The Feit-Thompson conjecture and cyclotomic polynomials

To the memory of professors Kazuo Kishimoto and Yôichi Miyashita

Kaoru Motose

Abstract: We can see that Feit-Thompson conjecture is true using factorizations of cyclotomic polynomials on the finite prime fields.
Key Words: cyclotomic polynomials, finite fields, splitting fields.
2000 Mathematics Subject Classification: Primary 11R18,11A15; Secondary 20E32, 20D10.
Feit and Thompson conjectured in [2, p.970, last paragraph] $s:=\frac{q^{p}-1}{q-1}$ never divides $t:=\frac{p^{q}-1}{p-1}$ for distinct primes p and q.
The utility and the cause of this conjecture are also stated in [7], [1, p.1] and [3, B25].
Using a computer, Stephens [7] found the unique example: for $p=17$ and $q=3313$, the prime $r=2 p q+1=\operatorname{gcd}(s, t)$ that shows $s \nmid t$ from $r<s($ see $\mathbf{R 2}$ or [6, p.82]).This example is a counter example to his view $(s, t)=1$ but not to Feit Thompson conjecture. However he gave an important congruence to our theorem, in detail see R1, R2.

Using the next reviews of classical results, we show this conjecture is true.
Reviews. R1 (Stephens [7]). $r \equiv 1 \bmod 2 p q$ for any prime $r \mid \operatorname{gcd}(t, s)$ and $p<q$. If $p=2$ then $2^{q}-1 \equiv 0 \equiv q+1 \bmod r$, so $q \mid(r-1)$ by Fermat little theorem and $r \mid(q+1)$. This yields a contrary $q=r-1$. Hence $2<p<q$. If $p \equiv 1 \bmod r$ then $0 \equiv t=p^{q-1}+\cdots+p+1 \equiv$ $q \bmod r$ and $r=q$. We have a contradiction $0 \equiv s \equiv 1 \bmod r$. Thus $p \not \equiv 1 \bmod r$ and $|p|_{r}=q$ by $p^{q} \equiv 1 \bmod r$. Similarly $|q|_{r}=p$. Hence we have $r \equiv 1 \bmod 2 p q$ by Fermat little theorem.

R2. Example of Stephens [7]. Using the program MPQSX3 attached to the package of language UBASIC designed by professor Yuji Kida, we have the prime factorization $s=r_{1} r_{2} r_{3}$ for $p=17, q=3313$ where r_{1}, r_{2} and r_{3} are primes, $r_{1} \mid t$ and $r_{k}-1(k=1,2,3)$ are as the next table. We can see $\operatorname{gcd}(s, t)=r_{1}$ by $q=3313 \nmid\left(r_{2}-1\right)\left(r_{3}-1\right)$ in this table.

$$
\begin{aligned}
& r_{1}-1=2 \times 17 \times 3313, \quad r_{2}-1=2 \times 2 \times 5 \times 17 \times 35081 \times 2007623, \\
& r_{3}-1=2 \times 17 \times 1609 \times 763897 \times 1869248598543746584721506723 .
\end{aligned}
$$

R3. The next shows $s=t$ iff $p=q$. Since $\frac{x}{\log x}$ is strictly increasing for $3 \leq x<y$,

$$
\frac{x}{\log x}<\frac{y}{\log y}, y^{x}<x^{y} \text { and } \frac{y^{x}-1}{y-1}<\frac{x^{y}-1}{y-1}<\frac{x^{y}-1}{x-1} .
$$

R4. We define cyclotomic polynomials over \mathbb{Q} by $\Phi_{m}(x):=\prod_{k}\left(x-\zeta_{m}^{k}\right)$ where $\zeta_{m}=e^{\frac{2 \pi i}{m}}$ and k runs over $E_{m}:=\{k \mid 1 \leq k<m$ with $\operatorname{gcd}(k, m)=1\} . \Phi_{m}(x)$ is irreducible over $\mathbb{Q}[x]$ since it is minimal invariant by all automorphisms $\sigma_{k}: \zeta_{m} \rightarrow \zeta_{m}^{k}$ for $k \in E_{m}$.

We assume $\ell \nmid m$ for prime ℓ. All roots of $x^{m}-1$ are distinct by its derivation $m x^{m-1}$ and Thus all roots of $x^{m}-1$ on \mathbb{Q} or \mathbb{F}_{ℓ} forms the cyclic group $\left\langle\zeta_{m}\right\rangle$ of order m and $x^{m}-1=\prod_{d \mid m} \Phi_{d}(x)$ on \mathbb{Q} or on \mathbb{F}_{ℓ} by classifying roots by orders. $\varphi(m):=\operatorname{deg} \Phi_{m}(x)$ is Euler function. $\Phi_{m}(x)$ is monic and in $\mathbb{Z}[x]$ by induction on m. (see also [4, p.64, 2.45.Theorem]).

R5. We assume $\ell \nmid m$ for prime ℓ. Let $|a|_{m}$ be the order of $a \bmod m$ for natural numbers a and m with $\operatorname{gcd}(a, m)=1 . \Phi_{m}(x)$ on \mathbb{F}_{ℓ} factorizes into irreducible polynomials $u_{k_{i}}(x)=\prod_{h=0}^{|\ell|_{m}-1}\left(x-\zeta_{m}^{k_{i} \ell^{h}}\right)$ of the same degree $|\ell|_{m}($ note $\ell \nmid m)$ where $k_{i} \bmod m$ is representatives of cosets $\left\{H k_{i} \left\lvert\, i=1 \ldots \frac{\varphi(m)}{|\ell|_{m}}\right.\right\}$ of subgroup $H=\langle\ell \bmod m\rangle$ in the group $E_{m} \bmod m$ with order $\varphi(m) . u_{k}(x)$ is irreducible since $u_{k}(x)$ are minimal invariant by Frobenius automorphism $\sigma_{\ell}: \zeta_{m}^{k_{i}} \rightarrow \zeta_{m}^{k_{i} \ell}$ (see also [4, p.65, 2.47. Theorem.(ii)]).
Theorem. s never divides t for distinct primes p and q.
Proof. If $p=2$, then $s=q+1$ is even and $t=2^{q}-1$ is odd, so $s \nmid t$. We shall prove this theorem by reduction to absurdity. Hence we assume $s \mid t$ for $2<p<q$, namely, for odd s, t and $s<t$ by R3 or [5, p.16, Remark]. We know also $r \equiv 1 \bmod 2 p q$ for any prime divisor r of s by $\mathbf{R 1}([7])$ or [5, p.16, Lemma. (3)]. We can see $|p|_{t}=q,|p|_{s}=q$ by $p^{q} \equiv 1 \bmod t, p^{q} \equiv 1 \bmod s$ from $p<s$ and $s \mid t$.

Both $\Phi_{t}(x)$ and $\Phi_{s}(x)$ on \mathbb{F}_{p} have the minimal splitting field $\mathbb{F}_{p^{q}}$ from $|p|_{t}=q=|p|_{s}$ and R5. The isomorphism $\zeta_{t} \rightarrow \zeta_{s}$ over \mathbb{F}_{p} is contrary to $s<t$.
Notice. First we show $|q|_{t}=p$. $\Phi_{t}(x)$ on \mathbb{F}_{q} factorizes into $\varphi(t) /|q|_{t}$ irreducible factors by R5, where $\varphi(t)=\operatorname{deg} \Phi_{t}(x)$. Noting $|q|_{s}=p$ by $q^{p} \equiv 1 \bmod s$ from $q<s$ by R1, We have $|q|_{s}=p$ divides $|q|_{t}$ by $q^{|q|_{t}} \equiv 1 \bmod s$ and the inequality $\varphi(t) /|q|_{t} \geq \varphi(t) /|q|_{s}=\varphi(t) / p$ by $|q|_{s}=p$ because $\Phi_{s}(x)$ on \mathbb{F}_{q} already factorizes into $\varphi(s) /|q|_{s}=\varphi(s) / p$ irreducible factors and hence $\Phi_{t}(x)$ on \mathbb{F}_{ℓ} factorizes at least into $\varphi(t) /|q|_{s}=\frac{\varphi(t)}{\varphi(s)} \cdot \frac{\varphi(s)}{p}$ irreducible factors. Thus $|q|_{t}=p$. Of course, as the proof in theorem, by $|q|_{t}=p$ and $|q|_{s}=p$, we obtain the isomorphism $\zeta_{s} \rightarrow \zeta_{t}$ over \mathbb{F}_{q} is contrary to $s<t$.

However the another method exists as follows: If a prime $\ell \mid \operatorname{gcd}(t,(q-1))$, then $q \equiv 1 \bmod \ell$, that is, we have $\Phi_{\ell}(x)$ on \mathbb{F}_{q} has the minimal splitting field \mathbb{F}_{q} from $|q|_{\ell}=$ 1. The minimal splitting fields of $\Phi_{t}(x)$ on \mathbb{F}_{q} is also \mathbb{F}_{q}, contrary to $|q|_{t}=p$. Thus $\operatorname{gcd}(t,(q-1))=1$ and $t \mid s(q-1)$, namely, $|q|_{t}=p$ imply $s=t$, contrary to $s<t$.

References

[1] T. M. Apostol, The resultant of the cyclotomic polynomials $F_{m}(a x)$ and $F_{n}(b x)$, Math. Comp., 129(1975), 1-6. See p.1.
[2] W. Feit and J.G. Thompson, A solvability criterion for finite groups and some consequences, Proc. Natl. Acad. Sci. USA. 48 (1962), 968-970. See p.970, last paragraph.
[3] R. K. Guy, Unsolved problems in number theory, 1st ed. 1981, 2nd ed. 1994, 3rd ed. 2004, Springer. See B25.
[4] R. Lidl and H. Niederreiter,Finite fields, Encyclopedia of Mathematics and its applications, 20, 1983, Addison-Wesley Publishing Company, Massachusetts, USA. See p.64, 2.45.Theorem and p.65, 2.47.Theorem. (ii).
[5] K. Motose, Notes to the Feit-Thompson conjecture, Proc. Japan Acad. Ser. A Math. Sci. 85(2009), no. 2, 16-17. See p.16, Remark and Lemma. (3).
[6] K. Motose,Monologue of triangles (Sankkakei no hitorigoto in Japanese), Hirosaki University Press, 2017. See p. 82.
[7] N. M. Stephens, On the Feit-Thompson conjecture, Math. Comp., 25 (1971), 625.

Emeritus professor, Hirosaki university
Home post address: Toriage 5-13-5, Hirosaki, 036-8171, JAPAN
E-mail address: motose@hirosaki-u.ac.jp

