
THE AREA METHOD AND APPLICATIONS

T. AGAMA

Abstract. In this paper we develop a general method for estimating correla-

tions of the forms ∑
n≤x

G(n)G(x− n),

and ∑
n≤x

G(n)G(n + l)

for a fixed 1 ≤ l ≤ x and where G : N −→ R+. To distinguish between the two
types of correlations, we call the first type 2 correlation and the second type

1 correlation. As an application we estimate the lower bound for the type 2
correlation of the master function given by∑

n≤x

Υ(n)Υ(n + l0) ≥ (1 + o(1))
x

2C(l0)
log log2 x,

provided Υ(n)Υ(n + l0) > 0. We also use this method to provide a first proof

of the twin prime conjecture by showing that∑
n≤x

Λ(n)Λ(n + 2) ≥ (1 + o(1))
x

2C(2)

for some C := C(2) > 0.

1. Introduction and statement

Consider the sum ∑
n≤x

G(n)G(x− n)

and ∑
n≤x

G(n)G(n+ l)

where 1 ≤ l ≤ x. It is generally not easy to controll sums of these forms, and
unfortunately many of the open problems in number theory can be phrased in this
manner. What is often required is an estimate for these sums. There are a good
number of techniques in the literature for studying such sums, like the circle method
of Hardy and littlewood, the sieve method and many others.
In this paper, we introduce the area method. This method can also be used to
controll correlated sums of the form above. The novelty of this method is that it
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allows us to write any of these correlated sums as a double sum, which is much
easier to estimate using existing tools such as the summation by part formula.

2. The area method

In this section we introduce and develop a fundamental method for solving problems
related to correlations of arithmetic functions. This method is fundamental in the
sense that it uses the properties of four main geometric shapes, namely the triangle,
the trapezium, the rectangle and the square. The basic identity we will derive is
an outgrowth of exploiting the areas of these shapes and putting them together in
a unified manner.

Theorem 2.1. Let {rj}nj=1 and {hj}nj=1 be any sequence of real numbers, and let

r and h be any real numbers satisfying
n∑

j=1

rj = r and
n∑

j=1

hj = h, and

(r2 + h2)1/2 =

n∑
j=1

(r2j + h2j )1/2,

then

n∑
j=2

rjhj =

n∑
j=2

hj

( j∑
i=1

ri +

j−1∑
i=1

ri

)
− 2

n−1∑
j=1

rj

n−j∑
k=1

hj+k.

Proof. Consider a right angled triangle, say < ABC in a plane, with height h and
base r. Next, let us partition the height of the triangle into n parts, not neccessarily
equal. Now, we link those partitions along the height to the hypothenus, with the
aid of a parallel line. At the point of contact of each line to the hypothenus, we
drop down a vertical line to the next line connecting the last point of the previous
partition, thereby forming another right-angled triangle, say < A1B1C1 with base
and height r1 and h1 respectively. We remark that this triangle is covered by the
triangle < ABC, with hypothenus constituting a proportion of the hypothenus of
triangle < ABC. We continue this process until we obtain n right-angled triangles
< AjBjCj , each with base and height rj and hj for j = 1, 2, . . . n. This construction
satisfies

h =

n∑
j=1

hj and r =

n∑
j=1

rj

and

(r2 + h2)1/2 =

n∑
j=1

(r2j + h2j )1/2.

Now, let us deform the original triangle < ABC by removing the smaller triangles
< AjBjCj for j = 1, 2, . . . n. Essentially we are left with rectangles and squares
piled on each other with each end poking out a bit further than the one just above,
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and we observe that the total area of this portrait is given by the relation

A1 = r1h2 + (r1 + r2)h3 + · · · (r1 + r2 + · · ·+ rn−2)hn−1 + (r1 + r2 + · · ·+ rn−1)hn

= r1(h2 + h3 + · · ·hn) + r2(h3 + h4 + · · ·+ hn) + · · ·+ rn−2(hn−1 + hn) + rn−1hn

=

n−1∑
j=1

rj

n−j∑
k=1

hj+k.

On the other hand, we observe that the area of this portrait is the same as the
difference of the area of triangle < ABC and the sum of the areas of triangles
< AjBjCj for j = 1, 2, . . . , n. That is

A1 =
1

2
rh− 1

2

n∑
j=1

rjhj .

This completes the first part of the argument. For the second part, along the
hypothenus, let us construct small pieces of triangle, each of base and height (ri, hi)
(i = 1, 2 . . . , n) so that the trapezoid and the one triangle formed by partitioning
becomes rectangles and squares. We observe also that this construction satisfies
the relation

(r2 + h2)1/2 =

n∑
i=1

(r2i + h2i )1/2,

Now, we compute the area of the triangle in two different ways. By direct strategy,
we have that the area of the triangle, denoted A, is given by

A = 1/2

( n∑
i=1

ri

)( n∑
i=1

hi

)
.

On the other hand, we compute the area of the triangle by computing the area of
each trapezium and the one remaining triangle and sum them together. That is,

A = hn/2

( n∑
i=1

ri +

n−1∑
i=1

ri

)
+ hn−1/2

( n−1∑
i=1

ri +

n−2∑
i=1

ri

)
+ · · ·+ 1/2r1h1.

By comparing the area of the second argument, and linking this to the first argu-
ment, the result follows immediately. �

Remark 2.2. Next we state a result for a general lower bound for any two-point
correlation that captures all real arithmetic function.

Theorem 2.3. Let f : N −→ R+, a real-valued function. If∑
n≤x

f(n)f(n+ l0) > 0

then there exist some constant C := C(l0) > 0 such that∑
n≤x

f(n)f(n+ l0) ≥ 1

C(l0)x

∑
2≤n≤x

f(n)
∑

m≤n−1

f(m).

Proof. By Theorem 2.1, we obtain the identity by taking f(j) = rj = hj∑
n≤x−1

∑
j≤x−n

f(n)f(n+ j) =
∑

2≤n≤x

f(n)
∑

m≤n−1

f(m).
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It follows that∑
n≤x−1

∑
j≤x−n

f(n)f(n+ j) ≤
∑

n≤x−1

∑
j<x

f(n)f(n+ j)

=
∑
n≤x

f(n)f(n+ 1) +
∑
n≤x

f(n)f(n+ 2)

+ · · ·
∑
n≤x

f(n)f(n+ l0) + · · ·
∑
n≤x

f(n)f(n+ x)

≤ |M(l0)|
∑
n≤x

f(n)f(n+ l0)

+ |N (l0)|
∑
n≤x

f(n)f(n+ l0)

+ · · ·+
∑
n≤x

f(n)f(n+ l0) + · · ·+ |R(l0)|
∑
n≤x

f(n)f(n+ l0)

=

(
|M(l0)|+ |N (l0)|+ · · ·+ 1

+ · · ·+ |R(l0)|
)∑

n≤x

f(n)f(n+ l0)

≤ C(l0)x
∑
n<x

f(n)f(n+ l0).

where max{|M(l0)|, |N (l0)|, . . . , |R(l0)|} = C(l0). By inverting this inequality, the
result follows immediately. �

The nature of the implicit constant C(l0) could also depend on the structure of the
function we are being given. The von mangoldt function, contrary to many class
of arithmetic functions, has a relatively small such constant. This behaviour stems
from the fact that the Von-mangoldt function is defined on the prime powers. Thus
one would expect most terms of sums of the form∑

n≤x−1

∑
j≤x−n

Λ(n)Λ(n+ j)

to fall off when j is odd for any prime power n = pk such that j + pk 6= 2s.

Theorem 2.4. Let f : N −→ R+. Suppose there exist some constant x > C(x) > 0
such that ∑

n≤x

∑
j≤x−n
j 6=x−2n

f(n)f(n+ j) =
C(x)

x

∑
n≤x

∑
j≤x−n

f(n)f(n+ j).

Then for any x ≥ 2∑
n≤ x

2

f(n)f(x− n) =
D(x)

x

∑
2≤n≤x

f(n)
∑

m≤n−1

f(m),

where x−D(x) = C(x).
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Proof. By Theorem 2.1, we obtain∑
n≤x

f2(n) = f2(1) +
∑

2≤n≤x

f(n)

( ∑
m≤n−1

f(m) +
∑
m≤n

f(m)

)
− 2

∑
n≤x−1

f(n)
∑

s≤x−n

f(n+ s)

for f : N −→ R+ by taking rj = hj = f(j). By rearranging this identity, we obtain
the identity ∑

n≤x−1

∑
j≤x−n

f(n)f(n+ j) =
∑

2≤n≤x

f(n)
∑

m≤n−1

f(m).

Let n+ j = x− n, then it follows that x− 2n = j. It follows that j ≤ x− 2 if and
only if 1 ≤ n < x

2 . Then we can rewrite the sum on the left-hand side as∑
n≤x−1

∑
j≤x−n

f(n)f(n+ j) =
∑

n≤x−1

∑
x−2n=j

f(n)f(n+ j) +
∑

n≤x−1

∑
j≤x−n
x−2n 6=j

f(n)f(n+ j)

=
∑
n< x

2

f(n)f(x− n) +
C(x)

x

∑
n≤x−1

∑
j≤x−n

f(n)f(n+ j)

where 0 < C(x)
x < 1. It follows from this relation

D(x)

x

∑
n≤x−1

∑
j≤x−n

f(n)f(n+ j) =
∑
n< x

2

f(n)f(x− n)

where 0 < D(x)
x = 1− C(x)x < 1. Using Theorem 2.1, we can write∑

n< x
2

f(n)f(x− n) =
D(x)

x

∑
2≤n≤x

f(n)
∑

m≤n−1

f(m)

and the result follows immediately. �

3. Application to the twin prime conjecture

Theorem 3.1. There exist some constant C := C(2) > 0, such that∑
n≤x

Λ(n)Λ(n+ 2) ≥ (1 + o(1))
x

2C(2)
.

Proof. By invoking Theorem 2.3, we can write∑
n≤x

Λ(n)Λ(n+ 2) ≥ 1

C(2)x

∑
2≤n≤x

Λ(n)
∑

m≤n−1

Λ(m).

Using the prime number theorem [2] of the form∑
n≤x

Λ(n) = (1 + o(1))x,

the result follows immediately by using partial summation. �
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Remark 3.2. It is important to remark that with the lower bound in Theorem 3.1,
we have solved the twin prime conjecture. This method not only does it solve the
twin prime conjecture, but is good in terms of its generality, for it can be used to
obtain lower bounds for a general class of correlated sums of the form∑

n≤x

f(n)f(n+ k)

for a uniform 1 ≤ k ≤ x.

4. Application to other correlated sums of type 1

In this section we apply Theorem 2.3 to provide lower estimates of other correlated
sums, but with the price of an implicit constant depending on the range of shift.

Corollary 1. For a fixed l0 > 0, there exist some constant C := C(l0) > 0 such
that ∑

n≤x

d(n)d(n+ l0) ≥ (1 + o(1))
x log2 x

2C(l0)
.

Proof. The result follows by using Theorem 2.3, using the crude estimate [3]∑
n≤x

d(n) = (1 + o(1))x log x

together with partial summation. �

Corollary 2. For a fixed k0 > 0 and for l ≥ 2, there exist some constant C :=
C(k) > 0 such that∑

n≤x

dl(n)dl(n+ k) ≥ (1 + o(1))

(
1

(l − 1)!

)(
1− 1

2(l − 1)!

)
x log2(l−1) x

C(k)
.

Proof. We recall the weaker estimate for the l th divisor function [3]∑
n≤x

dl(n) = (1 + o(1))
1

(l − 1)!
x logl−1 x,

where

dl(n) =
∑

n1·n2···nl=n

1.

By leveraging Theorem 2.3 and using partial summation, the lower bound follows
naturally. �

Corollary 3. For a fixed l0 > 0, there exist some constant C := C(l0) > 0 such
that ∑

n≤x

φ(n)φ(n+ l0) ≥ (1 + o(1))
9

2π4

x3

C(l0)
.
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Proof. The result follows by applying Theorem 2.3, using the estimate [4]∑
n≤x

φ(n) = (1 + o(1))
3

π2
x2

together with partial summation. �

Corollary 4. For a fixed l0 > 0, there exist some constant C := C(l0) > 0 such
that ∑

n≤x

µ2(n)µ2(n+ l0) ≥ (1 + o(1))
18

π4

x

C(l0)
.

Proof. The result follows by applying Theorem 2.3, using the estimate [4]∑
n≤x

µ2(n) = (1 + o(1))
6

π2
x

together with the use of partial summation. �

5. Application to lower bound for two-point correlation of the master
function of type 1 and type 2

In this section we apply the area method developed to establish a lower bound for
the two-point type 1 correlation and an estimate for the type 2 correlation of the
master function. We begin with the following result:

Lemma 5.1. Let Υ denotes the master function, then∑
n≤x

Υ(n) = x log log x+O(x).

Proof. For a proof, See [1]. �

Theorem 5.2. The estimate is valid∑
n≤x

Υ(n)Υ(n+ l0) ≥ (1 + o(1))
x

2C(l0)
log log2 x,

provided Υ(n)Υ(n+ l0) > 0.

Proof. Applying Theorem 2.3 and Lemma 5.1, we can write∑
n≤x

Υ(n)Υ(n+ l0) ≥ 1

xC(l0)

∑
2≤n≤x

Υ(n)
∑

m≤n−1

Υ(m)

=
1

xC(l0)
(1 + o(1))

∑
2≤n≤x

Υ(n)n log log n.
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By partial summation, we can write

∑
2≤n≤x

Υ(n)n log log n = x log log x
∑
n≤x

Υ(n)−
x∫

2

(1 + o(1))t(log log t)

(
log log t+

1

log t

)
dt

= (1 + o(1))x2 log log2 x− (1 + o(1))

x∫
2

t(log log t)

(
log log t+

1

log t

)
dt

= (1 + o(1))
x2

2
log log2 x.

The lower bound follows immediately from this estimate. �

Theorem 5.3. Under the assumption∑
n≤x

∑
j≤x−n
j 6=x−2n

Υ(n)Υ(n+ j)

∑
n≤x

∑
j≤x−n

Υ(n)Υ(n+ j)
< 1,

then ∑
n≤ x

2

Υ(n)Υ(x− n) = (1 + o(1))
x

2
D(x) log log2 x

where D := D(x) > 0.

Proof. The result follows by applying the area method. �

6. Application to estimates of the number of representations of an even
number as a sum of two primes

In this section we apply the area method developed 2.4 to obtain a weaker estimate
for the number of representations of an even number as a sum of two primes, under
the assumption that the Goldbach conjecture is true.

Theorem 6.1. Assuming the Goldbach conjecture is true, then for any even x ≥ 6∑
n≤ x

2

Λ(n)Λ(x− n) = (1 + o(1))
x

2
D(x)

where D := D(x) > 0.

Proof. Under the assumption that the Goldbach conjecture is true, it follows that∑
n≤x

∑
j≤x−n
j 6=x−2n

Λ(n)Λ(n+ j)

∑
n≤x

∑
j≤x−n

Λ(n)Λ(n+ j)
< 1.
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Applying the area method, there exist some constant D(x) > 0 with D(x) < x,
such that ∑

n≤ x
2

Λ(n)Λ(x− n) =
D(x)

x

∑
2≤n≤x

Λ(n)
∑

m≤n−1

Λ(m).

Using the prime number theorem [2] in the form∑
n≤x

Λ(n) = (1 + o(1))x

and partial summation, we obtain∑
2≤n≤x

Λ(n)
∑

m≤n−1

Λ(m) = (1 + o(1))
x2

2
.

The result follows immediately from this rudimentary estimates. �

7. Application to other correlated sums of type 2

In this section, we apply the area method 2.4 to obtain estimates for various corre-
lated sums, in the following sequel. The area method is perfectly suited for functions
of these forms, since they are non-vanishing on the integers.

Theorem 7.1. The estimate holds∑
n≤ x

2

d(n)d(x− n) = D(1 + o(1))
x log2 x

2

where D := D(x) > 0.

Proof. Since the divisor function is non-vanishing on the integers, we observe that∑
n≤x

∑
j≤x−n
x−2n 6=j

d(n)d(n+ j)

∑
n≤x

∑
j≤x−n

d(n)d(n+ j)
< 1.

Thus by the area method 2.4, there exist some constant 0 < D(x) < x such that∑
n≤ x

2

d(n)d(x− n) =
D(x)

x

∑
2≤n≤x

d(n)
∑

m≤n−1

d(m).

Using the weaker estimate [3]∑
n≤x

d(n) = (1 + o(1))x log x

we obtain by partial summation∑
2≤n≤x

d(n)
∑

m≤n−1

d(m) = (1 + o(1))
x2 log2 x

2

and the result follows immediately. �
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Theorem 7.2. The estimate holds∑
n≤ x

2

φ(n)φ(x− n) = (1 + o(1))D 9

2π4
x3

where D := D(x) > 0.

Proof. Since φ(n) is non-vanishing on the integers, we observe that∑
n≤x

∑
j≤x−n
x−2n6=j

φ(n)φ(n+ j)

∑
n≤x

∑
j≤x−n

φ(n)φ(n+ j)
< 1.

Then by the area method 2.4, there exist some constant D(x) > 0 with D(x) < x
such that ∑

n≤ x
2

φ(n)φ(x− n) =
D(x)

x

∑
2≤n≤x

φ(n)
∑

m≤n−1

φ(m).

Now using the estimate [3] ∑
n≤x

φ(n) = (1 + o(1))
3

π2
x2

we obtain by partial summation∑
2≤n≤x

φ(n)
∑

m≤n−1

φ(m) = (1 + o(1))
9

2π4
x4,

and the result follows immediately. �

Theorem 7.3. The estimate holds∑
n≤ x

2

dl(n)dl(x− n) = (1 + o(1))D
(

1

(l − 1)!

)(
1− 1

2(l − 1)!

)
x log2(l−1) x

where D := D(x) > 0 and where

dl(n) :=
∑

n1n2···nl=n

1.

Proof. We observe that ∑
n≤x

∑
j≤x−n
j 6=x−2n

dl(n)dl(n+ j)

∑
n≤x

∑
j≤x−n

dl(n)dl(n+ j)
< 1.

It follows from the area method 2.4, there exists some constant D(x) > 0 with
D(x) < x such that∑

n≤ x
2

dl(n)dl(x− n) =
D(x)

x

∑
2≤n≤x

dl(n)
∑

m≤n−1

dl(m).
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Using the estimate [3]∑
n≤x

dl(n) = (1 + o(1))
1

(l − 1)!
x logl−1 x,

It follows by partial summation∑
2≤n≤x

dl(n)
∑

m≤n−1

dl(m) = (1 + o(1))

(
1

(l − 1)!

)(
1− 1

2(l − 1)!

)
x2 log2(l−1) x.

The claimed estimate follows immediately. �

8. Application to the global distribution of integers with Ω(n) = 2

The lower bounds of correlations of arithmetic functions tells us a lot about their
local distributions as well as their global distribution. Theorem 5.2 gives∑

n≤x

Υ(n)Υ(n+ l0) ≥ (1 + o(1))
x

2C(l0)
log log2 x,

provided
∑
n≤x

Υ(n)Υ(n+ l0) > 0. Thus for some shift in the range [1, x] the corre-

lation can be made arbitrarily large by taking the right hand side arbitrarily large.
This follows that there are infinitely many pairs of the form (n, n+ l0) such that n
and n+ l0 each has exactly two prime factors.

9. Final remarks

The area method seems not particularly suited for arithmetic functions defined on
a certain subsequence of the integers. As such it’s current form cannot be applied
directly to important open problems like the Goldbach conjecture, since the implicit
constant in Theorem 6.1 relies on the condition∑

n≤x

∑
j≤x−n
j 6=x−2n

Λ(n)Λ(n+ j)

∑
n≤x

∑
j≤x−n

Λ(n)Λ(n+ j)
< 1.

Add to this, even if this condition were to be satisfied, we would certainly not
have much information about the constant, although at the barest minimum 0 <
D(x) < x. However, we believe this method can be refined to the form applicable
to functions defined on a subsequence of the integers like the primes.

1.

1

.
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