \pi}}{e^{4 \pi}-1}+\frac{122472 e^{6 \pi}}{e^{6 \pi}-1}$
$1+\frac{504 e^{2 \pi}\left(1+34 e^{2 \pi}+277 e^{4 \pi}+276 e^{6 \pi}\right)}{-1-e^{2 \pi}+e^{6 \pi}+e^{8 \pi}}$
$\cosh (x)$ is the hyperbolic cosine function $\sinh (x)$ is the hyperbolic sine function

Series representations:

$$
\begin{aligned}
& 1-504\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{32 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{243 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)= \\
& \left(-1+503\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}+17136\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4 \pi}+139609\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{6 \pi}+139105\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{8 \pi}\right) / \\
& \quad\left(\left(-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}\right)\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}\right)\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\right)\right. \\
& \left.\quad\left(1-\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\right)\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 1-504\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{32 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{243 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)= \\
& \left(-1+503\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}+17136\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{4 \pi}+\right. \\
& \left.139609\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{6 \pi}+139105\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{8 \pi}\right) / \\
& \left(\left(-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}\right)\left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}\right)\left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right)\right. \\
& \left.\left(1-\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right)\left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}\right)\right) \\
& 1-504\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{32 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{243 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)= \\
& \left(-1+503 e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+17136 e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+\right. \\
& \left.139609 e^{24 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+139105 e^{32 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right) / \\
& \left(\left(-1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\right. \\
& \left(1-e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right) \\
& \left(1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1+e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right) \\
& \left(1-e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1+e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right) \\
& \left.\left(1-e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\right)
\end{aligned}
$$

Integral representations:

$$
\left.\begin{array}{l}
1-504\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{32 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{243 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)= \\
1-\frac{504 e^{16 / 3} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}{1-e^{16 / 3} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}-\frac{16128 e^{32 / 3} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}{1-e^{32 / 3} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}-\frac{122472 e^{16} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t}{1-e^{16} \int_{0}^{\infty} \sin ^{3}(t) / t^{3} d t} \\
1-504\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{32 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{243 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)= \\
\left(-1+503 e^{4 \int_{0}^{\infty} \sin (t) / t d t}+17136 e^{8} \int_{0}^{\infty} \sin (t) / t d t\right.
\end{array}+139609 e^{12 \int_{0}^{\infty} \sin (t) / t d t}+\quad \begin{array}{l}
139105 e^{16} \int_{0}^{\infty} \sin (t) / t d t
\end{array}\right) /\left(\left(-1+e^{\int_{0}^{\infty} \sin (t) / t d t}\right)\left(1+e^{\int_{0}^{\infty} \sin (t) / t d t}\right)\left(1+e^{2 \int_{0}^{\infty} \sin (t) / t d t}\right)\right)
$$

$$
\begin{aligned}
& 1-504\left(\frac{\exp ^{2}(\pi)}{1-\exp ^{2}(\pi)}+\frac{32 \exp ^{2}(\pi)^{2}}{1-\exp ^{2}(\pi)^{2}}+\frac{243 \exp ^{2}(\pi)^{3}}{1-\exp ^{2}(\pi)^{3}}\right)= \\
& \left(-1+503 e^{4 \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+17136 e^{8} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+\right. \\
& \left.139609 e^{12 \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+139105 e^{16} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right) / \\
& \left(\left(-1+e^{6_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)\left(1+e^{\int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)\left(1+e^{2} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\right. \\
& \left(1-e^{\int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+e^{2 \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)\left(1+e^{\int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+e^{2 \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right) \\
& \left.\left(1+e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\left(1-e^{2} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\right)
\end{aligned}
$$

Thence, we have obtained:
$\mathrm{P}=145.04507034 \ldots . \quad \mathrm{Q}=-8639.4557627 \ldots . \quad \mathrm{R}=139105.9999 \ldots$
$\mathrm{x}=(\exp (\mathrm{Pi}))^{\wedge} 2$

We have that:

Suppose now that m and n are any two positive integers including zero, and that $m+n$ is not zero. Then

$$
\begin{aligned}
Q^{m} R^{n}\left(Q^{3}-R^{2}\right) & =Q\left(Q^{3}-R^{2}\right) Q^{m-1} R^{n} \\
& =\sum O\left(\nu^{10}\right) x^{\nu}\left\{\sum O\left(\nu^{3}\right) x^{\nu}\right\}^{m-1}\left\{\sum O\left(\nu^{5}\right) x^{\nu}\right\}^{n} \\
& =\sum O\left(\nu^{10}\right) x^{\nu} \sum O\left(\nu^{4 m-5}\right) x^{\nu} \sum O\left(\nu^{6 n-1}\right) x^{\nu} \\
& =\sum O\left(\nu^{4 m+6 n+6}\right) x^{\nu},
\end{aligned}
$$

If m is not zero, Similarly we can shew that

$$
\begin{aligned}
Q^{m} R^{n}\left(Q^{3}-R^{2}\right) & =R\left(Q^{3}-R^{2}\right) Q^{m} R^{n-1} \\
& =\sum O\left(\nu^{4 m+6 n+6}\right) x^{\nu}
\end{aligned}
$$

if n is not zero. Therefore in any case

$$
\begin{equation*}
\left(Q^{3}-R^{2}\right) Q^{m} R^{n}=\sum O\left(\nu^{4 m+6 n+6}\right) x^{\nu} . \tag{52}
\end{equation*}
$$

Thence:
$\mathrm{Q}=-8639.4557627 \ldots . \quad \mathrm{R}=139105.9999 \mathrm{~m}=2$ and $\mathrm{n}=3$, we obtain:

Input interpretation:

$\left(-8639.4557627^{3}-139105.9999^{2}\right)\left(-8639.4557627^{2}-139105.9999^{3}\right)$

Result:

$1.7878752894127357888244265228070068241372514870224397 \ldots \times 10^{27}$
1.7878752894...*10 0^{27}

From which:
$\ln \left[\left(-8639.4557627^{\wedge} 3-139105.9999^{\wedge} 2\right)^{*}\left(-8639.4557627^{\wedge} 2-139105.9999^{\wedge} 3\right)\right]+\mathrm{sqrt5}-$ 1

Input interpretation:

$\log \left(\left(-8639.4557627^{3}-139105.9999^{2}\right)\left(-8639.4557627^{2}-139105.9999^{3}\right)\right)+\sqrt{5}-1$
$\log (x)$ is the natural logarithm

Result:

63.986893414..
$63.986893414 \ldots \approx 64$

Alternative representations:

```
\(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .{ }^{3}\right)\right)+\)
    \(\sqrt{5}-1=-1+\log _{e}(\)
        \(\left.\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\sqrt{5}\)
```

$\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .{ }^{3}\right)\right)+$
$\sqrt{5}-1=-1+\log (a) \log _{a}\left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\right.$
$\left.\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\sqrt{5}$

```
\(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .{ }^{3}\right)\right)+\)
    \(\sqrt{5}-1=-1-\)
    \(\mathrm{Li}_{1}\left(1-\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\)
    \(\sqrt{5}\)
```


Series representations:

$\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+$

$$
\sqrt{5}-1=-1+\log \left(1.78788 \times 10^{27}\right)+\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}
$$

$$
\begin{aligned}
& \log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+ \\
& \sqrt{5}-1=-1+\log \left(1.78788 \times 10^{27}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k} e^{-62.7508 k}}{k}+\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k} \\
& \log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\sqrt{5}- \\
& 1=-1+\log \left(1.78788 \times 10^{27}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k} e^{-62.7508 k}}{k}+\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}
\end{aligned}
$$

Integral representations:

```
\(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\)
    \(\sqrt{5}-1=-1+\int_{1}^{1.78788 \times 10^{27}} \frac{1}{t} d t+\sqrt{5}\)
\(\log \left(\left(-8639.45576270000^{3}-139106^{2}\right)\left(-8639.45576270000^{2}-139106^{3}\right)\right)+\sqrt{5}-\)
    \(1=-1+\frac{1}{2 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-62.7508 s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s+\sqrt{5}\) for \(-1<\gamma<0\)
```

and:
$27 *\left(\left(\left(\ln \left[\left(-8639.4557627^{\wedge} 3-139105.9999^{\wedge} 2\right) *\left(-8639.4557627^{\wedge} 2-\right.\right.\right.\right.\right.$ 139105.9999^3)]+sqrt5-1)))+sqrt2

Input interpretation:

$27\left(\log \left(\left(-8639.4557627^{3}-139105.9999^{2}\right)\left(-8639.4557627^{2}-139105.9999^{3}\right)\right)+\right.$ $\sqrt{5}-1)+\sqrt{2}$

Result:

1729.0603357...
1729.0603357...

With regard 27 (From Wikipedia):
"The fundamental group of the complex form, compact real form, or any algebraic version of E_{6} is the cyclic group $\mathbf{Z} / 3 \boldsymbol{Z}$, and its outer automorphism group is the cyclic group $\boldsymbol{Z} / 2 \boldsymbol{Z}$. Its fundamental representation is 27-dimensional (complex), and a basis is given by the 27 lines on a cubic surface. The dual representation, which is inequivalent, is also 27-dimensional. In particle physics, E_{6} plays a role in some grand unified theories ".

Alternative representations:

$$
\begin{aligned}
& 27\left(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106^{3}\right)\right)+\right. \\
& \sqrt{5}-1)+\sqrt{2}= \\
& \sqrt{2}+27\left(-1+\log _{e}\left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\right.\right. \\
& \left.\left.\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\sqrt{5}\right)
\end{aligned}
$$

$27\left(\log \left(\left(-8639.45576270000^{3}-139\right.\right.\right.$ 106. $\left.\left.^{2}\right)\left(-8639.45576270000^{2}-139106 .{ }^{3}\right)\right)+$ $\sqrt{5}-1)+\sqrt{2}=$
$\sqrt{2}+27\left(-1+\log (a) \log _{a}\left(\left(-8639.45576270000^{3}-139106 .{ }^{2}\right)\right.\right.$ $\left.\left.\left(-8639.45576270000^{2}-139106 . .^{3}\right)\right)+\sqrt{5}\right)$
$27\left(\log \left(\left(-8639.45576270000^{3}-139106 .{ }^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\right.$ $\sqrt{5}-1)+\sqrt{2}=$
$\sqrt{2}+27\left(-1-\mathrm{Li}_{1}\left(1-\left(-8639.45576270000^{3}-139106 .^{2}\right)\right.\right.$

$$
\left.\left.\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\sqrt{5}\right)
$$

Series representations:

$27\left(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\right.$

$$
\sqrt{5}-1)+\sqrt{2}=-27+27 \log \left(1.78788 \times 10^{27}\right)+
$$

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}\left((2-x)^{k} \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right)+27(5-x)^{k} \exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right)\right)\left(-\frac{1}{2}\right)_{k} \sqrt{x}}{k!}
$$

for ($x \in \mathbb{R}$ and $x<0$)
$27\left(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\right.$ $\sqrt{5}-1)+\sqrt{2}=$
$-27+27 \log \left(1.78788 \times 10^{27}\right)-27 \sum_{k=1}^{\infty} \frac{\left(-5.59323 \times 10^{-28}\right)^{k}}{k}+$ $\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}\left((2-x)^{k} \exp \left(i \pi\left\lfloor\frac{\operatorname{agg}(2-x)}{2 \pi}\right\rfloor\right)+27(5-x)^{k} \exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right)\right)\left(-\frac{1}{2}\right)_{k} \sqrt{x}}{k!}$
fr $(x \in \mathbb{R}$ and $x<0)$

$$
27\left(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\right.
$$

$$
\sqrt{5}-1)+\sqrt{2}=-27+54 i \pi\left\lfloor\left.\frac{\arg \left(1.78788 \times 10^{27}-x\right)}{2 \pi} \right\rvert\,+\right.
$$

$$
27 \log (x)-27 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(1.78788 \times 10^{27}-x\right)^{k} x^{-k}}{k}+
$$

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}\left((2-x)^{k} \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right]\right)+27(5-x)^{k} \exp \left(i \pi\left[\frac{\arg (5-x)}{2 \pi}\right]\right)\right)\left(-\frac{1}{2}\right)_{k} \sqrt{x}}{k!} \\
& \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

Integral representations:

$27\left(\log \left(\left(-8639.45576270000^{3}-139{106 .{ }^{2}}^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\right.$

$$
\sqrt{5}-1)+\sqrt{2}=-27+27 \int_{1}^{1.78788 \times 10^{27}} \frac{1}{t} d t+\sqrt{2}+27 \sqrt{5}
$$

$27\left(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\right.$ $\sqrt{5}-1)+\sqrt{2}=$
$-27+\frac{27}{2 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-62.7508 s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s+\sqrt{2}+27 \sqrt{5}$ for
$-1<\gamma<0$
or:

Input interpretation:

$\phi \sqrt[9]{\left(-8639.4557^{3}-139105.9999^{2}\right)\left(-8639.4557^{2}-139105.9999^{3}\right)}+\pi$

Result:

1729.0793.
1729.0793...

Alternative representations:

$$
\begin{aligned}
& \phi \sqrt[9]{\left(-8639.46^{3}-139106^{2}\right)\left(-8639.46^{2}-139106^{3}\right)}+\pi= \\
& \pi-2 \cos \left(216^{\circ}\right) \sqrt[9]{\left(-8639.46^{3}-139106^{2}\right)\left(-8639.46^{2}-13910 .^{3}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \phi \sqrt[9]{\left(-8639.46^{3}-139106 .^{2}\right)\left(-8639.46^{2}-13910 .^{3}\right)}+\pi= \\
& \pi+2 \cos \left(\frac{\pi}{5}\right) \sqrt[9]{\left(-8639.46^{3}-139106^{2}\right)\left(-8639.46^{2}-13910 .^{3}\right)}
\end{aligned}
$$

$$
\phi \sqrt[9]{\left(-8639.46^{3}-139106 .^{2}\right)\left(-8639.46^{2}-139106 .^{3}\right)}+\pi=
$$

$$
180^{\circ}-2 \cos \left(216^{\circ}\right) \sqrt[9]{\left(-8639.46^{3}-139106^{2}\right)\left(-8639.46^{2}-139106^{3}\right)}
$$

Series representations:

$\phi \sqrt[9]{\left(-8639.46^{3}-139106 .^{2}\right)\left(-8639.46^{2}-139106 .^{3}\right)}+\pi=1066.69 \phi+4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}$
$\phi \sqrt[9]{\left(-8639.46^{3}-139106 .^{2}\right)\left(-8639.46^{2}-13910 .^{3}\right)+\pi=}$

$$
-2+1066.69 \phi+2 \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}
$$

$\phi \sqrt[9]{\left(-8639.46^{3}-13910 .^{2}\right)\left(-8639.46^{2}-139106 .^{3}\right)}+\pi=$

$$
1066.69 \phi+\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}
$$

Integral representations:

$\phi \sqrt[9]{\left(-8639.46^{3}-139106 .^{2}\right)\left(-8639.46^{2}-13910 .^{3}\right)}+\pi=1066.69 \phi+2 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t$
$\phi \sqrt[9]{\left(-8639.46^{3}-139106^{2}\right)\left(-8639.46^{2}-13910 .^{3}\right)}+\pi=$
$1066.69 \phi+4 \int_{0}^{1} \sqrt{1-t^{2}} d t$
$\phi \sqrt[9]{\left(-8639.46^{3}-139106 .^{2}\right)\left(-8639.46^{2}-139106 .^{3}\right)}+\pi=1066.69 \phi+2 \int_{0}^{\infty} \frac{\sin (t)}{t} d t$

For the other expression, we have:
((((27*)((ln[(-8639.4557627^3-139105.9999^2)*(-8639.4557627^2-
$\left.\left.139105.9999^{\wedge} 3\right)\right]+$ sqrt5-1))) + sqrt2)))) $)^{\wedge} 1 / 15$

Input interpretation:

$$
\begin{gathered}
\left(2 7 \left(\log \left(\left(-8639.4557627^{3}-139105.9999^{2}\right)\left(-8639.4557627^{2}-139105.9999^{3}\right)\right)+\right.\right. \\
\sqrt{5}-1)+\sqrt{2}) \wedge(1 / 15)
\end{gathered}
$$

$\log (x)$ is the natural logarithm

Result:

1.64381905289...
1.64381905289..
((((27*)(((ln[(-8639.4557627^3-139105.9999^2)*(-8639.4557627^2-
$\left.\left.139105.9999^{\wedge} 3\right)\right]+$ sqrt5-1))) + sqrt2)))) $)^{\wedge} 1 / 15-(21+5) 1 / 10^{\wedge} 3$

Input interpretation:

$$
\begin{gathered}
\left(2 7 \left(\log \left(\left(-8639.4557627^{3}-139105.9999^{2}\right)\left(-8639.4557627^{2}-139105.9999^{3}\right)\right)+\right.\right. \\
\sqrt{5}-1)+\sqrt{2}) \wedge(1 / 15)-(21+5) \times \frac{1}{10^{3}}
\end{gathered}
$$

Result:

1.61781905289...
1.61781905289...

Alternative representations:

$\left(27\left(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\right.\right.$

$$
\sqrt{5}-1)+\sqrt{2})^{\wedge}(1 / 15)-\frac{21+5}{10^{3}}=
$$

$$
-\frac{26}{10^{3}}+\left(\sqrt{2}+27\left(-1+\log _{e}\left(\left(-8639.45576270000^{3}-139106^{2}\right)\right.\right.\right.
$$

$$
\left.\left.\left.\left(-8639.45576270000^{2}-139106^{3}\right)\right)+\sqrt{5}\right)\right) \wedge(1 / 15)
$$

$$
\left(2 7 \left(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\right.\right.
$$

$$
\sqrt{5}-1)+\sqrt{2}) \wedge(1 / 15)-\frac{21+5}{10^{3}}=
$$

$$
-\frac{26}{10^{3}}+\left(\sqrt{2}+27\left(-1+\log (a) \log _{a}\left(\left(-8639.45576270000^{3}-139106^{2}\right)\right.\right.\right.
$$

$$
\left.\left.\left.\left(-8639.45576270000^{2}-139106 . .^{3}\right)\right)+\sqrt{5}\right)\right) \wedge(1 / 15)
$$

$\left(27\left(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\right.\right.$

$$
\begin{gathered}
\sqrt{5}-1)+\sqrt{2}) \wedge(1 / 15)-\frac{21+5}{10^{3}}= \\
-\frac{26}{10^{3}}+\left(\sqrt{2}+27\left(-1-\mathrm{Li}_{1}\left(1-\left(-8639.45576270000^{3}-139106^{2}\right)\right.\right.\right. \\
\left.\left.\left.\left(-8639.45576270000^{2}-139106 . .^{3}\right)\right)+\sqrt{5}\right)\right) \wedge(1 / 15)
\end{gathered}
$$

Series representations:

$$
\begin{aligned}
& \left(2 7 \left(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106^{3}\right)\right)+\right.\right. \\
& \sqrt{5}-1)+\sqrt{2}) \wedge(1 / 15)-\frac{21+5}{10^{3}}= \\
& \frac{1}{500}\left(-13+500\left(-27+27 \log \left(1.78788 \times 10^{27}\right)+\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x}\right.\right. \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+27 \exp \left(i \pi\left[\frac{\arg (5-x)}{2 \pi}\right]\right) \sqrt{x} \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \wedge(1 / 15)\right) \text { for }(x \in \mathbb{R} \text { and } x<0) \\
& \left.\begin{array}{c}
\left(2 7 \left(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-13910 .^{3}\right)\right)+\right.\right. \\
\frac{1}{500}\left(-13+500\left(-27+27 \log \left(1.78788 \times 10^{27}\right)-27 \sum_{k=1}^{\infty} \frac{\left(-5.59323 \times 10^{-28}\right)^{k}}{k}+\right.\right. \\
\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
\left.27 \exp \left(i \pi\left[\frac{\arg (5-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \wedge \\
10^{3}
\end{array}\right) \\
& (1 / 15)) \operatorname{for}(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$$
\begin{aligned}
& \left(2 7 \left(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\right.\right. \\
& \sqrt{5}-1)+\sqrt{2}) \wedge(1 / 15)-\frac{21+5}{10^{3}}= \\
& \frac{1}{500}\left(-13+500\left(-27+54 i \pi\left[\left.\frac{\arg \left(1.78788 \times 10^{27}-x\right)}{2 \pi} \right\rvert\,+27 \log (x)-\right.\right.\right. \\
& 27 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(1.78788 \times 10^{27}-x\right)^{k} x^{-k}}{k}+\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right]\right) \\
& \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+27 \exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right]\right) \sqrt{x} \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \wedge(1 / 15)\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

Integral representations:

$\left(27\left(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\right.\right.$

$$
\begin{array}{r}
\sqrt{5}-1)+\sqrt{2})^{\wedge}(1 / 15)-\frac{21+5}{10^{3}}= \\
-\frac{13}{500}+\sqrt[15]{\sqrt{2}+27\left(-1+\int_{1}^{1.78788 \times 10^{27}} \frac{1}{t} d t+\sqrt{5}\right)}
\end{array}
$$

$$
\left(2 7 \left(\log \left(\left(-8639.45576270000^{3}-139106 .^{2}\right)\left(-8639.45576270000^{2}-139106 .^{3}\right)\right)+\right.\right.
$$

$$
\sqrt{5}-1)+\sqrt{2})^{\wedge}(1 / 15)-\frac{21+5}{10^{3}}=
$$

$$
-\frac{13}{500}+\sqrt[15]{\sqrt{2}+27\left(-1+\frac{1}{2 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{1.78788 \times 10^{27-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s+\sqrt{5}\right)}
$$

for $-1<\gamma<0$

Now, we have that:

Finally I find that

$$
\begin{equation*}
\sum_{1}^{\infty} \frac{e_{16}(n)}{n^{s}}=\frac{e_{16}(1)}{1+2^{3-s}} \prod_{p}\left(\frac{1}{1+2 c_{p} \cdot p^{-s}+p^{7-2 s}}\right) \tag{162}
\end{equation*}
$$

p being an odd prime and $c_{p}^{2} \leq p^{7}$. From this it would follow that

$$
\begin{equation*}
\left|\frac{e_{16}(n)}{e_{16}(1)}\right| \leq n^{\frac{7}{2}} d(n) \tag{163}
\end{equation*}
$$

for all values of n, and

$$
\begin{equation*}
\left|\frac{e_{16}(n)}{e_{16}(1)}\right| \geq n^{\frac{\pi}{2}} \tag{164}
\end{equation*}
$$

for an infinity of values of n.
In the case in which $2 s=24$ we have

$$
\frac{691}{64} e_{24}(n)=(-1)^{n-1} 259 \tau(n)-512 \tau\left(\frac{1}{2} n\right) .
$$

I have already stated the reasons for supposing that

$$
|\tau(n)| \leq n^{\frac{11}{2}} d(n)
$$

for all values of n, and

$$
|\tau(n)| \geq n^{\frac{11}{2}}
$$

for an infinity of values of n.

For $\mathrm{n}=3$, we obtain from

$$
\frac{691}{64} e_{24}(n)=(-1)^{n-1} 259 \tau(n)-512 \tau\left(\frac{1}{2} n\right)
$$

$(-1)^{\wedge} 2 * 259 * 3^{\wedge}(11 / 2)-512 * 1 / 2 * 3^{\wedge}(11 / 2)$

Input:

$(-1)^{2} \times 259 \times 3^{11 / 2}-512 \times \frac{1}{2} \times 3^{11 / 2}$

Result:

$729 \sqrt{3}$

Decimal approximation:

1262.665038717711546981508382957780955501305030027767477852...
1262.665....

From
Modular equations and approximations to $\boldsymbol{\pi}$ - Srinivasa Ramanujan - Quarterly Journal of Mathematics, XLV, 1914, 350-372

$$
64 g_{22}^{24}=e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots
$$

$\exp \left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)-24+276^{*} \exp \left(-\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)$

Input:

$$
\exp (\pi \sqrt{22})-24+276 \exp (-\pi \sqrt{22})
$$

Exact result:

$-24+276 e^{-\sqrt{22} \pi}+e^{\sqrt{22} \pi}$

Decimal approximation:

$2.50892799836743055743417280363072461379337839941915425 \ldots \times 10^{6}$
2.50892799836....* 10^{6}

Property:

$-24+276 e^{-\sqrt{22} \pi}+e^{\sqrt{22} \pi}$ is a transcendental number

Alternate form:

$$
e^{-\sqrt{22} \pi}\left(276-24 e^{\sqrt{22} \pi}+e^{2 \sqrt{22} \pi}\right)
$$

Series representations:

$$
\begin{aligned}
& \exp (\pi \sqrt{22})-24+276 \exp (-\pi \sqrt{22})= \\
& -24+276 \exp \left(-\pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{\frac{1}{2}}{k}\right)+\exp \left(\pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{\frac{1}{2}}{k}\right) \\
& \exp (\pi \sqrt{22})-24+276 \exp (-\pi \sqrt{22})= \\
& -24+276 \exp \left(-\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+\exp \left(\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \exp (\pi \sqrt{22})-24+276 \exp (-\pi \sqrt{22})= \\
& -24+276 \exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(22-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+ \\
& \quad \exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(22-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for }\left(\operatorname{not}\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$\left(\left(\left(-\left(\exp \left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)-24\right)+2.50892799836743 \mathrm{e}+6\right)\right)\right) /\left(\left(\left(\exp \left(-\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)\right)\right)\right)$

Input interpretation:

$\underline{-(\exp (\pi \sqrt{22})-24)+2.50892799836743 \times 10^{6}}$

$$
\exp (-\pi \sqrt{22})
$$

Result:

275.999...
$275.999 \ldots=276$

For $\mathrm{n}=8$, from the above expression

$$
\frac{691}{64} e_{24}(n)=(-1)^{n-1} 259 \tau(n)-512 \tau\left(\frac{1}{2} n\right)
$$

we obtain:
$(-1)^{\wedge} 7 * 259^{*} 8^{\wedge}(11 / 2)-512^{*} 1 / 2 * 8^{\wedge}(11 / 2)$

Input:

$(-1)^{7} \times 259 \times 8^{11 / 2}-512 \times \frac{1}{2} \times 8^{11 / 2}$

Exact result:

$-33751040 \sqrt{2}$

Decimal approximation:

$-4.7731178512196825915907748198350488237728138252722389 \ldots \times 10^{7}$
$-4.7731178512196 \ldots * 10^{7}$
from which, changing the sign, we obtain:

$$
-(-1)^{\wedge} 7 * 259 * 8^{\wedge}(11 / 2)-512 * 1 / 2^{*} 8^{\wedge}(11 / 2)
$$

Input:

$$
-(-1)^{7}\left(259 \times 8^{11 / 2}\right)-512 \times \frac{1}{2} \times 8^{11 / 2}
$$

Result:

196608 $\sqrt{2}$

Decimal approximation:

278045.7000710494713548024166894203198314260480741110067711...

278045.7......

and again, by the expression above for to obtain 276:

1/sqrt2 $\left(\left(\left(\left(-(-1)^{\wedge} 7 * 259 * 8^{\wedge}(11 / 2)-512^{*} 1 / 2^{*} 8^{\wedge}(11 / 2)+\left(\left(\left(-\left(\exp \left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)-24\right)+\right.\right.\right.\right.\right.\right.\right.$ $2.50892799836743 \mathrm{e}+6))) /\left(\left(\left(\exp \left(-\mathrm{Pi}^{*}\right.\right.\right.\right.$ sqrt22)$\left.\left.\left.\left.\left.\left.)\right)\right) \mathrm{sqrt} 2\right)\right)\right)\right)$

Input interpretation:

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left(-(-1)^{7}\left(259 \times 8^{11 / 2}\right)-512 \times \frac{1}{2} \times 8^{11 / 2}+\right. \\
& \left.\quad \frac{-(\exp (\pi \sqrt{22})-24)+2.50892799836743 \times 10^{6}}{\exp (-\pi \sqrt{22})} \sqrt{2}\right)
\end{aligned}
$$

Result:

196884.0...

196884

196884 is a fundamental number of the following j-invariant

$$
j(\tau)=q^{-1}+744+196884 q+21493760 q^{2}+864299970 q^{3}+20245856256 q^{4}+\cdots
$$

(In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for $\operatorname{SL}(2, Z)$ defined on the upper half plane of complex numbers. Several remarkable properties of j have to do with its q expansion (Fourier series expansion), written as a Laurent series in terms of $q=e^{2 \pi i \tau}$ (the square of the nome), which begins:

$$
j(\tau)=q^{-1}+744+196884 q+21493760 q^{2}+864299970 q^{3}+20245856256 q^{4}+\cdots
$$

Note that j has a simple pole at the cusp, so its q-expansion has no terms below q^{-1}. All the Fourier coefficients are integers, which results in several almost integers, notably Ramanujan's constant:

$$
e^{\pi \sqrt{163}} \approx 640320^{3}+744
$$

The asymptotic formula for the coefficient of q^{n} is given by

$$
\frac{e^{4 \pi \sqrt{n}}}{\sqrt{2} n^{3 / 4}}
$$

as can be proved by the Hardy-Littlewood circle method)

From
ON NON-LINEAR DIFFERENTIAL EQUATIONS OF THE SECOND
ORDER: III. THE EQUATION $\ddot{y}-k\left(1-y^{2}\right) \dot{y}+y=b_{\mu} k \cos (\mu t+\alpha)$ FOR LARGE k, AND ITS GENERALIZATIONS

BY J. E. LITTLEWOOD in Cambridge

1. We are concerned with equations in real variables of the form

$$
\ddot{y}+f(y) \dot{y}+g(y)=p(t),
$$

where \mathcal{f}, g, p are smooth functions of their arguments, and p has period $\lambda=2 \pi / \mu$ in t. About f we suppose that $\lim f>0$ as $y \rightarrow \pm \infty$; that is to say, we suppose the "damping" to be positive for large $|y|$. About g we suppose that it has a "restoring" effect, i.e. has the sign of y. The simplest case, and a specially important one, to be covered in any generalization, is $g=a y$ for positive a. We do in fact assume always that $g(0)=0$, and that g^{\prime} exists and has a positive lower bound.

Now, from:
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 8, 423-444 (1964) A Study of Second Order Nonlinear Systems Y. S. LIM AND L. F. KAZDA

In the last two decades, a considerable amount of work has been given to the study of second-order nonlinear differential systems [1-4]. This paper is to study a class of second-order differential systems of the form

$$
\begin{equation*}
\ddot{x}+f(\dot{x})+g(x)=e(t) . \tag{1}
\end{equation*}
$$

We note that the equation (1) is very similar to the above equation of the J. E. Littlewood paper.

Consider the Duffing equation

$$
\ddot{x}+b x+x+a x^{3}-E \sin \omega t
$$

with $0<b<2, a>0$. The solutions are bounded as

$$
\begin{gather*}
|x(t)| \leqslant I=E\left\{1+\sqrt{\frac{4}{b^{2}}-1} \exp \left(-\frac{\pi}{2 \sqrt{\left(4 / b^{2}\right)-1}}\right)\right] \tag{45}\\
|x(t)| \leqslant J=\frac{2 E}{b} . \tag{46}
\end{gather*}
$$

Since

$$
g^{\prime}(x)=1+3 a x^{2}>1, \quad g^{\prime \prime}(x)=6 a x,
$$

then $C_{2}=6 a I$, and

$$
\frac{2 E C_{2}}{q_{1}}=12 a E I .
$$

If a or E is sufficiently small such that the inequality
$b^{2}>\frac{2 E C_{2}}{q_{1}}=12 a E^{2}\left[1+\sqrt{\frac{4}{b^{2}}-1} \exp \left(-\frac{\pi}{2 \sqrt{\left(4 / b^{2}\right)-1}}\right)\right]$
holds, then all solutions will converge to unique periodic solution having the same period as that of the forcing function. Otherwise it may have three periodic solutions or subharmonics.

For $\mathrm{a}=1.526939, \mathrm{E}=\mathrm{b}=1$, we obtain from (47)

$$
12 *(1+0.526939) *[1+\mathrm{sqrt} 3 * \exp (-\mathrm{Pi} /(2 \mathrm{sqrt} 3))]
$$

Where 0.526939 is the value of the following Rogers-Ramanujan continued fraction:

$$
2 \int_{0}^{\infty} \frac{t^{2} d t}{\mathrm{e}^{\sqrt{3} t} \sinh t}=\frac{1}{1+\frac{1^{3}}{1+\frac{1^{3}}{}}} \approx 0.5269391135
$$

Input interpretation:

$12(1+0.526939)\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)$

Result:

31.1378...
31.1378...

Series representations:

$$
\begin{aligned}
& 12(1+0.526939)\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)= \\
& 18.3233\left(1+\exp \left(-\frac{\pi}{2 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}\right) \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 12(1+0.526939)\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)= \\
& 18.3233\left(1+\exp \left(-\frac{\pi}{2 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right) \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

$$
12(1+0.526939)\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)=
$$

$$
\frac{9.16163\left(2 \sqrt{\pi}+\exp \left(-\frac{\pi \sqrt{\pi}}{\sum_{j=0}^{\infty} \mathrm{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right) \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)}{\sqrt{\pi}}
$$

For $\mathrm{a}=1.65578$, that is the value of the 14 th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164.2696$, we obtain:

$$
12 *(1.65578) *[1+\mathrm{sqrt} 3 * \exp (-\mathrm{Pi} /(2 \mathrm{sqrt} 3))]
$$

Input interpretation:

$12 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)$

Result:

33.7651..
$33.7651 \ldots$

Series representations:

$12 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)=$
$19.8694\left(1+\exp \left(-\frac{\pi}{2 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}\right) \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)$
$12 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)=$
$19.8694\left(1+\exp \left(-\frac{\pi}{2 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right) \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)$
$12 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)=$ $9.93468\left(2 \sqrt{\pi}+\exp \left(-\frac{\pi \sqrt{\pi}}{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right) \sum_{j=0}^{\infty}\right.$ Res $\left._{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)$

Multiplying by 4, we obtain:
$48 *(1.65578) *[1+\mathrm{sqrt} 3 * \exp (-\mathrm{Pi} /(2 \mathrm{sqrt} 3))]$

Input interpretation:

$48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)$

Result:

135.061...
135.061...

Series representations:

$48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)=$
$79.4774\left(1+\exp \left(-\frac{\pi}{2 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}\right) \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)$
$48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)=$
$79.4774\left(1+\exp \left(-\frac{\pi}{2 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right) \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)$
$48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)=$
$\frac{39.7387\left(2 \sqrt{\pi}+\exp \left(-\frac{\pi \sqrt{\pi}}{\sum_{j=0}^{\infty} \mathrm{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right) \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)}{\sqrt{\pi}}$
$48 *(1.65578) *[1+$ sqrt $3 * \exp (-\mathrm{Pi} /(2 \mathrm{sqrt} 3))]+3$

Input interpretation:

$48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)+3$

Result:

138.061...
138.061...

Series representations:

$48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)+3=$
$79.4774\left(1.03775+\exp \left(-\frac{\pi}{2 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}\right) \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)$
$48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)+3=$
$79.4774\left(1.03775+\exp \left(-\frac{\pi}{2 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right) \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)$
$48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)+3=\frac{1}{\sqrt{\pi}} 39.7387(2.07549 \sqrt{\pi}+$

$$
\left.\exp \left(-\frac{\pi \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right) \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)
$$

$(((48 *(1.65578) *[1+\mathrm{sqrt} 3 * \exp (-\mathrm{Pi} /(2 \mathrm{sqrt} 3))]-11+\mathrm{sqrt} 2)))$
Input interpretation:
$48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)-11+\sqrt{2}$

Result:

125.475...
125.475...

Series representations:

$48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)-11+\sqrt{2}=$
$68.4774+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}+79.4774$

$$
\exp \left(-\frac{\pi}{2 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right) \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}
$$

for ($\operatorname{not}\left(z_{0} \in \mathbb{R}\right.$ and $\left.-\infty<z_{0} \leq 0\right)$)
$48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)-11+\sqrt{2}=$
$68.4774+\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+79.4774$
$\exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right]\right) \exp \left(-\frac{\pi}{2 \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)$
$\sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}$ for $(x \in \mathbb{R}$ and $x<0)$
$48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)-11+\sqrt{2}=$
$68.4774+\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}+$
$79.4774 \exp \left(-\frac{\pi\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor}}{2 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}^{\left(3-z_{0}\right)^{k} z_{0}^{-k}}}{k!}}\right)$
$\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{k}}{k!}$
$48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)-11+\sqrt{2}=$
$68.4774+\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}+$
$79.4774 \exp \left(-\frac{\pi\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor\right)}}{2 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right)$
$\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}$
$27 * 1 / 2(((48 *(1.65578) *[1+$ sqrt3 * $\exp (-\mathrm{Pi} /(2 \mathrm{sqrt} 3))]-7)))+1 /(2 \mathrm{Pi})$

Input interpretation:

$27 \times \frac{1}{2}\left(48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)-7\right)+\frac{1}{2 \pi}$

Result:

1728.98...
1728.98... ≈ 1729

Series representations:

$$
\begin{aligned}
& \frac{27}{2}\left(48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)-7\right)+\frac{1}{2 \pi}= \\
& 1072.95\left(0.000466007+0.911925 \pi+\pi \exp \left(-\frac{\pi}{2 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}\right) \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)
\end{aligned}
$$

π

$$
\begin{aligned}
& \frac{27}{2}\left(48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)-7\right)+\frac{1}{2 \pi}=\frac{1}{\pi} 1072.95 \\
& \left(0.000466007+0.911925 \pi+\pi \exp \left(-\frac{\pi}{2 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right) \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{27}{2}\left(48 \times 1.65578\left(1+\sqrt{3} \exp \left(-\frac{\pi}{2 \sqrt{3}}\right)\right)-7\right)+\frac{1}{2 \pi}= \\
& \frac{1}{\pi \sqrt{\pi}} 536.473(0.000932014 \sqrt{\pi}+1.82385 \pi \sqrt{\pi}+ \\
& \left.\quad \pi \exp \left(-\frac{\pi \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right) \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)
\end{aligned}
$$

Now, we have that:

$$
\begin{equation*}
x_{2}^{\prime} \leqslant x_{7}=\frac{E}{c}\left[1+\sqrt{\frac{4 c}{b^{2}}-1} \cdot \exp \left(-\frac{\pi}{2 \sqrt{\left(4 c / b^{2}\right)-1}}\right)\right] \tag{14}
\end{equation*}
$$

For $\mathrm{E}=\mathrm{b}=1$ and $\mathrm{c}=0.4$, we obtain:
$1 /(0.4)[1+\operatorname{sqrt}(4 * 0.4-1) * \exp (-\mathrm{Pi} /(2 * \operatorname{sqrt}(4 * 0.4-1)))]$

Input:

$$
\frac{1}{0.4}\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)
$$

Result:

2.754867514964326226814762812390744783092640383903000245604...
2.75486751496...

Series representations:

$$
\frac{1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{40.4-1}}\right)}{2.5\left(1+\exp \left(-\frac{\pi}{2 \sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.4)^{k}\left(-\frac{1}{2}\right)}{k!}}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.4)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}
$$

$$
\begin{aligned}
& \frac{1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)}{0.4}=-\frac{1}{\sqrt{\pi}} 1.25(-2 \sqrt{\pi}+ \\
& \left.\exp \left(\frac{\pi \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-j}(-0.4)^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right) \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j}(-0.4)^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right) \\
& 1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right) \\
& 2.5\left(1+\exp \left(-\frac{\pi}{0.4}\right)\right. \\
& \left.2 \sqrt{2 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(0.6-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right) \sqrt{z_{0}} \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(0.6-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for }\left(\operatorname{not}\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$(((1 /(0.4)[1+\operatorname{sqrt}(4 * 0.4-1) * \exp (-\mathrm{Pi} /(2 * \operatorname{sqrt}(4 * 0.4-1)))])))^{\wedge} 1 / 2$

Input:

$\sqrt{\frac{1}{0.4}\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)}$

Result:

1.659779357313593723565156314006164949731007559929984208905...
$1.659779357313 \ldots$. result very near to the 14th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. $1,65578 \ldots$
$48(((1 /(0.4)[1+\operatorname{sqrt}(4 * 0.4-1) * \exp (-\mathrm{Pi} /(2 * \operatorname{sqrt}(4 * 0.4-1)))])))+\mathrm{e}$

Input:

$48\left(\frac{1}{0.4}\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)\right)+e$

Result:

134.952...
134.952...

Series representations:

$$
\begin{aligned}
& \frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)}{0.4}+e= \\
& 120+e+120 \exp \left(-\frac{\pi}{2 \sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.4)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.4)^{k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& \frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)}{0.4}+e=\frac{1}{\sqrt{\pi}}(120 \sqrt{\pi}+e \sqrt{\pi}- \\
& \left.60 \exp \left(\frac{\pi \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-j}(-0.4)^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right) \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j}(-0.4)^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right) \\
& 48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right) \\
& 0.4 \\
& 120 \exp \left(-\frac{\pi}{2 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(0.6-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right) \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-12)^{k}\left(-\frac{1}{2}\right)_{k}\left(0.6-z_{0}\right)^{k} z_{0}^{-k}}{k!}
\end{aligned}
$$

for ($\operatorname{not}\left(z_{0} \in \mathbb{R}\right.$ and $\left.-\infty<z_{0} \leq 0\right)$)
$48(((1 /(0.4)[1+\operatorname{sqrt}(4 * 0.4-1) * \exp (-\mathrm{Pi} /(2 * \operatorname{sqrt}(4 * 0.4-1)))])))+\mathrm{e}+\mathrm{Pi}$

Input:

$48\left(\frac{1}{0.4}\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)\right)+e+\pi$

Result:

138.094...
138.094...

Series representations:

$$
\begin{aligned}
& \frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)}{0.4}+e+\pi= \\
& 120+e+\pi+120 \exp \left(-\frac{\pi}{2 \sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.4)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.4)^{k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& \frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)}{0.4}+e+\pi=\frac{1}{\sqrt{\pi}}(120 \sqrt{\pi}+e \sqrt{\pi}+\pi \sqrt{\pi}- \\
& \left.60 \exp \left(\frac{\pi \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-j}(-0.4)^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right) \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j}(-0.4)^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right) \\
& \frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)}{0.4}+e+\pi=120+e+\pi+ \\
& 120 \exp \left(-\frac{\pi}{2 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(0.6-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right) \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(0.6-z_{0}\right)^{k} z_{0}^{-k}}{k!}
\end{aligned}
$$

for $\left(\operatorname{not}\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.-\infty<z_{0} \leq 0\right)$)
$48(((1 /(0.4)[1+\operatorname{sqrt}(4 * 0.4-1) * \exp (-\mathrm{Pi} /(2 * \operatorname{sqrt}(4 * 0.4-1)))])))+7$
Input:
$48\left(\frac{1}{0.4}\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)+7\right.$

Result:

139.234...
139.234...

Series representations:

$$
\begin{aligned}
& \frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)}{0.4}+7= \\
& 120\left(1.05833+\exp \left(-\frac{\pi}{2 \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}(-0.4)^{k}\left(-\frac{1}{2}\right)_{k}\right)}{k!}}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.4)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)}{0.4}+7=-\frac{1}{\sqrt{\pi}} 60(-2.11667 \sqrt{\pi}+ \\
& \left.\exp \left(\frac{\pi \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-j}(-0.4)^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right) \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j}(-0.4)^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right) \\
& \frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)}{0.4}+7= \\
& 120\left(1.05833+\exp \left(-\frac{\pi}{2 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(0.6-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right) \sqrt{z_{0}}\right. \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(0.6-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for }\left(\operatorname{not}\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$48(((1 /(0.4)[1+\operatorname{sqrt}(4 * 0.4-1) * \exp (-\mathrm{Pi} /(2 * \operatorname{sqrt}(4 * 0.4-1)))])))-7$

Input:

$48\left(\frac{1}{0.4}\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)\right)-7$

Result:

125.234...
125.234...

Series representations:

$$
\begin{aligned}
& \frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)}{0.4}-7= \\
& 120\left(0.941667+\exp \left(-\frac{\pi}{2 \sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.4)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.4)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)}{0.4}-7=-\frac{1}{\sqrt{\pi}} 60 .(-1.88333 \sqrt{\pi}+ \\
& \left.\exp \left(\frac{\pi \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-j}(-0.4)^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right) \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j}(-0.4)^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right) \\
& \frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)}{0.4}-7= \\
& 120\left(0.941667+\exp \left(-\frac{\pi}{2 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(0.6-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right) \sqrt{z_{0}}\right. \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(0.6-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for }\left(\operatorname{not}\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$27 * 1 / 2[48(((1 /(0.4)[1+\operatorname{sqrt}(4 * 0.4-1) * \exp (-\mathrm{Pi} /(2 * \operatorname{sqrt}(4 * 0.4-1)))])))-5+2 * 0.4]+1 / 2$

Input:

$27 \times \frac{1}{2}\left(48\left(\frac{1}{0.4}\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)\right)-5+2 \times 0.4\right)+\frac{1}{2}$

Result:

1728.95.
1728.95 .. ≈ 1729

Series representations:

$$
\begin{aligned}
& \frac{27}{2}\left(\frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{40.4-1}}\right)\right)}{0.4}-5+2 \times 0.4\right)+\frac{1}{2}= \\
& 1620\left(0.965309+\exp \left(-\frac{\pi}{2 \sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.4)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.4)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{27}{2}\left(\frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)}{0.4}-5+2 \times 0.4\right)+\frac{1}{2}= \\
& -\frac{1}{\sqrt{\pi}} 810(-1.93062 \sqrt{\pi}+ \\
& \left.\quad \exp \left(\frac{\pi \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-j}(-0.4)^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right) \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j}(-0.4)^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right) \\
& \frac{27}{2}\left(\frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)}{0.4}-5+2 \times 0.4\right)+\frac{1}{2}= \\
& 1620\left(0.965309+\exp \left(-\frac{\pi}{2 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(0.6-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right) \sqrt{z_{0}}\right. \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(0.6-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for }\left(\text { not }\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$\left(\left(\left(\left(27^{*} 1 / 2[48(((1 /(0.4)[1+\operatorname{sqrt}(4 * 0.4-1) * \exp (-\mathrm{Pi} /(2 * \operatorname{sqrt}(4 * 0.4-1)))])))-\right.\right.\right.\right.$ $5+2 * 0.4]+1 / 2))))^{\wedge} 1 / 15$

Input:
$\sqrt[15]{27 \times \frac{1}{2}\left(48\left(\frac{1}{0.4}\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)\right)-5+2 \times 0.4\right)+\frac{1}{2}}$

Result:

1.643812322623444255738268430161892006732962911077374886043...
1.643812322623...
$((((27 * 1 / 2[48(((1 /(0.4)[1+\operatorname{sqrt}(4 * 0.4-1) * \exp (-\mathrm{Pi} /(2 * \operatorname{sqrt}(4 * 0.4-1)))])))-$ $5+2 * 0.4]+1 / 2))))^{\wedge} 1 / 15-(21+5) 1 / 10^{\wedge} 3$

Input:

$\sqrt[15]{27 \times \frac{1}{2}\left(48\left(\frac{1}{0.4}\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{4 \times 0.4-1}}\right)\right)\right)-5+2 \times 0.4\right)+\frac{1}{2}}-$ $(21+5) \times \frac{1}{10^{3}}$

Result:

1.617812322623444255738268430161892006732962911077374886043...
1.617812322623...

Series representations:

$$
\begin{aligned}
& \sqrt[15]{\frac{27}{2}\left(\frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{40.4-1}}\right)\right)}{0.4}-5+2 \times 0.4\right)+\frac{1}{2}-\frac{21+5}{10^{3}}=} \\
& \frac{1}{500}(-13+ \\
& \left.500 \sqrt[15]{1563.8+1620 \exp \left(-\frac{\pi}{2 \sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.4)^{k}\left(-\frac{1}{2}\right)}{k!}}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.4)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[15]{\frac{27}{2}\left(\frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{40.4-1}}\right)\right)}{0.4}-5+2 \times 0.4\right)+\frac{1}{2}-\frac{21+5}{10^{3}}=} \\
& \frac{1}{500}\left(-13+500\left(1563.8-\frac{1}{\sqrt{\pi}} 810 \exp \left(\frac{\pi \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-j}(-0.4)^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)\right.\right. \\
& \left.\left.\sum_{j=0}^{\infty} \operatorname{Res}_{s=-j}(-0.4)^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right) \wedge(1 / 15)\right)
\end{aligned}
$$

$$
\begin{gathered}
\sqrt[15]{\frac{27}{2}\left(\frac{48\left(1+\sqrt{4 \times 0.4-1} \exp \left(-\frac{\pi}{2 \sqrt{40.4-1}}\right)\right)}{0.4}-5+2 \times 0.4\right)+\frac{1}{2}-\frac{21+5}{10^{3}}}= \\
\frac{1}{500}\left(-13+500\left(1563.8+1620 \exp \left(-\frac{\pi}{2 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(0.6-z_{0} k^{k} z_{0}^{-k}\right.}{k!}}\right)\right.\right. \\
\left.\left.\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(0.6-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \wedge(1 / 15)\right)
\end{gathered}
$$

for ($\operatorname{not}\left(z_{0} \in \mathbb{R}\right.$ and $\left.-\infty<z_{0} \leq 0\right)$)

Now, we have:

$$
p_{2}=p_{1}+\frac{8 q_{1}}{p_{1}}+4 \sqrt{q_{1}}
$$

For: $\mathrm{p}_{1}=3 ; \mathrm{q}_{1}=5$, we obtain:
$3+(8 * 5) / 3+4 \operatorname{sqrt}(5)$

Input:

$3+\frac{8 \times 5}{3}+4 \sqrt{5}$

Result:

$\frac{49}{3}+4 \sqrt{5}$

Decimal approximation:

25.27760524333249211897002800825843827509580677177943623041...
25.27760524...

Alternate form:

$\frac{1}{3}(49+12 \sqrt{5})$

Minimal polynomial:

$9 x^{2}-294 x+1681$

From

$$
\begin{equation*}
\sqrt{q_{2}^{\prime}}=\frac{2 \sqrt{A B-1}}{B}-\sqrt{q_{1}}=\sqrt{q_{1}}\left[\frac{2\left(p_{2}-p_{1}\right)}{\left(p_{2}+p_{1}\right) \pm 2 \sqrt{p_{1} p_{2}-4 q_{1}}}-1\right] . \tag{36}
\end{equation*}
$$

We obtain:
sqrt5 [((2(25.277605-3)))/(((25.277605+3)+2sqrt(3*25.277605-4*5)))-1]

Input interpretation:

$\sqrt{5}\left(\frac{2(25.277605-3)}{(25.277605+3)+2 \sqrt{3 \times 25.277605-4 \times 5}}-1\right)$

Result:

$0.068979504460062226725871218113897631521454048952194431655 \ldots$
0.06897950446...

From which:
$((((\operatorname{sqrt5}[((2(25.277605-3))) /(((25.277605+3)+2 \operatorname{sqrt}(3 * 25.277605-4 * 5)))-1]))))^{\wedge} 2$

Input interpretation:

$\left(\sqrt{5}\left(\frac{2(25.277605-3)}{(25.277605+3)+2 \sqrt{3 \times 25.277605-4 \times 5}}-1\right)\right)^{2}$

Result:

0.004758172035555744629029533646711881574760888384957565302...
0.00475817203...
and:
sqrt5 $[((2(25.277605-3))) /(((25.277605+3)-2 \operatorname{sqrt}(3 * 25.277605-4 * 5)))-1]$

Input interpretation:

$\sqrt{5}\left(\frac{2(25.277605-3)}{(25.277605+3)-2 \sqrt{3 \times 25.277605-4 \times 5}}-1\right)$

Result:

5.236068 .
5.236068...

From which:
$\left(\left((\text { sqrt5 [((2(25.277605-3))))/(((25.277605+3)-2sqrt(3*25.277605-4*5)))-1]))) })^{\wedge}\right.\right.$
Input interpretation:
$\left(\sqrt{5}\left(\frac{2(25.277605-3)}{(25.277605+3)-2 \sqrt{3 \times 25.277605-4 \times 5}}-1\right)\right)^{2}$

Result:

27.41641.
27.41641..

From this last expression, we obtain:
$5(((\operatorname{sqrt5}[((2(25.277605-3))) /(((25.277605+3)-2 \operatorname{sqrt}(3 * 25.277605-4 * 5)))-1])))^{\wedge} 2-2$

Input interpretation:

$5\left(\sqrt{5}\left(\frac{2(25.277605-3)}{(25.277605+3)-2 \sqrt{3 \times 25.277605-4 \times 5}}-1\right)\right)^{2}-2$

Result:

135.0820..
135.082...
$5(((\operatorname{sqrt5}[((2(25.277605-3))) /(((25.277605+3)-2 \operatorname{sqrt}(3 * 25.277605-4 * 5)))-1])))^{\wedge} 2+1$
Input interpretation:
$5\left(\sqrt{5}\left(\frac{2(25.277605-3)}{(25.277605+3)-2 \sqrt{3 \times 25.277605-4 \times 5}}-1\right)\right)^{2}+1$

Result:

138.0820..
138.082...
$27 * 1 / 2(((5(((\operatorname{sqrt} 5[((2(25.277605-3)))) /(((25.277605+3)-2 \operatorname{sqrt}(3 * 25.277605-4 * 5)))-$ 1]))) $\left.\left.\left.)^{\wedge} 2+1-2 * 5\right)\right)\right)$

Input interpretation:

$27 \times \frac{1}{2}\left(5\left(\sqrt{5}\left(\frac{2(25.277605-3)}{(25.277605+3)-2 \sqrt{3 \times 25.277605-4 \times 5}}-1\right)\right)^{2}+1-2 \times 5\right)$

Result:

1729.108...
1729.108...

We have also:
$135.0820^{\wedge} 3+((((5(((\operatorname{sqrt5}[((2(25.277605-3))) /(((25.277605+3)-2 \operatorname{sqrt}(3 * 25.277605-$ $\left.\left.\left.\left.4 * 5)))-1])))^{\wedge} 2+1\right)\right)\right)\right)^{\wedge} 3$

Input interpretation:

$135.0820^{3}+\left(5\left(\sqrt{5}\left(\frac{2(25.277605-3)}{(25.277605+3)-2 \sqrt{3 \times 25.277605-4 \times 5}}-1\right)\right)^{2}+1\right)^{3}$

Result:

$5.097623 \ldots \times 10^{6}$
5.097623...* 10^{6}
$\left(\left(\left(\left(135.0820^{\wedge} 3+((((5)((\operatorname{sqrt} 5[((2(25.277605-3))) /(((25.277605+3)-\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.2 \operatorname{sqrt}(3 * 25.277605-4 * 5)))-1])))^{\wedge} 2+1\right)\right)\right)\right)^{\wedge} 3\right)\right)\right)\right)^{\wedge} 1 / 3$

Input interpretation:

$\sqrt[3]{135.0820^{3}+\left(5\left(\sqrt{5}\left(\frac{2(25.277605-3)}{(25.277605+3)-2 \sqrt{3 \times 25.277605-4 \times 5}}-1\right)\right)^{2}+1\right)^{3}}$

Result:

172.1033.
172.1033...

We have:

Input interpretation:

$135.0820^{3}+138.0820^{3}$

Result:

$5.097620682058736 \times 10^{6}$
$5.0967620682058736 * 10^{6}$
and:

Input interpretation:

$172.1033^{3}-1$

Result:

$5.097620588881542937 \times 10^{6}$
$5.097620588881542937 * 10^{6}$
$135.0820^{3}+138.0820^{3} \approx 172.1033^{3}-1 ; 5097620.68 \approx 5097620.58$
very similar to the Ramanujan expression:

$$
135^{3}+138^{3}=172^{3}-1
$$

Observations

From:
https://www.scientificamerican.com/article/mathematics-
ramanujan/?fbclid=IwAR2caRXrn_RpOSvJ1QxWsVLBcJ6KVgd_Af_hrmDYBNyU8m pSjRs1BDeremA

Ramanujan's statement concerned the deceptively simple concept of partitions-the different ways in which a whole number can be subdivided into smaller numbers. Ramanujan's original statement, in fact, stemmed from the observation of patterns, such as the fact that $p(9)=30, p(9+5)=135, p(9+10)=490, p(9+15)=1,575$ and so on are all divisible by 5 . Note that here the n's come at intervals of five units.

Ramanujan posited that this pattern should go on forever, and that similar patterns exist when 5 is replaced by 7 or 11 -there are infinite sequences of $p(n)$ that are all divisible by 7 or 11, or, as mathematicians say, in which the "moduli" are 7 or 11.

Then, in nearly oracular tone Ramanujan went on: "There appear to be corresponding properties," he wrote in his 1919 paper, "in which the moduli are powers of 5,7 or $11 \ldots$ and no simple properties for any moduli involving primes other than these three." (Primes are whole numbers that are only divisible by themselves or by 1.) Thus, for instance, there should be formulas for an infinity of n's separated by $5^{\wedge} 3=125$ units, saying that the corresponding $p(n)$'s should all be divisible by 125 . In the past methods developed to understand partitions have later been applied to physics problems such as the theory of the strong nuclear force or the entropy of black holes.

From Wikipedia

In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki Yukawa, is an interaction between a scalar field ϕ and a Dirac field ψ. The Yukawa interaction can be used to describe the nuclear force between nucleons (which are fermions), mediated by pions (which are pseudoscalar mesons). The Yukawa interaction is also used in the Standard Model to describe the coupling between the Higgs field and massless quark and lepton fields (i.e., the fundamental fermion particles). Through spontaneous symmetry breaking, these fermions acquire a mass proportional to the vacuum expectation value of the Higgs field.

Can be this the motivation that from the development of the Ramanujan's equations we obtain results very near to the dilaton mass calculated as a type of Higgs boson:

125 GeV for $T=0$ and to the Higgs boson mass 125.18 GeV and practically equal to the rest mass of Pion meson 139.57 MeV

Note that:

$$
g_{22}=\sqrt{(1+\sqrt{2})}
$$

Hence

$$
\begin{array}{rlr}
64 g_{22}^{24} & = & e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots \\
64 g_{22}^{-24} & = & 4096 e^{-\pi \sqrt{22}}+\cdots
\end{array}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Thence:

$$
64 g_{22}^{-24}=\quad 4096 e^{-\pi \sqrt{22}}+\cdots
$$

And

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

That are connected with $64,128,256,512,1024$ and $4096=64^{2}$
(Modular equations and approximations to $\pi-$ S. Ramanujan - Quarterly Journal of Mathematics, XLV, 1914, 350-372)

All the results of the most important connections are signed in blue throughout the drafting of the paper. We highlight as in the development of the various equations we use always the constants $\pi, \phi, 1 / \phi$, the Fibonacci and Lucas numbers, linked to the golden ratio, that play a fundamental role in the development, and therefore, in the final results of the analyzed expressions.

In mathematics, the Fibonacci numbers, commonly denoted F_{n}, form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. Fibonacci numbers are strongly related to the golden ratio: Binet's formula expresses the nth Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases.
Fibonacci numbers are also closely related to Lucas numbers, in that the Fibonacci and Lucas numbers form a complementary pair of Lucas sequences

The beginning of the sequence is thus:
$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765$, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155...

The Lucas numbers or Lucas series are an integer sequence named after the mathematician François Édouard Anatole Lucas (1842-91), who studied both that sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ratio. ${ }^{[1]}$ The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between.

The sequence of Lucas numbers is:
$2,1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364,2207,3571,5778$, 9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803......

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to the golden ratio.

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are:

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ... (sequence A005479 in the OEIS).

In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. ${ }^{[l]}$ That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes. Approximate logarithmic spirals can occur in nature, for example the arms of spiral galaxies ${ }^{[3]}$ - golden spirals are one special case of these logarithmic spirals

We observe that 1728 and 1729 are results very near to the mass of candidate glueball $\mathbf{f}_{0}(\mathbf{1 7 1 0})$ scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross-Zagier theorem. The number 1728 is one less than the HardyRamanujan number 1729 (taxicab number).

Furthermore, we obtain as results of our computations, always values very near to the Higgs boson mass 125.18 GeV and practically equals to the rest mass of Pion meson 139.57 MeV . In conclusion we obtain also many results that are very good approximations to the value of the golden ratio $1.618033988749 \ldots$ and to $\zeta(2)=$ $\frac{\pi^{2}}{6}=1.644934 \ldots$

We note how the following three values: $\mathbf{1 3 7 . 5 0 8}$ (golden angle), 139.57 (mass of the Pion - meson Pi) and 125.18 (mass of the Higgs boson), are connected to each other. In fact, just add $\mathbf{2}$ to $\mathbf{1 3 7 . 5 0 8}$ to obtain a result very close to the mass of the Pion and subtract $\mathbf{1 2}$ to $\mathbf{1 3 7 . 5 0 8}$ to obtain a result that is also very close to the mass of the Higgs boson. We can therefore hypothesize that it is the golden angle (and the related golden ratio inherent in it) to be a fundamental ingredient both in the structures of the microcosm and in those of the macrocosm.

References

AUTOMORPHISM OF SOLUTIONS TO RAMANUJAN'S DIFFERENTIAL EQUATIONS AND OTHER RESULTS
 MATTHEW RANDALL - arXiv:1806.07544v1 [math.CA] 20 Jun 2018

On certain arithmetical functions - Srinivasa Ramanujan
Transactions of the Cambridge Philosophical Society, XXII, No.9, 1916, 159 - 184

Modular equations and approximations to $\boldsymbol{\pi}$ - Srinivasa Ramanujan - Quarterly Journal of Mathematics, XLV, 1914, 350-372

ON NON-LINEAR DIFFERENTIAL EQUATIONS OF THE SECOND ORDER: III. THE EQUATION $\ddot{y}-k\left(1-y^{2}\right) \dot{y}+y=b \mu k \cos (\mu t+\alpha)$ FOR LARGE k, AND ITS GENERALIZATIONS

BY J. E. LITTLEWOOD in Cambridge

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 8, 423-444 (1964) A Study of Second Order Nonlinear Systems Y. S. LIM AND L. F. KAZDA

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy
 ${ }^{2}$ A. Nardelli studies at the Università degli Studi di Napoli Federico II - Dipartimento di Studi Umanistici Sezione Filosofia - scholar of Theoretical Philosophy

