The Feit-Thompson conjecture and cyclotomic polynomials To the memory of professors Kazuo Kishimoto and Yôichi Miyashita

Kaoru Motose

Abstract: We can see that Feit-Thompson conjecture is true using factorizations of cyclotomic polynomials on the finite prime field.

Key Words: cyclotomic polynomials, finite fields, splitting field.

2000 Mathematics Subject Classification: Primary 11R18,11A15; Secondary 20E32, 20D10.

Feit and Thompson conjectured in [2, p.970, last paragraph]

$$s := \Phi_p(q) = \frac{q^p - 1}{q - 1}$$
 never divides $t := \Phi_q(p) = \frac{p^q - 1}{p - 1}$ for distinct primes p and q ,

where $\Phi_m(x)$ is the *m*-th cyclotomic polynomial (see **R1**). The utility and the cause of this conjecture are also stated in [1, p.1], and [3, B25]. Using computer, Stephens [7] found the unique example: for p = 17 and q = 3313, the prime $r = 2pq + 1 = \gcd(s, t)$ that shows $s \nmid t$ from r < s (see **R3** or [6, p.82]). We show this conjecture is true.

Reviews. In **R1** and **R2**, let ℓ be a prime with $\ell \nmid m$ for natural number m.

- **R1.** We define cyclotomic polynomials over \mathbb{Q} by $\Phi_m(x) := \prod_k (x \zeta_m^k)$ where $\zeta_m = e^{\frac{2\pi i}{m}}$ and k runs over $E_m := \{k \mid 1 \leq k < m \text{ with } \gcd(k, m) = 1\}$. Euler function $\varphi(m) := |E_m| = \deg \Phi_m(x)$ is defined. All roots of $x^m 1$ are distinct by its derivation mx^{m-1} . Thus all roots of $x^m 1$ on \mathbb{Q} or \mathbb{F}_ℓ forms the cyclic group $\langle \zeta_m \rangle$ of order m. Hence $x^m 1 = \prod_{d \mid m} \Phi_d(x)$ on \mathbb{Q} or on \mathbb{F}_ℓ by classifying roots by orders (see [4, p.64, 2.45.Theorem]). $\Phi_m(x)$ is irreducible over $\mathbb{Q}[x]$ since it is invariant and minimal by the automorphisms $\sigma_k : \zeta_m \to \zeta_m^k$ for $k \in E_m$. $\Phi_m(x) \in \mathbb{Z}[x]$ by induction on m.
- **R2.** This review is not so popular but important for our theorem. Let $|a|_m$ be the order of $a \mod m$ for natural numbers a and m with $\gcd(a,m)=1$. $\Phi_m(x)$ on \mathbb{F}_ℓ factorizes into irreducible polynomials $u_{k_i}(x)=\prod_{h=0}^{|\ell|_m-1}(x-\zeta_m^{k_i\ell^h})$ of the same degree $|\ell|_m$, where $k_i\ell^h\not\equiv k_j \mod m$ for all h with $0\leq h\leq |\ell|_m-1$, $k_i\in E_m$ and for some $1\leq i\neq j\leq \varphi(m)/|\ell|_m$ since $u_{k_i}(x)$ are invariant and minimal by Frobenius automorphism $\sigma_\ell:\zeta_m^{k_i}\to\zeta_m^{k_i\ell}$ (see also [4, p.65, 2.47.Theorem.(ii)]).
- **R3.** Example of Stephens. Using the programuMPQSX3vattached to the package of language UBASIC designed by professor Yuji Kida, we have the prime factorization $s = r_1r_2r_3$ for p = 17, q = 3313 where r_1, r_2 and r_3 are primes and $r_k 1(k = 1, 2, 3)$ are as the next table. We can see $gcd(s, t) = r_1$ by $q = 3313 \nmid (r_2 1)(r_3 1)$ in this table.

$$r_1 - 1 = 2 \times 17 \times 3313,$$

 $r_2 - 1 = 2 \times 2 \times 5 \times 17 \times 35081 \times 2007623,$
 $r_3 - 1 = 2 \times 17 \times 1609 \times 763897 \times 1869248598543746584721506723.$

R4. The next shows s = t iff p = q. Since $\frac{x}{\log x}$ is strictly increasing for $3 \le x < y$,

$$\frac{x}{\log x} < \frac{y}{\log y}, \ y^x < x^y \text{ and } \frac{y^x - 1}{y - 1} < \frac{x^y - 1}{y - 1} < \frac{x^y - 1}{x - 1}.$$

R5. $r \equiv 1 \mod 2pq$ for any prime divisor r of s under the conditions $s \mid t$ and $1 . If <math>r \mid s$ and $1 \equiv 1 \mod r$ then $1 \equiv s = q^{p-1} + \cdots + q + 1 \equiv p \mod r$ and $1 \equiv p$. We have a contradiction $1 \equiv t \equiv 1 \mod r$ by $1 \equiv t \equiv 1 \mod r$ by $1 \equiv t \equiv 1 \mod r$ and $1 \equiv t \equiv 1 \mod r$ by $1 \equiv t \equiv 1 \mod r$ and $1 \equiv t \equiv 1 \mod r$. Similarly $1 \equiv t \equiv 1 \mod r$. Hence we have $1 \equiv 1 \mod 2pq$ by Fermat little theorem.

Theorem. If s divides t, then p is odd and p = q.

PROOF. We shall prove this theorem by reduction to absurdity. Hence we assume p < q, namely, s < t by **R4** or [5, p.16, Remark]. If p = 2, then $s \nmid t$ since s = q + 1 is even and $t = 2^q - 1$ is odd. We also see that s, t are odd and $r \equiv 1 \mod 2pq$ for any prime divisor r of s by **R5** or [7] or [5, p.16, Lemma. (3)]. We can see $|p|_t = q$, $|p|_s = q$ and $|q|_s = p$ by $p^q \equiv 1 \mod t$, $p^q \equiv 1 \mod s$ and $q^p \equiv 1 \mod s$ from p < q < s and $s \mid t$.

p: Both $\Phi_t(x)$ and $\Phi_s(x)$ on \mathbb{F}_p have the minimal splitting field \mathbb{F}_{p^q} from $|p|_t = q = |p|_s$ and $\mathbf{R2}$. The isomorphism $\zeta_t \to \zeta_s$ over \mathbb{F}_p is contrary to s < t, where $\zeta_m = e^{\frac{2\pi i}{m}}$. \square . $\mathbf{q}: \Phi_t(x)$ on \mathbb{F}_q factorizes into $\varphi(t)/|q|_t$ irreducible factors by $\mathbf{R2}$, where $\varphi(t) = \deg \Phi_t(x)$. We have $|q|_s = p$ divides $|q|_t$ by $q^{|q|_t} \equiv 1 \mod s$ and the inequality $\varphi(t)/|q|_t \ge \varphi(t)/|q|_s = \varphi(t)/p$ by $|q|_s = p$ because $\Phi_s(x)$ on \mathbb{F}_q already factorizes into $\varphi(s)/|q|_s = \varphi(s)/p$ irreducible factors and hence $\Phi_t(x)$ on \mathbb{F}_ℓ factorizes at least into $\varphi(t)/|q|_s = \frac{\varphi(t)}{\varphi(s)} \cdot \frac{\varphi(s)}{p}$ irreducible factors. Thus $|q|_t = p$. If a prime $\ell \mid \gcd(t, (q-1))$, then $q \equiv 1 \mod \ell$ then we have $|q|_\ell = 1$ is contrary to $\ell \mid \gcd(t, (q-1))$, by the same method as the above. Thus $\gcd(t, (q-1)) = 1$ and $\ell \mid s(q-1)$, namely, $|q|_t = p$ imply s = t, contrary to s < t. \square \mathbf{p} and $\mathbf{q}: \Phi_t(x)$ and $\Phi_s(x)$ on \mathbb{F}_p (resp. \mathbb{F}_q) has the minimal splitting field $\mathbb{F}_{p^q} = \mathbb{F}_p(\zeta_t) = \mathbb{F}_p(\zeta_s)$ (resp. $\mathbb{F}_{q^p} = \mathbb{F}_q(\zeta_t) = \mathbb{F}_q(\zeta_s)$) by $|p|_t = |p|_s = q$ (resp. $|q|_t = |q|_s = p$) (see the above \mathbf{p}, \mathbf{q}). $\Phi_t(x)$ has the only one minimal splitting field $\mathbb{Q}(\zeta_t)$, we obtain a contrary $p^q = |\mathbb{F}_{p^q}| = |\mathbb{F}_{q^p}| = q^p$.

References

- [1] T. M. Apostol, The resultant of the cyclotomic polynomials $F_m(ax)$ and $F_n(bx)$, Math. Comp., **129**(1975), 1-6. See p.1.
- [2] W. Feit and J.G. Thompson, A solvability criterion for finite groups and some consequences, Proc. Natl. Acad. Sci. USA. 48 (1962), 968-970. See p.970, last paragraph.
- [3] R. K. Guy, Unsolved problems in number theory, 1st ed. 1981, 2nd ed. 1994, 3rd ed. 2004, Springer. See B25.
- [4] R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of Mathematics and its applications, 20, 1983, Addison-Wesley Publishing Company, Massachusetts, USA. See p.64, 2.45. Theorem and p.65, 2.47. Theorem. (ii).
- [5] K. Motose, Notes to the Feit-Thompson conjecture, Proc. Japan Acad. Ser. A Math. Sci. 85(2009), no. 2, 16-17. See p.16, Remark and Lemma. (3).
- [6] K. Motose, Monologue of triangles (Sankkakei no hitorigoto in Japanese), Hirosaki University Press, 2017. See p.82.
- [7] N. M. Stephens, On the Feit-Thompson conjecture, Math. Comp., 25 (1971), 625.

EMERITUS PROFESSOR, HIROSAKI UNIVERSITY

Home post address: Toriage 5-13-5, Hirosaki, 036-8171, JAPAN

E-mail address: motose@hirosaki-u.ac.jp