The Feit-Thompson conjecture and cyclotomic polynomials

To the memory of professors Kazuo Kishimoto and Yôichi Miyashita

Kaoru Motose

Abstract: We can see that Feit-Thompson conjecture is true using factorizations of cyclotomic polynomials on the finite prime fields.
Key Words: cyclotomic polynomials, finite fields, splitting fields.
2000 Mathematics Subject Classification: Primary 11R18,11A15; Secondary 20E32, 20D10.
Feit and Thompson conjectured in [2, p.970, last paragraph]

$$
s:=\frac{q^{p}-1}{q-1} \text { never divides } t:=\frac{p^{q}-1}{p-1} \text { for distinct primes } p \text { and } q .
$$

The utility and the cause of this conjecture are also stated in [7], [1, p.1] and [3, B25].
Stephens found a useful congruence (see B1). Using this and a computer, he also found the unique example with $1<\operatorname{gcd}(s, t)<s$ (see B2). This example is a counter example to his view $(s, t)=1$ but not to Feit Thompson conjecture.

Using the next reviews of classical results, we show this conjecture is true.
Reviews. Let $|a|_{m}$ be the order of $a \bmod m$ for a and m with $\operatorname{gcd}(a, m)=1$.
R1 ([7], [5, p.16, Lemma. 3]). $r \equiv 1 \bmod 2 p q$ for any prime $r \mid \operatorname{gcd}(t, s)$ and $p<q$. If $p=2$ then $2^{q}-1 \equiv 0 \equiv q+\overline{1 \bmod r \text {, so } q \mid}(r-1)$ by Fermat little theorem and $r \mid(q+1)$. This yields a contrary $r=q+1$. Hence $2<p<q$. If $p \equiv 1 \bmod r$ then $0 \equiv t=p^{q-1}+\cdots+p+1 \equiv q \bmod r$ and $r=q$. We have a contradiction $0 \equiv s \equiv 1 \bmod r$. Thus $p \not \equiv 1 \bmod r$ and $|p|_{r}=q$ by $p^{q} \equiv 1 \bmod r$. Similarly $|q|_{r}=p$. Hence we have $r \equiv 1 \bmod 2 p q$ by Fermat little theorem.

R2 ([7], [6, p.82]). Using the program MPQSX3 attached to the package of language UBASIC designed by professor Yuji Kida, we have the prime factorization $s=r_{1} r_{2} r_{3}$ for $p=17, q=3313$ where r_{1}, r_{2} and r_{3} are primes, $r_{1} \mid t$ and $r_{k}-1(k=1,2,3)$ are as the next table. We can see $\operatorname{gcd}(s, t)=r_{1}$ by $q=3313 \nmid\left(r_{2}-1\right)\left(r_{3}-1\right)$ in this table.

$$
\begin{aligned}
& r_{1}-1=2 \times \overline{17 \times 3313, r_{2}}-1=2 \times 2 \times 5 \times 17 \times 35081 \times 2007623, \\
& r_{3}-1=2 \times 17 \times 1609 \times 763897 \times 1869248598543746584721506723 .
\end{aligned}
$$

R3 ([5, p.36, Remark]). Since $\frac{x}{\log x}(x \geq 3)$ is strictly increasing, for $3 \leq a<b$,

$$
\frac{a}{\log a}<\frac{b}{\log b}, b^{a}<a^{b} \text { and } \frac{b^{a}-1}{b-1}<\frac{a^{b}-1}{b-1}<\frac{a^{b}-1}{a-1} \text {. It shows } \underline{s=t \text { iff } p=q .}
$$

$\mathbf{R 4}([4$, p. 64, 2.45.Theorem $])$. We define cyclotomic polynomials over \mathbb{Q} by $\Phi_{m}(x):=$ $\prod_{k}\left(x-\zeta_{m}^{k}\right)$ where $\zeta_{m}=e^{\frac{2 \pi i}{m}}$ and k runs over $E_{m}:=\{k \mid 1 \leq k<m$ with $\operatorname{gcd}(k, m)=$ $1\}$. $\Phi_{m}(x)$ is irreducible over $\mathbb{Q}[x]$ since it is minimal invariant by automorphism group $\left\{\sigma_{k}: \zeta_{m} \rightarrow \zeta_{m}^{k} \mid k \in E_{m}\right\}$. We assume $\ell \nmid m$ for prime ℓ. All roots of $x^{m}-1$ are distinct by its derivation $m x^{m-1}$. Thus all roots of $x^{m}-1$ on \mathbb{Q} or \mathbb{F}_{ℓ} forms the cyclic group $\left\langle\zeta_{m}\right\rangle$ of order m and $x^{m}-1=\prod_{d \mid m} \Phi_{d}(x)$ on \mathbb{Q} or on \mathbb{F}_{ℓ} by classifying roots by orders. $\Phi_{m}(x)$ is monic and in $\mathbb{Z}[x]$ by induction on m.

R5 ([4, p.65, 2.47.Theorem.(ii)]). We assume $\ell \nmid m$ for prime $\ell . \Phi_{m}(x)$ on \mathbb{F}_{ℓ} factorizes into irreducible polynomials $u_{k_{i}}(x)=\prod_{h=0}^{|\ell|_{m}-1}\left(x-\zeta_{m}^{k_{i} \ell^{h}}\right)$ of the same degree $|\ell|_{m}$ where
 in the group $E_{m} \bmod m$ with order $\varphi(m):=\operatorname{deg} \Phi_{m}(x) . u_{k_{i}}(x)$ is irreducible since $u_{k_{i}}(x)$ are minimal invariant by Frobenius automorphism $\sigma_{\ell}: \zeta_{m}^{k_{i}} \rightarrow \zeta_{m}^{k_{i} \ell}$.
Theorem. s never divides t for distinct primes p and q.
Proof. If $p=2$, then $s=q+1$ is even and $t=2^{q}-1$ is odd, so $s \nmid t$. We shall prove this theorem by reduction to absurdity. Hence we assume $s \mid t$ for $2<p<q$, namely, for odd s, t and $s<t$ by R3. We can see $|p|_{t}=q,|p|_{s}=q$ from $p^{q} \equiv 1 \bmod t$ and $p^{q} \equiv 1 \bmod s$ with $s \mid t$ and $p<s$ by R1. Both $\Phi_{t}(x)$ and $\Phi_{s}(x)$ on \mathbb{F}_{p} have the minimal splitting field $\mathbb{F}_{p}\left(\zeta_{t}\right) \cong \mathbb{F}_{p^{q}} \cong \mathbb{F}_{p}\left(\zeta_{s}\right)$ from $|p|_{t}=q=|p|_{s}$ and $\mathbf{R} 5$. The isomorphism $\zeta_{t} \rightarrow \zeta_{s}$ over \mathbb{F}_{p} is contrary to $s<t$.
Notice. First we show $|q|_{t}=p$. $\Phi_{t}(x)$ on \mathbb{F}_{q} factorizes into $\varphi(t) /|q|_{t}$ irreducible factors by R5, where $\varphi(t)=\operatorname{deg} \Phi_{t}(x)$. Noting $|q|_{s}=p$ by $q^{p} \equiv 1 \bmod s$ from $q<s$ by R1, We have $|q|_{s}=p$ divides $|q|_{t}$ by $q^{|q|_{t}} \equiv 1 \bmod s$ and the inequality $\varphi(t) /|q|_{t} \geq \varphi(t) /|q|_{s}=\varphi(t) / p$ by $|q|_{s}=p$ because $\Phi_{s}(x)$ on \mathbb{F}_{q} already factorizes into $\varphi(s) /|q|_{s}=\varphi(s) / p$ irreducible factors and hence $\Phi_{t}(x)$ on \mathbb{F}_{ℓ} factorizes at least into $\varphi(t) /|q|_{s}=\frac{\varphi(t)}{\varphi(s)} \cdot \frac{\varphi(s)}{p}$ irreducible factors. Thus $|q|_{t}=p$. Of course, as the proof in theorem, by $|q|_{t}=p$ and $|q|_{s}=p$, we obtain the isomorphism $\zeta_{s} \rightarrow \zeta_{t}$ over \mathbb{F}_{q} is contrary to $s<t$.

However the another method exists as follows: If a prime $\ell \mid \operatorname{gcd}(t,(q-1))$, then $q \equiv 1 \bmod \ell$, that is, we have $\Phi_{\ell}(x)$ on \mathbb{F}_{q} has the minimal splitting field \mathbb{F}_{q} from $|q|_{\ell}=$ 1. The minimal splitting fields of $\Phi_{t}(x)$ on \mathbb{F}_{q} is also \mathbb{F}_{q}, contrary to $|q|_{t}=p$. Thus $\operatorname{gcd}(t,(q-1))=1$ and $t \mid s(q-1)$, namely, $|q|_{t}=p$ implies $s=t$, contrary to $s<t$.

References

[1] T. M. Apostol, The resultant of the cyclotomic polynomials $F_{m}(a x)$ and $F_{n}(b x)$, Math. Comp., 129(1975), 1-6. See p.1.
[2] W. Feit and J.G. Thompson, A solvability criterion for finite groups and some consequences, Proc. Natl. Acad. Sci. USA. 48 (1962), 968-970. See p.970, last paragraph.
[3] R. K. Guy, Unsolved problems in number theory, 1st ed. 1981, 2nd ed. 1994, 3rd ed. 2004, Springer. See B25.
[4] R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of Mathematics and its applications, 20, 1983, Addison-Wesley Publishing Company, Massachusetts, USA. See p.64, 2.45.Theorem and p.65, 2.47.Theorem. (ii).
[5] K. Motose, Notes to the Feit-Thompson conjecture, Proc. Japan Acad. Ser. A Math. Sci. 85(2009), no. 2, 16-17. See p.16, Remark and Lemma. (3).
[6] K. Motose,Monologue of triangles (Sankkakei no hitorigoto in Japanese), Hirosaki University Press, 2017. See p. 82.
[7] N. M. Stephens, On the Feit-Thompson conjecture, Math. Comp., 25 (1971), 625.

Emeritus professor, Hirosaki university
Home post address: Toriage 5-13-5, Hirosaki, 036-8171, JAPAN
E-mail address: motose@hirosaki-u.ac.jp

