TIME-SPACE, PROBABILITY AND PHYSICS

GUNN QUZNETSOV

Abstract

In this book the Gentzen variant of the propositional logic is used to substantiate the space-time relations,
including the Lorentz transformations, irreversible unidirectional time and metric space. The logical foundations
of probability theory, including Jacob Bernulli’'s Big Numbers Law and the statistical definition of probability, are
also derived from this logic. All concepts and statements of the Standard Model (except for the Higgs) are
obtained as concepts and theorems of probability theory. The masses, spins, moments, energies of fermions are
the parameters of the distribution of such a probability. The masses of the W and Z bosons are the results of the
interaction of the probability flows into space-time. Quark-gluon relations, including the phenomena of
confinement and asymptotic freedom, are also a consequence of the properties of this probability. The
phenomenon of gravity with dark matter and dark energy is a continuation of these quark-gyonic relations. For
understanding of the maintenance of this book elementary knowledge in the field of linear algebra and the
mathematical analysis is sufficient.
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Introduction

... They sawed dumb-bells ...

“”What’s the matter?”” Balaganov said
suddenly, stopping work. "I’ve been
sawing away for three hours, and still it
isn’t gold!” Panikovsky did not reply. He
had made the discovery a half hour before,
and had continued to move the saw only
for the sake of appearance. "Well, let’s
saw some more,” redhaired Shura said
gallantly. ”Of course we must saw,”
remarked Panikovsky, trying to defer the
moment of reckoning as long as possible.
... I can’t make it out,” said Shura, when
he had sawed the dumbbell into two
halves. ”This is not gold!” ”Go on sawing!
Go on!” gabbled Panikovsky...”

Ilya IIf, Yevgeny Petrov. "The Little
Golden Calf”. M., 1987.

The Manhattan Project began on September 17, 1943. It was attracted many outstand-
ing physicists, many of whom were refugees from Europe. By the summer of 1945, the
Americans had managed to build 3 atomic bombs, 2 of which were dropped on Hiroshima
and Nagasaki, and a third had been tested shortly before. And the atomic race began. In the
following years, the governments of many states allocated enormous sums of money to sci-
entific organizations. Following these money, huge masses of easy luck seekers moved to
physics. They invented SUSY, WIMP, BIG BANG, HIGGS and other theories of the same
kind. Giant laboratory facilities were built and enormous human resources were attracted
to experimentally confirm these theories

Results of the LHC and other science giant laboratory work are describe in [1] ( since
10 September 2008 till 14 February 2013: RUNI) and [2] (from June 2015 to January 2018,
RUNII) Large Hadron Collider (LHC) worked since 10 September 2008 till 14 February
2013 RUNI. RUNII works from June 2015 for today. Huge resources have been spent, but
did not receive any fundamentally new results - no superpartners, no extra dimensions, or
gravitons, or black holes. no dark matter or dark energy, etc. etc .. As for the Higgs, the-
fistly, there is no argument in favor of the fact that the particle 124.5 -126 GeV has some



relation to the Higgs mechanism. Secondly, the Higgs held permeates the vacuum of space,
which means that the mass of the Higgs vacuum and stability are closely linked. For a
particle of mass near 126 GeV - enough to destroy the cosmos. The Standard Model of
particle physics has not given an answer to the question of why the universe did not col-
lapse after the Big Bang. Moreover, Nothing in Standard Model gives a precise value for
the Higgs???s own mass, and calculations from first principles, based on quantum theory,
suggest it should be enormous???roughly a hundred million billion times higher than its
measured value. Physicists have therefore introduced an ugly fudge factor into their equa-
tions (a process called ???fine-tuning???) to sidestep the problem. Third, all the known
elementary bosons are gauge - it is photons, W- and Z-bosons and gluons[3]. It is likely
that the 125-126 particle is of some hadron multiplet.

vi



That is, in recent years, many theoretical physicists have studied what is not in the
nature. It are SUSY, WIMP, Higgs, BIG BANG hypothesis, etc. On the other hand already
in 2006 - 2007 the logic analysis of these subjects described in books [1], [2] it showed
that all physical events are determined by well-known particles - leptons, quarks and gauge
bosons.

This book contains development and continuation of ideas of these books.

For understanding of the maintenance of this book elementary knowledge in the field
of linear algebra and the mathematical analysis is sufficient.
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Chapter 1

Truth

In the beginning was the Word.
Johnn, 1.1

Science presents its ideas and results with lan-
guage texts. Therefore, we will begin by considering
ALFRED TARSKI narrative sentences: By Alfred Tarski' [4]

HAY A e A sentence O is true if and only if ® .

For example, sentence It is  rain-
ing is true if and only if it is raining.

A sentence O is false if and only if there is not
that ® .

For example, 2 + 3 =4.

Still an example?: Obviously, the following sen-
tence isn’t true and isn’t false [5]:

This sentence is false.

Those sentences which can be either true, or false, are called as
meaningful sentences. The previous example sentence is meaning-
less sentence.

Further, we consider only meaningful sentences which are either
true, or false.

! Alfred Tarski January 14, 1901 October 26, 1983), born Alfred Teitelbaum, was a Polish-American logi-
cian and mathematician .

2L iar paradox, also called Epimenides paradox, paradox derived from the statement attributed to the Cretan
prophet Epimenides (6th century BCE) that all Cretans are liars.






Chapter 2

Time-Space

Do not expect answers before you have
found clear meanings”

Hans Reichenbach, The Direction of Time,
(1953)

2.1. Recorders

Any information, received from physical devices, can be expressed by a text, made of sen-
tences.

Let a be some object which is able to receive, save, and/or transmit an information [?].
A set a of sentences, expressing an information of an object a, is called a recorder of this
object. Thus, statement: “Sentence <A>> is an element of the set a” denotes : “a has
information that the event, expressed by sentence < A >, took place.” In short: ”a knows
that A.” Or by designation: "a® < A >".

Obviously, the following conditions are satisfied:

I. For any a and for every A: false is that a® (A& (—A)), thus, any recorder doesn’t
contain a logical contradiction.

II. For every a, every B, and all A: if B is a logical consequence from A, and a®A, then
a’B.

*[11. For all a, b and for every A: if a® < b®A > then a®A.

For example, if device a has information that device b has information that mass of
particle Y equals to 7 then device a has information that mass of particle y equal to 7.

2.2. Time

There are many concepts of the theory of “time” - in particular, quantum mechanical, rel-
ativistic, thermodynamic, causal, etc. All of them are based on unclearly defined concepts
and in most cases contain a vicious circle.



The thermodynamic concept has the greatest favor. But if a sergeant has a platoon in a
line, does this sergeant’s wristwatch change direction?

Any subjects, connected with an information is called informational objects. For ex-
ample, it can be a physics device, or computer disks and gramophone records, or people,
carrying memory on events of their lifes, or trees, on cuts which annual rings tell on past
climatic and ecological changes, or stones with imprints of long ago extincted plants and
bestials, or minerals, telling on geological cataclysms, or celestial bodies, carrying an in-
formation on a remote distant past Universe, etc., etc.

Itis clearly that an information, received from such information object, can be expressed
by a text which made of sentences.

Let’s consider finite (probably empty) path of symbols of form q°.

Def. 1.3.1 A path o is a subpath of a path B (design.: o < B) if o can be got from 3 by
deletion of some (probably all) elements.

Designation: (o) is o, and (o)™ is ot (o).

Therefore, if k < I then ()" < (ar)’.

Def. 1.3.2 A path o is equivalent to a path 3 (design.: a ~ P) if o can be got from 3 by
substitution of a subpath of form (a®)* by a path of the same form ((a*)*).

In this case:

II. If B < o or B ~ a then for any K:

if a®K then a® (K& (0A = BA)).

Obviously, III is a refinement of condition *II1.

Def. 1.3.3 A natural number g is instant, at which a registrates B according to k-clock
{g0,A,bo} (design.: g is [a®B 1 a, {go,A,bo})) if:

1. for any K: if a®K then

a® (K& (a"B = a® (g5b;)" g54))
and
a’ (K& (a' (g5b)! ' gdA = a’B)) .

2.a° (a‘B& <ﬁa' (g5b3)? ' g8 ))

Lm. 1.3.1 If
qis [a®aB T a,{go,A,bo}], (2.1)
pis [a*BB T a,{go,A,bo}], (2.2)
o~ P, (2.3)
then
q=p.

Proof of Lm. 1.3.1: From (2.2):



a* ((a*BB) & (—a (gib) " eia ) ). 2.4

From (2.3) according to III:

a® ((a'BB& (ﬂa' (g3bs) P+ g(')A)) & (a*BB = a'aB)) : 2.5)
Let us designate:
R:=a*PBB,
S:= <ﬂa' (g(’)b('))(p+l) g(')A>,
G:=a*uB.

In that case a shape of formula (2.4) is
a® (R&S),
and a shape of formula (2.5) is

a® (R&S)& (R = G)).

Sentence (G&S) is a logical consequence from sentence
((R&S) & (R = G)) (3.1). Hence

a® (G&S),

in accordance with II.
Hence

a’ (a'ocB& <ﬁa' (gobg) P+ g(')A))
in accordance with the designation.
Hence from (2.1):

a® ((atob& (—a* (23b3)" "V g4 ) ) & (a0 = a® (g5b5) 834) )
According to II:
a® ((~a" (gb3) """ g34 ) &a” (g3b) 234 (2.6)
If g > p,i.e. ¢ > p+1, then from (2.6) according to 111
((~a" (g3b5) """ g4 ) &a* (22b3)" 834 ) &
(s (em3) g3 = " (230) "3

a

According to II:

a® (- (23b3)" Vg4 ) &a* (23b3)"ggA)
It contradicts to condition I. Therefore, g < p L.
Lemma 1.3.1 proves that if



q is [a.B T a, {g07A7b0}] s

and

pis [a’B T a, {go,A,bo}]
then

q=Pp-

That’s why, expression “q is [a®B T a,{gp,A,bo}]” is equivalent to expression ’q =
[a.B Ta, {g01A7b0}]"’

Def. 1.3.4 x-clocks {g;,B,b;} and {g>,B,b,} have the same direction for a if the
following condition is satisfied:

if
r=[a*(gib})’g!B T a,{g,B,bs}],
s = [a®(gib})"g1B T a,{g2,B,b2}],
q<p,
then
r<s.

Th. 1.3.1 All k-clocks have the same direction.
Proof of Th. 1.3.1:
Let

r:=[a®(gib})’g1B T a,{g:,B,bs}],
[a® (g7b})" g1B T a,{g2,B.by}],

A

q<p-

In this case

(g7b7)? < (gib])”.

Consequently, according to Lm. 1.3.1

r<s

O

Consequently, a recorder orders its sentences with respect to instants. Moreover, this
order is linear and it doesn’t matter according to which x-clock it is set.

Def. 1.3.5 x-clock {g>,B,b,} is k times more precise than k-clock
{g1,B,b, } for recorder a if for every C the following condition is satisfied: if
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q1 = [a.CT&{glaB,bl}],
q2 = [a.CTa7{g27B7b2}]a

then
g <B<q+1L

Lm. 1.3.2 If for every n:

Qn1<z < gp—1+1, 2.7
then the series
g0+ i dn — Gn—1kn (2.8)
= ki...ky

converges.
Proof of Lm. 1.3.2: According to (2.7):

0< gy —qgn-1ky < k.

Consequently, series (2.8) is positive and majorizes next to

=
+14 ,
7 n;kl K

convergence of which is checked by d’ Alambert’s criterion []
Def. 1.3.6 A sequence H of k-clocks:

<{g07A7b0} P {gl 7A7b2} PR {g]7A7bj} 9 - >
is called an absolutely precise k-clock of a recorder a if for every j exists a natural

number k; so that k-clock{g;,A,b;} is k; times more precise than k-clock{g;_1,A,b;_; }.
In this case if

qj=[a°CTa, {g;Ab;}]
and

- QJlk
= q+zk1k2

then

tis {a‘CTa,Iﬂ.



Lm. 1.3.3: If

j=1
with
Qn—lg n<CIn—1+1,
n
and
< di—d; | k:
di=dy+ Yy +—"—-
j;kl'kZ'..-kj
with

d
dn—l < k7n <dn—1+1

n

then if ¢, < d, then ¢ <d.
Proof of Lm. 1.3.3: A partial sum of series (2.9) is the following:

o g1 —qoki | g2 —qiks Gu — Gu—1ky
Qu:i=qo+ T + s + +7k1k2___ku,
R IR S SR R
Qe 0 ke T T ke ke ik
_ qu
Q”_klkz---ku'
A partial sum of series (2.10) is the following:
Du:L~
kiky -k,

Consequently, according to the condition of Lemma: Q, < D, [
Lm. 1.34If

qis [a'ocCTa,Iﬂ,
d is [a’BCTa,fI} ,
and

oa=<Pp
then

g<d.

Proof of Lm. 1.3.4 comes out of Lemmas 1.3.1 and 1.3.3 immediately [

Therefore, if o ~ 3 then ¢ = d.

(2.9)

(2.10)



2.3. Space

Def. 1.4.1 A number ¢ is called a time, measured by a recorder a according to a x-clock H,
during which a signal C did a path a®0a® (design.:

f=m (aﬁ) (a*aa*C)),
if
t= [a’oca’CT a,ﬁ] — [a’CT a,ﬁ} )
Th. 1.4.1
m (aﬁ) (a®0a®C) > 0.
Proof comes out straight of Lemma 1.3.4 [J

Thus, any “’signal”, ’sent” by the recorder, “will come back” to it not earlier than it was

”sent”.
Def. 1.4.2
1) for every recorder a: (a®)” = (a®);
2) for all paths o and B: (o)’ = (B)" (o).
Def. 1.4.3 A set R of recorders is an internally stationary system for a recorder a with

a k-clock H (design.: R is ISS (a,ﬁ >) if for all sentences B and C, for all elements a; and
a, of set R, and for all paths o, made of elements of set R, the following conditions are
satisfied: N N

1) [a'aga;C T a,H} - [a'a;C T a,H} =

= [a'agaIB 0 a,Ifl} - [a'a}B T a,fl] ;

2)m (aﬁ) (a®0a®C) =m (af]) (a*a’a*C).

Th. 1.4.2

{a} —ISS (a,ﬁ).

Proof:
1)As a® ~ a®a® then, according to Lemma 1.3.4 : if we symbolize

pi= [a’a’B T a,ﬁ] ,
q:

[a’a'a'B T a,fl] ,

r: [a‘a'C 0 a,lfl} ,

5= {a’a‘a'C T a,ITI} ,

theng=pand s=r.

That’'s why g —p=s—r.

2) Since any series o, made of elements of set {a} coincides with o' then

9



m (afl) (a*0a’C) =m (aﬁ) (a*a’a°C). O

Thus every singleton is an internally stationary systeminternally stationary system.
Lm. 1.4.1: If {a,a;,a,} is[SS (aﬁ) then

[a’aga’aECTa PNI} - [a’aECTa,PNI} =
= [a ajaja}B T a, H} [ ‘a;BTa,fI]

Proof: Let’s symbolize

p: {a'aIB T a,ITI} ,

q:= |a*ajajaiB T a H}

ri= [a S>CTa H}

5= [a'aEaIaECTa,H] ,

u:= [a'a}a{BTa H}

wi= {a’aIaEC 0 a,?]} .
Thus, according to statement 1.4.3

U—p=S—W,W—T=¢qg—U.

Thus,
sS—r=q-p
D ~
Def. 1.4.4 A number [ is called an aH (B)-measure of recorders a; and a, (design.:
l= g(aaﬁ7B> (31732)
if
I=0.5. ([a atalalB 1 a, H} [ °a;B¢a,1?1D.

Lm. 1.4.21f {a,a;,a,} is ISS (aﬁ) then for all B and C:

K(a,FI,B) (aj,ap) zﬁ(a,ﬁ,C) (a,ap).

10



Proof: Let us designate: Let us design:

q:= [a'a;a§a°B 1a H}

ri= [a 1C T a, H}

5= [a'a{agaICTa,fl] )

u:= [a a}a{BTa,ITI} )

wi= {a‘aia}C 0 aJTI} .
Thus, according to Def. 1.4.3:

U—DPD=W—TFg—U=S5—W.

Thus,

q—p=s—r

g
Therefore, one can write expression of form /¢ (a,ﬁ ,B) (a;,a)” as the following:

Y (a,fl) (ar,a)”.
Th. 1.4.3: If {a,a;,a0,a3} is ISS (aﬁ) then
1u(mﬁ
2n(mﬁ
3u(&ﬁ

4) E(a,fl (al,az)—kﬁ(a,f]) (ap,a3) 26(a,ﬁ) (aj,as).
Proof: 1) and 2) come out straight from Lemma 1.3.4 and 3) from Lemma 1.4.2.
Let’s symbolize

(aj,ap) > 0;
(aj,a;) =0;

(a,ap) zé(a,ﬁ> (az,a;);

e e e g

pi= {a ajCTa, H]
q:= [a'a{aga}CTa H}
ri= a'a{agalCTa,ITI},

§i= a'aga{CT a,fl] ,

u:= [a a2a3aza’BTa,ITI} ,

w=|a alaiagaza CTa,H} .

11



Thus, according to statement 1.4.3

wW—u=q-—s.

Therefore,

w=p=(q—p)+(u—s).
According to Lemma 1.3.4

Consequently,

(g=p)+u—s)=r—p
D ~
Thus, all four axioms of the metrical space [?] are accomplished for E(a,H ) in an
internally stationary systeminternally stationary system of recorders.
Consequently, ¢ (a, H ) is a distance length similitude in this space.

Def. 1.4.5 A set R of recorders is degenerated into a beam aby and point a; if there
exists C such that the following conditions are satisfied:
1) For any sequence o, made of elements of set R, and for any K: if a®K then

a® (K& (0ajC = abjal()).

2) There is sequence 3, made of elements of the setR, and there exist sentence S such
that a® (Bb]C&S) and it’s false that a® (Bajb}C&S)

Further we’ll consider only not degenerated sets of recorders.

Def. 1.4.6: B took place in the same place as a, for a (design.: j(a) (a;,B)) if for every
sequence o and for any sentence K the following condition is satisfied:

if a®K then a* (K& (a.B = 0ajB)).

Th. 1.4.4:

7(a) (ay 7aTB)'
Proof: Since aaj ~ aajaf then according to III: if a}K then

aj (K& (0ajB = aajaiB))

U
Th. 1.4.5: If

1(a)(ai,B), (2.11)

1(a)(az,B), (2.12)
then

12



1(a) (a2,a7B).

Proof: Let a®K.
In this case from (2.12):

a® (K& (cajB = caja3B)).
From (2.11):

a® ((K&(oa}B = aaja3B)) & (oajasB = aajajalB)).

According to II:

a® (K& (cajB = oajajalB)).

According to III:

a® ((K& (aalB = oajaja}B)) & (cajaja}B = aajalB)).

According to II:

a® (K& (aajB = oaja}B))

U
Lm. 1.4.3: If

5(a)(ar,B), (2.13)

= [a‘ocBT a,ﬁ} , (2.14)
then
1 = {a'oca}BTa,ﬁ] .
Proof: Let’s symbolize:
1= [a‘ocB T a, {gj,A,bj}] .
Therefore,
a® (a'ocB& <ﬁa' (23)""" g}A)) ,
from (2.13):
° ° o[ ope\/jtl o ° ° °
a ((a aB& (—|a (g5b5)"” ng)> & (a®oB = a OcalB)) :

According to II:
a® (a*aatBe (—a* (g7b3)" ' g4)). 2.15)

13



Let a®°K. In this case from (2.14):

a’ (K& <a‘ocB =a° (g;b;)’-’ g}A)) )

Therefore, according to III:

a’ ((K& (a'ocB = a° (g}b3)" g;A)) & (a®0alB = a'ocB)) :

According to II:
a’ (K& (a’ocafB =a° (g;b;)t'f g}A)) . (2.16)
From (2.13):
a* ((K& (a’ (g;b;)t"+1 giA = a‘ocB)) & (a*oB = a'ocaIB)) :
according to II:
a’ (K& (a' (g;b;)tﬂrl giA = a'oca}B)) .
From (2.15), (2.16) for all j:

t;=[a’calB T a,{g;Ab;}].

Consequently,

t = [a'aa?BTa,ITI}

0
Th. 1.4.6: If {a,a;,a,} is [SS (aﬁ)

1(a)(ai,B), (2.17)

1(a) (az,B), (2.18)
then

Proof: Let’s symbolize:

t:= [a'B 0 a,fl] .
According to Lemma 1.4.3:
from (2.17):
t = [a'aIBTa,ﬁ} ,
from (2.18):

14



t= [a’a{agB 0 aJNI] ,
again from (2.17):
t= [a’a}azafB 0 a,ﬁ} .
Consequently,
¢ (aﬁ) (a1,82) = 0.5 (t —1) =0

]
Th. 1.4.7: If {a;,ay,a3} is ISS <a,I-I ) and there exists sentence B such that

1(a)(ay,B), (2.19)

1(a)(a2,B), (2.20)

then

¢ (&ﬁ) (az,ap) =/ (a,ﬁ> (az,a).
Proof: According to Theorem 1.4.6 from (2.19) and (2.20):

¢ (aﬁ) (a1,a2) = 0; 2.21)

according to Theorem 1.4.3:

l (a,ﬁ) (aj,ap)+/ (a,ﬁ) (ag,a3) >/ (a,H) (a,a3),
therefore, from (2.21):

¢ (a,ﬁ) (ay,a3) >/ (a,H) (aj,a3),

i.e. according to Theorem 1.4.3:

1 (a,ﬁ) (az,ap) >/ (a,ﬁ) (a,as). (2.22)
From
1 (a,ﬁ) (az,a;)+/ (a,ﬁ) (ag,ap) >/ (a,ﬁ) (a3,a;):
and from (2.21):
L (a,ﬁ) (az,a;) >/ <a,ﬁ) (a3,ap).
From (2.22):

14 <a,l§) (az,a;) =/ (a,ﬁ) (az,az)

15



O
Def. 1.4.7 A real number 7 is an instant of a sentence B in frame of reference <9{af~1 )

(design.: t = [B ] Eﬁalﬂ) if

1) R is ISS (aﬁ)

2) there exists a recorder b so that b € R and  (a) (b, B),
3= [a’B 4 a,fl} —r (aﬁ) (a,b).

Lm. 1.4.4:

[a'BTa,Iﬂ = {a‘B | E)%aﬁ} )

Proof: Let N is ISS (a,f]), a; € Rand

h(a)(a;,a’B). (2.23)
According to Theorem 1.4.4:

i(a)(a,a®B).
From (2.23) according to Theorem 1.4.6:

l (a,ﬁ) (a,a;) =0,
therefore
{a'B | EKaITI} = [a'BTa,Iﬂ —/ (a,?]) (a,a;) = [a'BTa,Iﬂ

O

Def. 1.4.8 A real number z is a distance length between B and C in a frame of reference
(maﬁ) (design.: z = ¢ (mafz) (B,C)) if

1) R is ISS (aﬁ)

2) there exist recorders a; and a, so thata; € R, a, € R,
h(a)(a;,B)) and §(a) (az,C)),

3)z= B(a,f]) (ap,a;).

According to Theorem 1.4.3 such distance length satisfies conditions of all axioms of a

metric space.

2.4. Relativity

Def. 1.5.1: Recorders a; and a, equally receive a signal about B for a recorder a if

< f(a)(a2,a}B) > =< f(a)(ar,a3B) >.
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Def. 1.5.2: Set of recorders are called a homogeneous space of recorders, if all its
elements equally receive all signals.
Def. 1.5.3: A real number c is an information velocity about B to the recorder a; in a

frame of reference (‘Xaf-i ) if

¢ (maﬁ) (B,a$B)

Cc =

[aIB | fRaﬁ] - [B \ EKaITI} .
Th. 1.5.1: In all homogeneous spaces:
c=1.

Proof: Let ¢ represents information velocity about B to a recorder a; in a frame of

reference (Eﬁafl ) .

Thus, if
R is ISS (aﬁ) ,
2=t (‘Jiaﬁ) (B,a%B), (2.24)
1= [B | i)taﬁ} , (2.25)
1= [aIB | %alﬂ , (2.26)
then
= - - (2.27)

According to (2.24) there exist elements by and b, of set R such that:

1(a)(b1,B), (2.28)
1(a) (b2,a3B), (2.29)
=1 (aﬁ) (b1,bs). (2.30)

According to (2.25) and (2.26) there exist elements b/ and b} of set R such that:

1(a) (b},B), 2.31)
1(a) (by,a3B), (2.32)
f = [a'B 4 a,ﬁ} ¢ (aﬁ) (a,b}), (2.33)
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= [a'aEB 0 a,f]] —/ (a,ﬁ) (a,b}).
From (2.24), (2.28), (2.31) according to Theorem 1.4.7:

14 (a,ﬁ) (a,by) =/ (a,f]) (a,b}).
Analogously from (2.24), (2.29), (2.32):

14 (a,ﬁ) (a,by) =/ (a,fl) (a,b}).

Analogously from (2.33), (2.28), (2.35)according to Lemma 1.4.3:

= [a‘b{B 0 a,Iﬂ —/ (a,fl) (a,by).
From (2.29) according to Lemma 1.4.3:
[a'aEB 0 a,ﬁ} = [a'bEa}B 0 a,ﬁ] .
According to Lemma 1.3.4:
[a'bgazB 0 a,ITI} > [a’bgB T a,Iﬂ .
From (2.29):

1(a) (az,b3B).

According to Lemma 1.4.3

[a'azsz 0 a,ITI} = [a'bgB T a,ITI} .
Again according to Lemma 1.3.4:

[a'aEbEB 0 a,Ifl} > [a'aEB T a,ﬁ] i

From (2.40), (2.38), (2.39):

a‘a3BtaH| > [a'biBtaH| > a*aB e,

therefore,
{a'aEB 0 a,FNI} = {a'sz T a,ITI} .
From (2.34), (2.36):

= [a'bEBT a,fl} —/ (a,ﬁ) (a,by).

From (2.28) according to Lemma 1.4.3
= [a'bEbIB 0 a,f]} —/ (a,ﬁ) (a,by).
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Let’s symbolize

= [acra,d], (2.42)
= [a*bta*c 1], (2.43)
wi= |a"b3a’Cta, |, (2.44)
[a b3bta*C ta H] (2.45)

[ *btbh3a®C a,fl} ,
[a btb3ba®C 1 a H} (2.46)
ri= [a b3bth3a®C 1 a,ﬁ] .
Since R is ISS (aﬁ) then

q—w=p—]j, (2.47)

i=q. (2.48)
From (2.41), (2.37), (2.43), (2.45):

(tz 40 (aﬁz) (a,bz)) - (zl , <aﬁ) (a,b1)> —j—d,
therefore
h—1 :j—d—€<a,f-i> (a,b2)+€<a,ﬁ) (a,by). (2.49)
From (2.42), (2.43), (2.44) according to Lemma 1.3.4:

0 (aﬁ) (a,bs) = 0.5- (w—u), ¢ (aﬁ) (a,b1) = 0.5-(d —u).
From (2.47), (2.48), (2.49):

h—1t1=05((j—d)+(j—w))=05-(j—d+p—j)=05-(p—d).
From (2.46), (2.43), (2.30):

z=05-(p—d).

Consequently

=10 —1

O

That is in every homogenous space a propagation velocity of every information to every
recorder for every frame reference equals to 1.

Th. 1.5.2: If R is a homogeneous space, then
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[a;B | Staﬁ} > [B | E)ialfl} .

Proof comes out straight from Theorem 1.5.1.

Consequently, in any homogeneous space any recorder finds out that B "took place” not
earlier than B actually take place”. ”Time” is irreversible.

Th. 1.5.3 If a; and a, are elements of R,

RisISS (aﬁ) , (2.50)
pi= [a{B | ‘.Kalﬂ , (2.51)
= [aga;B | Eﬁalﬂ, (2.52)

z:=4 (%aﬁ) (a,ay),
then
z=q—p

Proof: In accordance with Theorem 1.5.1
from (2.50), (2.51), (2.52):

g—p={(%Rafl ) (a3B,a3aiB),
thus in accordance with Definition 1.4.8 there exist elements b; and b, of R such that

1(a) (by,alB), (2.53)
1(a) (b2,a3a]B), (2.54)

q—p:e(maﬁ) (b1,bs).

Moreover, in accordance with Theorem 1.4.4
5(a)(a},aiB), (2.55)
1 (a) (a3,a3a}B).

From (2.54) in accordance with Theorem 1.4.7:

¢ (maﬁ) (bi,by) = ¢ (‘ﬁaﬁ) (b1, ). (2.56)

In accordance with Theorem 1.4.3:

¢ (Staﬁ) (bi,as) = ¢ (Staﬁ) (a2,by). (2.57)
Again in accordance with Theorem 1.4.7 from (2.55), (2.53):
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¢ <$Ka[-1> (as,by) = ¢ (smﬁ) (as,a1). (2.58)

Again in accordance with Theorem 1.4.3:

14 (‘.Kalfl) (az,a;) =/ (ERafI) (ajay).
From (2.58), (2.57), (2.56):

¢ (Stafz) (b1,by) = ¢ (maﬁ) (a1a2)

O
According to Urysohn‘s theorem! [6]: any homogeneous space is homeomor-
phic to some set of points of real Hilbert> space. If this homeomorphism

is not Identical transformation, then R will represent a non- Euclidean space.

In this case in this “’space-time” corresponding
variant of General Relativity Theory can be con-
structed. Otherwise, R is Euclidean space. In this
case there exists coordinates system R* such that the
following condition is satisfied: for all elements a;
and a; of set R there exist points x; and x, of system
R* such that

€<a,f~1) (ag,a,) = <Z’j:1 (x5, _xk’j)z) 03,

In this case RY is called a coordinates sys-
tem of frame of reference (SKaITI) and num-

bers <xk,1 Xk 25 ,xk+,> are called coordinates of
recorder a; in R*.
A coordinates system of a frame of reference is specified accurate to transformations of
shear, turn, and inversion.
Def. 1.5.4: Numbers <x1 S, X2, ,xﬂ> are called coordinates of B in a coordinate system

R* of a frame of reference (‘ﬁafl ) if there exists a recorder b such that b € R, f(a) (b,B)

and these numbers are the coordinates in R* of this recorder.
Th. 1.5.4: In a coordinate system R* of a frame of reference <9iaH ): if z is a dis-

tance length between B and C, coordinates of B are (by,b,..,b,), coordinates of C are

(c1,¢2,..,¢3), then

0.5
u

2= Y (b))’

=1

IPavel Samuilovich Urysohn, Pavel Uryson (February 3, 1898, Odessa - August 17, 1924, Batz-sur-Mer)
was a Jewish mathematician who is best known for his contributions in the theory of dimension, and for de-
veloping Urysohn’s Metrization Theorem and Urysohn’s Lemma, both of which are fundamental results in
topology.

ZDavid Hilbert ( 23 January 1862 14 February 1943) was a German mathematician and one of the most
influential and universal mathematicians of the 19th and early 20th centuries.
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Proof came out straight from Definition 1.5.4 [J
Def. 1.5.5: Numbers <x1 JXD, . ,x,,> are called coordinates of the recor-der b in the

coordinate system R' at the instant t of the frame of reference (Eﬁaﬁ ) if for every B the
condition is satisfied: if

t= [b'B \ ‘Kalﬂ

then coordinates of < b®B >> in coordinate system R* of frame of reference <9?af~1 >
are the following:

<x1,x2, e ,xp>.

Lm. 1.5.1 If

T:= [b*C1b,{go,B,bo}], (2.59)
p = [a®b® (g0b0)" g0B T a,{g1,A,b1}], (2.60)
gi= a"b* (g3b0)"" 838 1. {g1,A,bu}] 261)
t:=1[a*bh*C T a,{g;,A,b}] (2.62)
then
p<t<gq
Proof
1) From (2.61):
a® (a'b' (g3h)" g8 B& (ﬁa' (g7b3) 7! g;A)) . (2.63)
Hence from (2.59):

(b" (25b3)* ' 838 = b7C)

then from (2.63) according to II:
a" (a*b*c& (—a* (gfb?) ' g1A) )

According to 11, since from (2.62):

(a°b°C = a® (g7b}) g}A)
then

a® (a® (gb?)' giA& (-a® (gb})""'giA) ). (264

Ift > gthent > g+ 1. Hence according to III from (2.64):
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a® (a* (gb?)""" g1a& (—a* (g7b})* ' g14) ).
it contradicts to I. So r < g.
2) From (2.62):
a® (a'b'C& <ﬁa’ (g1b3) gt )) . (2.65)
Since from (2.59):
(b*C = b* (gib})"glB)
then from (2.65) according to 1I:
a® (a'b' (g3b%)" gl B& (—|a' (gth3) ™! g{A)) . (2.66)
Since from (2.60):
(a®b° (g5b]) " g0B = a® (g1b})" g1A)
then according to II from (2.66):
a® (a® (g1b})" giA& (—a’ (gfb}) "' g7 ). (2.67)

If p > t then p >t + 1. In that case from (2.67) according to III:
a" (a" (g1b7)""' g1A& (" (g7b}) ' g1 ) ).

it contradicts to I. So p <t [J

Th. 1.5.5 In a coordinates system R* of a frame of reference (EKaﬁ ) : if in every instant
t: coordinates of>:

b: <Xb,1 + V-, Xp2,Xb 3, ,xb7’u>;

go: <X0,1 +V~Z,X0,2,X0,3,---,Xo,u>;

bo: (xo,1 +v-t,x02+1,%3,...,%0,); and

tc= [b‘C | ‘.Kafl};

tp = [b'D | Eﬁaﬁ];

gc = [b*C1Tb,{g0,A,bo}];

dp = [b.D T bv {g07Aab0}]7
then

l _
lim?2 - ApTge
10 (1 —v2) tp —1tc

1.

Proof: Let us designate:

3below v is a real positive number such that [v| < 1)
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o= b (e0%b0") g0"B | FRadl . (2.68)
fr = |b* (0*bo*) B | %aﬁ], (2.69)
= |(20"bo") 20" B | Ra . (2.70)
ta = |(g0°bo") " go°B| Snaﬁ] 2.71)

In that case coordinates of:

< b®(g0°ho" )% gy B >>:

(X1 FV11,X52,Xb 3, - s Xb ) » (2.72)
< b*(g0°ho® )" gy*B >

(X1 V- 12,X52,Xb 3, - s Xb ) » (2.73)
< (80°00") ™ 20" B >t (X0,1 +V+13,X02,X03, - - 1 X0 ) » (2.74)
< (20%50*) " g0*B > (X0, +V 14,X0.2,%03, - 1 X0 ) » (2.75)
Kb C >t (X1 +V 10 Xb 2, Xb3, - - Xbyr) - (2.76)

According to Theorem 1.5.1 and Lemma 1.4.4 from (2.68), (2.72), (2.69), (2.73), (2.76):

aobo (gooboo)qc gO.B | EKa[:j —
a*h* (g0°bo*)* go*B ta,H| =
0.5

t1+<(xb71+vt1) +Zj+sz]> »
a*b® (g0°bo*)*“"' B | RaH | =
a*h® (g0°bo*)“ "' Bra,H| =
0.5

H+ ((xb,l +vn)” + Z’}f:zxi,])

According to Lemma 1.5.1:

0.5
u
1+ ((be +Vt1)2 + Zx%:])

=

IN

0.5
tc+ ( Xp,1+ vtc Z X} ]> .77

IN

0.5
u
th+ ((be +Vt2)2 + Z x%_’]) .

J=2

According to Theorem 1.5.1 from (2.68), (2.70), (2.72), (2.74):
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NCE
H=t3+ ((X(),l + Vi3 —Xp 1 —vtl)z—i—Z’]{:z (X()J —xbd-) ) .

From (2.69), (2.71), (2.73), (2.75):

0.5
2 2
=1+ ((XO,l + vty —Xp1 — Vo) —l—):l;:z (xo,j —xb,j) ) .
Hence:

2
(l1 —t3)2 = v2 (l‘l —13)2 —2v(t1 —t3) (Xo_y1 —x;,71) +Z’;{:2 (XOJ‘ —xb_,j) s

(12— 1a)” =2 (12— 1a)7 —2v (12 —1a) (%01 —p1) + T4 (0, —257)
Therefore,
h—ty =1 —13. (2.78)
Let us designate:
t5 1= [bo° (20°D0%)C 20°B | maﬁ} . (2.79)
In that case coordinates of:
< bo* (80°b0* ) go*B > (x0,1 + Vv 15,X02+1,X03,. ., X0u) -

hence from (2.70), (2.74) according to Theorem 1.5.1:

0.5
ts—13 = ((XO,l +vis —x0.1 —vi3)* + (x02 +1 —x02)° + Y5 (0, —xo,j)z) ,

hence:
[
t5 —13 = \/172 (2.80)
—v
Analogously from (2.79), (2.71), (2.75):
[
g —15 = \/172
—v
From (2.80):
P 21
MR/ gy
From (2.78):
21
Hh—1 = I =
v
Hence from (2.77):

2
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2

0.5

t1+<xb1+vt1 +th]>
0.5

< tc+<xb1+vtc +be]>

21 2 "
< xp1+v|g+ + X2 .
\/l—v2 <<b1 (1 vl—v2)> J:Zz b’]>

Orif !/ — Othent, — 1, and

Jj=2

05
u
. 2 >
}E% t+ ((xb,l )"+ beJ)

05
u
= tc+<(xb,1+vtc)2+2x§7j> )

J=2

Since, if v? < 1 then function

J=2

0.5
f()=t+ ((x;m +vi)? + Zx,’jj)

is a monotonic one, then

lim#; =1c,
=0
hence
fim [b' (80°bo* ) g0°B | Stafl] = ic. 2.81)
%
Analogously,
lim [b‘ (20°D0%) ™ 20" B | %afl} —1p. (2.82)
5

According to Theorem 1.5.1 from (2.68) and (2.69):
[b° (20°b0")" g0°B | %aﬁ} - [b' (80"b0")% 0" B | RaH

= <l1 +\/%(QD_CIC)) —1

_ 2l(9p—4c)
1—2
From (2.81) and (2.82):

26



2 _
lim 2140~ 4c) 2

-0 tp—1ic

=v1—v

0

Corollary of Theorem 1.5.5: If designate: ¢}) := gp and g := g¢ for v =0, then

St St
lim2r22—9¢ _
-0 tp—1c

L,
hence:

m qp —4qc _ 1
st st
1—0 qp qc
For an absolutely precise k-clock:

—2,

st st _ 4D —dqc
d9p —4c = mm
Consequently, moving at speed v K-clock are times slower than the one at rest.
Th. 1.5.6 Let: v (Jv| < 1) and / be real numbers and &; be natural ones.

Let in a coordinates system R* of a frame of reference (‘J{aﬁ ) : in each instant ¢ coor-

dinates of:
b: <xb,1 +V‘f7xb72,xb,3,~-,xb,,u>,
g <yj.,1+V't>yj,2,yj,3,--->)’j,y>,
u;j: <yj71 +v-t,yjia+1/(k -...-kj),yjﬂg,...,yj7,,>,
for all b;: if b; € 3, then coordinates of
bit (Xi1 + V1, Xi 2,03,y Xip )
T is <{g1,A,u1}, {gz,A,uz},..,{gj,A,uj}, . >
In that case: 3 is ISS (b,f).
Proof
1) Let us designate:

pi= [b'b{B +b, f] ,

[b'b;b;B b, T] ,

q:=
ri= [b'bICT b,f] ,
5= [b'b;b;ﬁb,ﬂ,

t,:=[b*b3B | maﬁ},
ty= [b*b3bIB | skaﬁ} :

6= [b*b2C| %aﬁ] ,

ty = [b*b3pIB | %alﬂ .

27

2.83)
(2.84)
(2.85)

(2.86)



According to Corollary of Theorem 1.5.5:

From (2.83-2.86) coordinates of:

< b‘b;B > <xb71 +VIp, Xp 2, Xp 3, - ,xb#> R
< b’bEbTB > <xh,1 +Vig Xp 2, Xp35 - - 7xb»ll> R

< b*hiC>: (xb,1 +Vt Xp 2, Xp 3 - - 7Xb.,u>,
< b*bh3bIC > <xb,1 + VI, Xp 2, Xp 35 - - - ,xb.,u> .

Let us designate:

1= [bIB | Rad

[

f = [bIC | maﬁ} :

Consequently, coordinates of:

< bIB > <X1,1 + VI, X12,X1 3, ,xl_’y> s
< bTC > <X171 + VI, X12,X1 3, - ,X1’#> .

According to Theorem 1.5.1 from (2.90), (2.92), (2.85):

0.5
u
2
ty—t) = <(xb,1 + Vvt — X1 1 —vt2)2+ Z (xbvj —XLJ') > .

j=2
Analogously from (2.89), (2.91), (2.83):

0.5
u
2
ty—t = <(xb71 +Vvtp —X1,1 —th)2+ Z (be_ij) ) :

Hence,

t—th=t,—1.

Let us denote:
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- [bz’bIB | maﬁ} :
= [b;b;c | S)taﬁ} .

Hence, coordinates of:

< b2°bIB > <XZ71 +VI3,X22,X2.3, - - ,X27M> R
<K bz.bIC > <X2’1 +VI4,X02,X23, . - - ,x2”u> .

According to Theorem 1.5.1:

0.5
u
13—t = ((X;l +vt3 — X1 1 —vt1)2 + Z (ijj —xl’j)2> .

=

0.5
u
4y —1t) = ((x271 +vtg — X171 —Vt2)2 + Z (XQ’]' —xl’j)2> .

j=2
Hence:
3—ty =1t —t. (2.94)
And analogously:
ly—13 =1 —14. (2.95)

From (2.94), (2.95), (2.93):
tg—t, =ts—1y.
From (2.88), (2.87):

g—p=s—r. (2.96)

2) Let us designate:

P = [b'c b, %’] ,

d = [b'ab'CTb,ﬂ ,

/
r.

[b'oﬁb‘C b, ﬂ :

here o is b1b5...byby ... bY,.
Hence according Definition 1.4.1:
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Let us designate:

m (bf (b*ab*C) = ¢ — p, (2.97)

)
m (bT) (b*albC) =~ p. (2.98)

= :b’C | %alﬂ ,
= [b}b'C | Staﬁ],

f = |b3BI6°C | maﬁ] :

tr = |be...b3bILC| ‘.Kalﬂ : (2.99)

fyy = [b,:HbZ L B3BIC | maﬁ} ,

fy 1= [b]’v...b,:ﬂb,:...b;bfb'c | %alﬂ ,

Inat = [b'oﬁb'c | maﬁ} .

Hence in accordance with this theorem condition coordinates of:

<

<

<

<

<

<

<

b°C >:

<xb,1 —I—Vto,xb,z,xbs,---,xb,y>,
bib°C >:

<x1,1 +V11,X1,2,X1,37-'.,xl,y>,
b5b1b°C >

<X2,1 +V2,X22,X23, ... ,X27y> ,

by ---b3b1b°C >

<xk,1 T VI, Xk, 25 Xk 35 - - - 7xk,,u>,

by by - -b3bIDC >

<xk+1,1 F V415 Xk+1,25 Xk 41,35 - --»xk+1,y>,
by -+ bp by - -b3bTLC >

<XN,1 +VIN, XN 2, XN 35 - - - ,XN,p>,
b*a’b°C >

<XN+1,1 +VIN£ 1, XN+1,2,XN+1,35 - - ,XN+17;1> .

Hence from (2.99) according Theorem 1.5.1:
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If designate:

1 —1

0.5

then for every k:

Hence:

05
u
2
(x1,1 + vt —xp1 —vig)* + Y (x1j—x) )
j=2
h—1n
y 0.5
(x2,1 +vta —x11 _th)2+2(x2,j_xl,j)2 ,
j=2
Te+1 — Ik
2 v 2
(k41,1 + Vg1 — X1 — Vi)™ + Z (Xk1,j — X, j)
j=2
INy1 —IN
0.5
2, v 2
(xp,1 +Vine1 — XN —vin) "+ Y (xpj—xn,)
j=2
2 % 2
Pap =Y, (%1 —%Xa1)",
j=1
v
let1 — I = 1.2 (Xkr1,0 — Xx1)
0.5
1 2 2 K 2
+ 11— 2 Prg+1 =V Z (xk+1,j _xkvj)
j=2
INy1 —I0=
0.5

2
(Pi,l —v Y (v =)
! 2 2 yH 202
1_ 2 + (PN,b -V 2/:2 (xb,j —xN,j) )

0.5
N-1 (2 2y 2
X (pk,k+1 Y CNEL ) )

Analogously, if designate:

Tyil = [b'ocb‘C | ‘.Kalfl}
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then

TN+1 — o =
(P%,b —v? Z?:z (b, _xlaj)z .
= ﬁ + (Pi,zv — Vi (v, — xb,,-)2> " ’
+r (plzﬂ,k —v? Yo () — Xkt1,)) 2) "
hence
INt1 — 1) = Tn+1 — lo. (2.100)

According to Theorem 1.5.5:

a-r r—p
W1l = s and ivy —lo = =

From (2.100), (2.97), (2.98):
m (bT) (b*abC) = m (b7 ) (bat'b C).

From (2.96) according to Definition 1.4.3: 3 is ISS (b, T) O

Therefore, a inner stability survives on a uniform straight line motion.
Th. 1.5.7
Let:

1) in a coordinates system R* of a frame of reference (E)Kafl ) in every instant ¢:
b (X1 4 V1, Xb2,Xb 3, - Xy )
gj: <yj>1 VY2, Y3, vijﬂ>’

u;: <yj’1 —i—v-t,yj,z—i—l/ (kl . -kj) 3 Vi3 ,y”,>,
for every recorder q;: if q; € 3 then coordinates of

q;: <xi,1 +Vt,Xi2,%i 3, ,xi,y>,

TiS <{g17A7u1}7 {g2aA>u2}7"7{gjaAauj}v . >
C:(C),0,Cs,...,Cy),
D: (Dy,Dy,Ds,...,D,),

tc= [C | ‘J{alﬂ,

tp = [D | SKaFI};

2) in a coordinates system R* of a frame of reference (3bf) :
C: (C},G,C5,....C),

D: (D\,Dy,D},....D,),

1t = |C| 37|,

1 = [D | Sbﬂ.

In that case:
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, (tp—tc)—v(D1—C)

th—tn = ,
D C /71_‘}2
o _c - Di=G)—vltp—ic)
1 1 /1_V2 °

Proof:
Let us designate:

p 0.5
Pab = (Z (b; —aj)z) .
=1

According to Definition 1.4.8 there exist elements q¢ and qp of set 3 such that

5(b) (qc¢,C)), i (b) (ap, D)

and
0 (31)?) (C,D) = ¢ (b, f) (qc, qp).
In that case:

- = |C|3bT| = [qzC| IBT],
= [D | Sbﬂ - [q'DD | Sbﬂ.

According to Corollary of Theorem 1.5.5:

{qEC | EKafI} = [C | EKaH] =fc,
[qZ)D | E)iafl} = [D | ‘ﬁalﬂ =1p.

Let us designate:
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T = [b’CTb,T:

T = [b'DTb,f
f = [b°C | Rad|,

t = _b’D ] %alﬂ ,

1= -b'B | giaﬁ- ,
ty = _q(';b°B | fﬁafl] ,

t5 1= _b’qu'B | %afl] ,
to = _qZ)qu'B ] ERaIﬂ ,

t7:= |qeqhatb°B | %aﬁ] :

fs = b qeqhasb®B | maﬁ] .
Under such designations:

t§ —t7 =5 — 14 hence: tg —t5 = t7 —t4 and

0 <5bf) (C,D)

=0.5([b*aabaeb*B 10,7 ~ [b*geb B 1b.7] ),

hence:
¢ (sbf) (C,D) = 0.5(t5 — 15) VT2 = 0.5 (t7 — 1) VT 12,
(t7 —t6)2 = (xq] +Vvt7 —Xp1— Vt6)2 —I—Z;;:z (XCJ —XD_’j)z,
(t6 —l‘4)2 = (xp,1 +Vte —xC,1 — Vl‘4)2 +Zl}-l:2 (xc,j —xDJ)Z,
hence:
(t7 — t6)2 =2 (l7 _t6)2 +2v (XCJ —XDJ) (l‘7 — l‘()) + p(zlaqn,
(l‘6 — l‘4)2 =2 (l‘6 *2‘4)2 +2v (XDJ *XCJ) (2‘6 — l‘4) + péD:QC'
Sequencely:

0.5
17—ty = w%—vz <V2 (xp,1 —Xc,l)2 + (1 - V2) P(zlc,,qD) .
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Let us designate:

Under such designation:

Since

C\ =xc,1 +Vvic, D1 = xp, +Vip,
Cir1=xcj+1,Djr1 =xp j1

then
0.5

V2 (Dl —vip —Cy +Vtc)2
2
Rycqp = +(1-1?) (D _:tD —C —l—vfg) ,

hence:
0.5

V2 (tp —t¢)* = 2v(tp — 1¢) (D) — Cy)
RQC-,qD = +p%7D 5
—v? ?:2 (Dj—Cj)

(2.101)

Moreover, according to Definition 1.4.7:
th—t-= (T —1)—
i ~ic = ) (2.102)
~(¢(b.7) b.an) £ (0.7 (b.ac))

According to Theorem 1.5.5:

T — T :(tg—l‘l)\/l—vz. (2.103)

According to Theorem 1.5.3:
2

(1 —tc)” = (.1 +vir = C1)* + X, (., j — €))%,
2

(tr — ID)Z = (xp,1 +Vvt2 — D )2 +Z’;{:2 (xp,j—D;)".

Therefore,
2 2 2
(hh—tc)"+2v(xp1 —xc1) (11 —1tc) + Ph.qc

(l‘l —tc)2 =y
2 (tz — ID)Z +2v (xb71 _XDJ) (tl _tD) + plzy,qD'

(h—tp)*=v
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Hence,

h—1 =

= (tp —tc) + 152 (xc1 — xp,1)
+1,71V2 (Rbqu - Rb,%) .

Because

0 (b,f) (b,qp) = —ba_ (b,T) (b,qc) =

V1I=2
then from (2.102), (2.103), (2.104):

th—te-=(tp—tc) V1 —12—

hence:

tp—lc

= (Z‘D—tc) V 1_V2_\/]%7v2

hence:

;o (tD—tc)—V(D1 —Cl)

tc = Vi
(D1 —Cy)—v(tp—tc)

Di—-C =

It is the Lorentz spatial-temporal transforma-
tions* .

Thus, if you have some set of objects, deal-
ing with information, then time and space are in-
evitable. And it doesnt matter whether this set is part
our world or some other worlds, which dont have a
space-time structure initially. I call such Time the
Informational Time. Since, we get our time together
with our information system all other notions of time

(thermodynamical time, cosmological time, psycho-

V1—12

vaqC

V1=v2

\/ﬁ (XD,l —xC,l) >

(D1 =Cy)=v(tp—1c)),

’

. (2.104)

logical time, quantum time etc.) should be defined by that Informational Time.

4Hendrik Antoon Lorentz (18 July 1853 - 4 February 1928) was a Dutch physicist who shared the 1902
Nobel Prize in Physics with Pieter Zeeman for the discovery and theoretical explanation of the Zeeman effect.
He also derived the transformation equations subsequently used by Albert Einstein to describe space and time.
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2.5. Matricies

Let 1, be an identical n x n matrix and 0, is a n X n zero matrix. If A and all AB; s are n X n

matricies then

Boo  Bo, Bo ABoo ABo; ABy
A Bio B Bin | _ | ABio ABy ABy
Bm,O Bm,l Bm,n ABm,O ABm,l ABm,n
and
Boo Bo, By, BooA Bp A By ,A
B B B BipA B A B A
o I R R R A )
Bm,O Bm,l Bm,n Bm,OA Bm,lA Bm,nA
If A and all B; ; are k x k matrices then
Boo Boi1 Bop By,
Bio Bii1 Bip B,
A+ | By By1 B By, | =
Bn,O Bn,l Bn,2 Bn,n
Boo Bo,1 Bo2 By
Bio Bi1 Bip By,
=Aly+ | Bap B21 B> By, | =
Bn,O Bn,l Bn,2 Bn,n
Boo+A By, By, By,
Bio Bii+A By B,
= By B>, Byr+A By,
Bn,O Bn,l Bn,2 Bn,n +A
(2.106)
Let
1 0 0 0 I, 0y
1, := 20, = I —— = —1y4.
R e R e P B
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The Pauli® matrices:

oo [0 0 i) [T O
"o P27 i o0 P o <1 |”

A set C of complex n x n matrices is called a Clifford set ¢ of rank n [7] if the following
conditions are fulfilled:

if oy € C and o, € C then oy 0L, + 0,0 = 28,3

if oo + 00 = 20y for all elements o, of set C then oy € C.

If n = 4 then a Clifford set either contains 3 matrices (a Clifford triplet) or contains 5
matrices (a Clifford pentad).

Here exist only six Clifford pentads [7]: one light pentad :

.= | O O | gpy._ |02 02
P [02 —01]’[3 ' [02 -0y |’

B.—| % O
B |: 0, —03 ]’
(2.107)
0, 1
o= [ Lo ] (2.108)
B =i. [ _sz (1)2 }; (2.109)
three chromatic pentads:
the red pentad C:
m_| =0t 02| ,pg_|02 02|  5_| -0 O
R I K el L Il PR A1)
o | 0 —o W_.| 0 o1 |,
¥ —[_Gl N ],c —1{_61 o |; (2.111)
the green pentad 1:
n_| —or 0 p_| =02 02 B _| 03 02
R T I P S R
o] 02 —0> [4 _ - 02 02 | .
Yn - |: -0y 02 :|,T| _1|: —0, 02 5 (2113)
the blue pentad ©:
n_| ot 0 pl_| —o2 02 B _ | =03 02
0 [02 G]],e [ 0, —o |® 0 o | (2.114)

SWolfgang Ernst Pauli ( German: 25 April 1900 15 December 1958) was an Austrian theoretical physicist
oWilliam Kingdon Clifford (4 May 1845 3 March 1879) was an English mathematician and philosopher.
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7[90}_{ 02 —03],9[41_1[ 02 "3]; (2.115)

two gustatory pentads:
the sweet pentad A:

m_[ 0 —o1] qm_[ 00 —o2] ,z_[ 02 -—o3
A [_01 02 }’A [—02 02 A —o3 0, |’
o _ | —l2 02
=
the bitter pentad I

r[l]:i[ 0, —oy },Fm:i[ 0, —o ],szi[ 0, —o3 ]’
o1 0, (&) 0,

o _ | —l2 02 _| 02 L2
o= o2 ]| .

Further we do not consider gustatory pentads since these pentads are not used yet in the
contemporary physics.

-
E o

J HekapT

-l A
- (1596-1650)

o

Let in a coordinates system R* of a frame of reference <9¥af~1 > in the instant xy: the B

coordinate be the following:
(x> = <)C0,X1 ,xz,x3> = <Cto,X> (C = 299,792,458)

Let (t4,x4) be coordinates of event A and (¢3,xp) be coordinates of event B.
In rhis case if

m(A;B) =% (tg —14)* — (xp.1 —x4.1)" — (X2 —x42)" — (X3 —x43)°

then m (A; B) is called the Minkovski interval’ between events A and B.

A Minkovski interval is invariant under the Cartesian® transformation:

7Hermann Minkowski 22 June 1864 12 January 1909) was a German mathematician and professor at
K™igsberg, Z?rich and G?ttingen.
8Ren? Descartes March 1596 11 February 1650) was a French philosopher, mathematician, and scientist .
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X — X;c = Xk COSA —Xj sin }\., WARSY BRTHDAY 10 ONE OF THE EINSTEN S TEACHER
xj = ¥ 1= x;cos h+ xgsink, HERMANN MINKOWSKI

k#0#j.
(turnabout of the coordinates system for angle A)

And a Minkovski interval is invariant under the Lorentz trans-
formation 2.104)

/ Minkowski is parhaps best known for hes wark in
Fp— v.Q1 . relativity, in-which he showed in 1507 that his
X0 — xO =X COSh }\’ ‘x] Slnh 7\” former student Alpert Einsnein's special theory
af relativity [1905), conld be understood geomatrically

xj — xl. =X coshA — X0 sinh 7\,; a5 o theory of four-dimensional space-time,

J since knewen s the 'Minkm‘kisp:cﬂllmr“‘__.u e
here:
1 . %
coshA 1= —— sinhA 1= ——
V1-% cy/1—5
If
—Xxo+x3 Xx1—1ix 0 0
3 .
_: W, _ X1+ —Xxo—Xx3 0 0
k(x)‘ ;)B Y 0 0 —X0—X3 —Xx1+ix
0 0 —X1 —ixz —X0 + X3
then k (x) is the clift of the point x.
Let
Uy = cosh- Bl +sina - plIBE (2.116)
Hence
—exp (—il) 0 0 0
Un o — 0 —exp (id) 0 0
12— 0 0 —exp (—il) 0
0 0 0 —exp (iA)
Hence
x3—xp X —ix, 0 0
/ ./
~1 | X iy —xo—Xx3 0 0
Uipk(x) Ui = 0 0 —Xo—x3 —X;+ix)
0 0 —xy—ix)  x3—xp
Here
Xy = (x1cos2h+xpsin2);
xh = (xpcos2h—xsin2)).

That is, U; » mades the cartesian turnout of the x; O x; coordinate system on angle 2.
Similarly, if
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Ui 3 :=cosA- B +sin - BlBE! (2.117)

(that is
—CcosA —sinA 0 0
U= sinA  —cosA 0 0
13 = 0 0 —cosA —sink
0 0 sinA  —cosA

) then U, 3 mades the cartesian turnout of the x; O x3 coordinate system on angle 2A.
And if

Uy 3 :=cos\-B[0] +sin ) - BZIBF! (2.118)
(that is
—cosA isinA 0 0
Uy — isinA  —cosA 0 0
23— 0 0 —cosA  isinA
0 0 isinA  —cosA

) then U, 3 mades the cartesian turnout of the x,O x3 coordinate system on angle 2A.
Now if

Up.1 := coshA- B +sinh - plO/BIY (2.119)
(that is
—coshA —sinhA 0 0
Un i — —sinhA  —coshA 0 0
0.1= 0 0 —coshA  sinhA
0 0 sinhA  —coshA
) then
—xp+x3  xXp—in 0 0
/ . /
¥ | At —xp—x3 0 0
Uo.kx)Uor = 0 0 —Xp— X3 —X| +ix
0 0 —xXj =i —xy+x3
Here
xy = xgcosh2A —x;sinh2),
x] = xjcosh2A—xqsinh2A.

Hence, Uy 1 mades the Lorentz transformation betwin xo and x;. .
Similarly, if

Up := coshA- B +sinh - B0 12! (2.120)
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(that is

—coshA  isinhA 0 0
Un s — —isinhA —coshA 0 0
02~ 0 0 —coshA —isinhA
0 0 isinhA  —coshA
) then Uy » mades the Lorentz transformation betwin xo and x;.
And if
U3 := cosh-B% 4+ sinh A - BOIBE! (2.121)
(that is
— 0 0 0
0 —e* 0 0
Ys=1 09 0 —e* o
0 0 —é
) then Up 3 mades the Lorentz transformation betwin xp and x3.
And if
Up 3 :=coshA- B[O] + sinhA - B[O]BB] (2.122)
(that is
—& 0 0 0
0 —e* 0 0
Y3=1 o 0 —e* o0
0 0 —e
) then Uy 3 mades the Lorentz transformation betwin xo and x3.
And if
U3 := coshA- B +sinh - BlOBE! (2.123)
(that is

Ups =

) then Up 3 mades the Lorentz transformation betwin xy and x3.
Two more matrices exist here. which do not change the Minkovski interval:

e 0 00 e 0 0 0

- 0 & 0 0 S 0 & 0 0

U:= 0 0 ¢ o and U := 0 0 & 0o (2.124)
0 0 0 ¢ 0 0 0 e

42



Here:

U'k(x)U =k(x), U "k(x)
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Chapter 3

Logic and Probability

3.1. Logic

Logic as a scientific method is used for
evidence of obvious and clear things that
do not need any proof in view of their
obviousness. The more obvious the thing,
the more logic and less all the other in it,
do not belong to the logic. It is clear that
logic as such is most obvious of all things,
since there is nothing at all except logic in
it. It is for this reason that pure logic does
not need any proofs or explanations and
does not require any additional logic to
understand it.

A. S. Shlenski@, Short treatise on logic

Further I set out the version of the Gentzen' Natural Propositional calculus (NPC) [9]:

Def. 1.1.4: A sentence C is called conjunction of sentences A and B (design.: C =
(A&B)) if C is true, if and only if A and B are true.

Def. 1.1.5: A sentence C is called negation of sentences A (design.: C = (—A)) if C is
true, if and only if A is not true.

Def. 1.1.6: A sentence C is called disjunction of sentences A and B (design.: C =
(AVB))if Cis true, if and only if A is true or B is true or both A and B are true.

Def. 1.1.7: A sentence C is called implication of sentences A and B (design.: C =
(A= B))if Cis true, if and only if B is true and/or B is false.

A sentence is called a simple sentence if it isn’t neither conjunction, nor a disjunction,
neither implication, nor negation.

Th. 1.1.1:

IGerhard Karl Erich Gentzen (November 24, 1909 August 4, 1945) was a German mathematician and
logician. He made major contributions to the foundations of mathematics, proo theory, especially on natural
deduction and sequent calculus. He died of starvation in a Soviet prison camp in Prague in 1945, having been
interned as a German national after the Second World War




* Gerhard Karl Erich Gentzen
(November 24, 1909 — August 4,
1945) was a German
mathematician and logician. He
made major contributions to the
foundations of mathematics, proof
theory, especially on natural
deduction and sequent calculus.

World War, because he was
deprived of food after being
arrested in Prague,

1) (A&A) = A; (AVA) = A;

2) (A&B) = (B&A); (AV B) = (BVA);

3) (A&(B&C)) = ((A&B)&C); (AV (BVC)) = ((AVB)VC);

4) if T is a true sentence then for every sentence A: (A&T) =Aand (AVT)=T.

5) if F is a false sentence then (A&F) = F and (AV F) = A.

Proof of Th. 1.1.1: This theorem directly follows from Def. 1.1.1, 1.2, 1.3, 1.4, 1.6.

Further I set out the version of the Gentzen Natural Propositional calculus®> (NPC) [9]:

Expression ”Sentence C is a logical consequence of a list of sentences I".” will be wrote
as the following: ”I' = C”. Such expressions are called sequences. Elements of list I" are
called hypothesizes.

Def. 1.1.8

1. A sequence of form C I C is called NPC axiom.

2. A sequence of form I' - A and T'F B is obtained from sequences of form I' - (A&B)
by a conjunction removing rule (design.: R&).

3. A sequence of form I';,I'; - (A&B) is obtained from sequence of form I'; - A and a
sequence of form I'; = B by a conjunction inputting rule (design: 1&).

4. A sequence of form I't- (A V B) is obtained from a sequence of form I' - A or from
a sequence of form I' - B by a disjunction inputting rule (design.: 1V).

5. A sequence of form I'; [A],I'; [B],I'3 I C is obtained from sequences of form I'y - C,
I FC, snd I's - (AV B) by a disjunction removing rule (design.: RV) (Here and further:
I'; [A] is obtained from I'j by removing of sentence A, and I'; [B] is obtained from I', by
removing of sentence B).

6. A sequence of form I'y,I; I B is obtained from a sequence of form I'; - A and from
a sequence of form I'; - (A = B) by a implication removing rule (design.: R=>).

7. A sequence of form I'[A] - (A = B) is obtained from a sequence of form I" - B by
an implication inputting rule (design.: I=).

8. A sequence of form I' - C is obtained from a sequence of form I' - (= (—=C)) by a
negation removing rule (design.: R—).

2Gerhard Karl Erich Gentzen ( November 24, 1909, Greifswald, Germany August 4, 1945, Prague,
Czechoslovakia) was a German mathematician and logician.
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9. A sequence of form I'; [C],I"2 [C] F (—=C) is obtained from a sequence of form I'; - A
and from a sequence of form I'; F (—A) by negation inputting rule (design.: I-).

10.

A finite string of sequences is called a propositional natural deduction if every

element of this string either is a NPC axioms or is received from preceding sequences by
one of the deduction rules (R&, I1&, IV, RV, R=, I=, R—, I-).
Actually, these logical rules look naturally in light of the previous definitions.
Example 1: Let us consider the following string of sequences:

1. ((R&S)& (R = G)) F ((R&S) & (R = G)) - NPC axiom.

2. (R&S)& (R = G)) F (R&S) - R& from 1.

3.(R&S)& (R=G))F (R=G) - R& from 1.

4.((R&S)& (R = G)) F R - R& from 2. 3.1)
5.((R&S)& (R=-G))F G -R = from 3. and 4.

6. ((R&S)& (R = G)) - S - R& from 2.

7.((R&S) & (R = G)) - (G&S) - 1& from 5. and 6.

This string is a propositional natural deduction of sequence

(R&S)& (R = G)) I (G&S).

since it fulfills to all conditions of Def. 1.1.8.
Hence sentence (G&S) is logical consequence from sentence

(R&S) &
Th. 1.1.2:

(R=Q)).

(AVB) = (= ((-A) &(=B))), (3.2)
(A= B) = (~(A&(=B))). (3.3)

Proof of Th. 1.1.2:
The following string is a deduction of sequence

-B)) F ((—A) & (—B)), NPC axiom.

-B))F (-A), R& from 1.

LAFA, NPC axiom.

-A) & (—B))), I- from 2. and 3.
-B)) F (-=B), R& from 1.

. B+ B, NPC axiom.

.BF (=((—A) & (—B))), I- from 5. and 6.

. (AVB)F (AVB), NPC axiom.

.(AVB)F (=((-A)&(—B))), RV from 4., 7. and 8.

deduction of sequence (—((—A) & (—B))) - (A V B) is the following:
—-A), NPC axiom.

—B), NPC axiom.
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-A),(=B) F ((-A) & (—-B)), 1& from 1. and 2.
(-A) & (—B))), NPC axiom.
F (= (=A)), I- from 3. and 4.
FA, R- fr0m5
l_

),(=(AVB))F (= (=B)), I from 7. and 8.

))),(=(AVB))F B, R— from 9.
-B))),(=(AVB))F (AVB), 1V from 10.

)

)

== 0% No L AW

F(=(=(AVB))), I-from 8. and 11.
F (AVB), R— from 12.
Therefore,
(= ((-A)&(—B))) = (AVB).

deduction of sequence (A = B) I (— (A& (—B))) is the following:
. (A& (—B)) - (A& (—B)), NPC axiom.

(A&(—|B)) A, R& from 1.

. (A& (—=B)) - (-B), R& from 1.

(A : B) (A = B), NPC axiom.

. (A& (-B)),(A = B) F B, R= from 2. and 4.

.(A=B)F (- (A& (—B))), I- from 3. and 5.
eduction of sequence (- (A& (—B))) - (A = B) is the following:
F A, NPC axiom.
—|B) - (—=B), NPC axiom.
(=B) - (A& (—B)), I& from 1. and 2.

(A& (—B))) F (— (A& (—B))), NPC axiom.
,( (A& (—B))) F (= (=B)), I from 3. and 4.

A, (= (A& (—B))) F B,R— from 5.
7. (< (A& (=B))) F (A = B), I=> from 6.
Therefore,

~—~ X o
J} 2

oxm#g»_to~>ou]4>wm~;>
>

(—(A&(=B))) = (A= B)0]

Example 2:

1. A A - NPC axiom.

2. (A= B)F (A= B) - NPC axiom.
3.A,(A= B)F B-R= from I. and 2.

4. (=B) - (=B) - NPC axiom.

5. (=B),(A= B)F (—A) - I- from 3. and 4.

6. (A= B)F ((—B) = (—A)) - I= from 5.
7.-((A=B) = ((-B) = (—A))) - I= from 6.
This string is a deduction of sentence of form

(A= B) = ((-B) = (—4)))

from the empty list of sentences. I.e. sentences of such form are logicaly provable.
Th. 1.1.3: If sequence I' — C is deduced and C is false then some false sentence is
contained in .

48



Proof of Th. 1.1.3: is received by induction of number of sequences in the deduction
of sequence I' — C.

The recursion Basis: Let the deduction of sequence I' — C contains single sentence.
In accordance the definition of propositional natural deduction this deduction must be of
the following type: C — C. Obviously, in this case the lemma holds true.

The recursion Step:The recursion assumption: Let’s admit that the lemma is carried
out for any deduction which contains no more than n sequences.

Let deduction of I" — C contains n+ 1 sequence. In accordance with the propositional
natural deduction definition sequence I' — C can be axiom NPC or can be received by the
deduction rules from previous sequence.

a) If I' — C is the NPC axiom then see the recursion basis.

b) Let I' — C be received by R&. In this case sequence of type I' — (C&B) or sequence
of type I' — (B&C) is contained among the previous sequences of this deduction. Hence,
deductions of sequences I' — (C&B) and I — (B&C) contains no more than n sequences.
In accordance with the recursion assumption, these deductions submit to the lemma. Be-
cause C is false then (C&B) is false and (B&C) is false in accordance with the conjunction
definition. Therefore, I" contains some false sentence by the lemma. And in this case the
lemma holds true.

c) Let I' — C be received by 1&. In this case sequence of type I'y — A and sequence of
type I'; — B is contained among the previous sequences of this deduction, and C = (A&B)
and I' =1"|,I',. Deductions of sequences I'} — A and ', — B contains no more than n
sequences. In accordance with the recursion assumption, these deductions submit to the
lemma. Because C is false then A is false or B is false in accordance with the conjunction
definition. Therefore, I" contains some false sentence by the lemma. And in this case the
lemma holds true.

d) Let I — C be received by RV. In this case sequences of type I'j — (AV B), I, [A] —
C, and I'; [B] — C are contained among the previous sequences of this deduction, and I" =
I'1,I,,I'5. Because these previous deductions contain no more than n sequences then in
accordance with the recursion assumption, these deductions submit to the lemma. Because
C is false then I'; [A] contains some false sentence, and I'; [B] contains some false sentence.
If A is true then the false sentence is contained in I'>. If B is true then the false sentence is
contained in I'3. L.e. in these case some false sentence is contained in I'. If A is false and
B is false then (A V B) is false in accordance with the disjunction definition. In this case I';
contains some false sentence. And in all these cases the lemma holds true.

e) Let I' — C be received by IV. In this case sequence of type I' = A or sequence of
type I' — B is contained among the previous sequences of this deduction, and C = (A V B).
Deductions of sequences I' — A and I' — B contains no more than n sequences. In accor-
dance with the recursion assumption, these deductions submit to the lemma. Because C is
false then A is false and B is false in accordance with the disjunction definition. Therefore,
I" contains some false sentence by the lemma. And in this case the lemma holds true.

f) Let I — C be received by R=>. In this case sequences of type I'j — (A = C), I, - A
are contained among the previous sequences of this deduction, and I" = I';,I';. Because
these previous deductions contain no more than n sequences then in accordance with the
recursion assumption, these deductions submit to the lemma. If A is false then I'; contains
some false sentence. If A is true then (A = C) is false in accordance with the implication
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defination since C is false. And in all these cases the lemma holds true.

g) Let I' — C be received by I=-. In this case sequences of type I'[A] — B is contained
among the previous sequences of this deduction, and C = (A = B). Because deduction of
I'[A] — B contains no more than n sequences then in accordance with the recursion assump-
tion, this deduction submit to the lemma. Because C is false then A is true in accordance
with the implication definition. Hence, some false sentence is contained in I". Therefore, in
this case the lemma holds true.

i) Let I' — C be received by R—. In this case sequence of type I' — (= (—C)) is contained
among the previous sequences of this deduction. This previous deduction contains no more
than n sequences then in accordance with the recursion assumption, this deduction submit
to the lemma Because C is false then (—(—C)) is false in accordance with the negation
definition. Therefore, I' contains some false sentence by the lemma. And in this case the
lemma holds true.

j) Let I — C be received by I—. In this case sequences of type I'j [A] — B, and I'; [A] —
(—B) are contained among the previous sequences of this deduction, and I' =I';,I", and
C = (—A). Because these previous deductions contain no more than n sequences then in
accordance with the recursion assumption, these deductions submit to the lemma. Because
C is false then A is true. Hence, some false sentence is contained in I" because B is false or
(—B) is false in accordance with the negation definition. Therefore, in all these cases the
lemma holds true.

The recursion step conclusion: If the lemma holds true for deductions containing n
sequences then the lemma holds true for deduction containing n + 1 sequences.

The recursion conclusion: Lemma holds true for all deductions [J.

Def. 1.1.9 A sentence is naturally propositionally provable if there exists a prpositional
natural deduction of this sentence from the empty list.

In accordance with Th. 1.1.3 all naturally propositionally provable sentences are true
because otherwise the list would appear not empty.

But some true sentences are not naturally propositionally provable.

Alphabet of Propositional Calculations:

1. symbols p; with natural k are called PC-letters;

2. symbols N, U, D, " are called PC-symbols;

3. (, ) are called brackets.

Formula of Propositional Calculations:

1. any PC-letter is PC-formula.

2. if ¢ and r are PC-formulas then (¢ r), (¢Ur),(q D r),("q) are PC-formulas;

3. except listed by the two first points of this definition no PC-formulas are exist.

3.2. The Boole funcion

Def. 1.1.10 Let function g has values on the double-elements set {0; 1} and has the set of
PC-formulas as a domain. And let
1) g("g) = 1—g(q) for every sentence g;
2)g(gnr) =g(q)-g(r) for all sentences ¢ and r;
3)g(qur)=g(q)+g(r)—g(q)-g(r) for all sentences g and r;
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4)g(gor)=1—g(q)+9(q)- g(r) for all sentences ¢ and r.
In this case a function g is called a Boolean function 3.
Hence if g is a Boolean function then for every sentence g:

A Boolean function can be defined by a table:

George Boole a(g) o(r) slgnr) slqgur) slg>r) 8(q)
0 0 0 0 1 1
0 1 0 1 1 1
1 0 0 1 0 0
1 1 1 1 1 0

Such tables can be constructed for any sentence.
For example:

g(g9) a(r) g(s) g(((rn(s))N(q)))
0o 0 0 1
0o 0 1 1
0o 1 0 0
o 1 1 1 :
10 0 1
10 1 1
10 1
I T 1

or:

©
—
~
~—
©
—~
t
N—

g(q) s(((rns)N(r>49)) > (gNs))

3.4)

—_— == = OO OO

D
1
1
1
1
1
1
1
1

0
1
0
1
0
1
0
1

—_—— O O == OO

Def. 1.1.11 A PC-formula g is called a t-formula if for any Boolean function g: g(q) =

For example, formula (((rNs)N(r D ¢q)) D (¢Ns)) is a t-formula by the table (3.4).

3George Boole (2 November 1815 8 December 1864) was an English mathematician and philosopher.
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Def. 1.1.12 Function @ (x) which is defined on the PC-formulas set and which has
the sentences set as a range of values, is called an interpretation function if the following
conditions are carried out:

1. if py is a PC-letter then @ (py) = A and here A is a simple sentence and if ¢ (p;) = B
then if s # k then A # B;

2. 9(rns) = (@(r)&9(s)), ¢(rus) = (@(r)Ve(s)), ¢(ros) = (9(r) = 0(s)).
o) = (~0(r)).

Def. 1.1.13 A sencence C is called rautology if the following condition is carried out:

if ¢(g) = C then g is a t-formula.

Lm. 1.1.1: If g is a Boolean function then every natural propositional deduction of se-
quence I A satisfy the following condition: if g ((p_1 (A)) = 0 then there exists a sentence
C such that C € T and g (¢~ '(C)) = 0.

Proof of Lm. 1.1.1: is maked by a recursion on a number of sequences in the deduction
of ' A:

1. Basis of recursion: Let the deduction of ' A contains 1 sequence.

In that case a form of this sequence is A - A in accordance with the propositional natural
deduction definition (Def. 1.1.8). Hence in this case the lemma holds true.

2. Step of recursion: The recursion assumption: Let the lemma holds true for every
deduction, containing no more than n sequences.

Let the deduction of I" - A contains n+ 1 sequences.

In that case either this sequence is a NPC-axiom or I' - A is obtained from previous
sequences by one of deduction rules.

If I'- A is a NPC-axiom then the proof is the same as for the recursion basis.

a) Let '~ A be obtained from a previous sequence by R&.

In that case a form of this previous sequence is either the following I' - (A&B) or is the
following I' - (B&A) in accordance with the definition of deduction. The deduction of this
sequence contains no more than n elements. Hence the lemma holds true for this deduction
in accordance with the recursion assumption.

If g (¢~'(A)) =0 then g (¢ '(A&B)) =0 and g (¢~ ' (B&A)) = 0 in accordance with
the Boolean function definition (Def. 1.1.10). Hence there exists sentence C such that C € I
and g (¢~ '(C)) = 0 in accordance with the lemma.

Hence in that case the lemma holds true for the deduction of sequence I' - A.

b) Let I' - A be obtained from previous sequences by [&.

In that case forms of these previous sequences are 'y FBand I, F G with ' =1",1»
and A = (B&G) in accordance with the definition of deduction.

The lemma holds true for deductions of sequences I'y - B and I'; - G in accordance
with the recursion assumption because these deductions contain no more than n elements.

In that case if g (¢ '(A)) =0 then g (¢ '(B)) =0 or g (¢~ '(G)) = 0 in accordance
with the Boolean function definition. Hence there exists sentence C such that g (¢~'(C)) =
OandCeTljorCeln.

Hence in that case the lemma holds true for the deduction of sequence I' - A.

c) Let I'- A be obtained from a previous sequence by R—.

In that case a form of this previous sequence is the following: I'F (= (—A)) in accor-
dance with the definition of deduction. The lemma holds true for the deduction of this
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sequence in accordance with the recursion assumption because this deduction contains no
more than n elements.

If g (¢~ '(A)) =0 then g (¢~ '(=(—A))) = 0 in accordance with the Boolean function
definition. Hence there exists sentence C such that C € I"and g ((p*1 (C )) =0.

Hence the lemma holds true for the deduction of sequence I' - A.

d) Let I' - A be obtained from previous sequences by 1.

In that case forms of these previous sequences are I'} - B and I'; - (—B) with I =
I'1 [G],I2[G] and A = (—G) in accordance with the definition of deduction.

The lemma holds true for the deductions of sequences I'; - B and I'; - (—B) in ac-
cordance with the recursion assumption because these deductions contain no more than n
elements.

If g (¢~ '(A)) =0 then g (¢~ '(G)) = 1 in accordance with the Boolean function defi-
nition.

Either g (¢~ '(B)) =0 or g (¢~'(—B)) = 0 by the same definition. Hence there exists
sentence C such that either C € I'y [G] or C € I, [G] andg (¢! (C)) = 0 in accordance with
the recursion assumption.

Hence in that case the lemma holds true for the deduction of sequence I' - A.

e) Let I' - A be obtained from a previous sequence by V.

In that case a form of A is (B V G) and a form of this previous sequence is either '+ B or
I'- G in accordance with the definition of deduction. The lemma holds true for this previous
sequence deduction in accordance with the recursion assumption because this deduction
contains no more than n elements.

If g(¢'(A)) =0 then g(¢~'(B)) =0 and g(¢'(G) = 0 in accordance with
the Boolean function definition. Hence there exists sentence C such that C € I' and
g(e'(C)) =0.

Hence in that case the lemma holds true for the deduction of sequence I' - A.

f) Let I' - A be obtained from previous sequences by RV.

Forms of these previous sequences are I'y - A, I, A, and I3 - (BVG) with I' =
I'1 [B],I'2[G], T3 in accordance with the definition of deduction. The lemma holds true for
the deductions of these sequences in accordance with the recursion assumption because
these deductions contain no more than n elements.

If g (¢~'(A)) = O then there exists sentence C; such that C; € I’y and
g ((p_1 (Cl)) = 0, and there exists sentence C, such that C; € I'; and g ((p_1 (Cg)) =0in
accordance with the lemma.

If g (¢! (BV G)) =0 then there exists sentence C such that C € '3 and g (¢~ (C)) =0
in accordance with the lemma. Hence in that case the lemma holds true for the deduction
of sequence I' - A.

Ifg (¢ '(BVG)) =1theneitherg (¢ '(B)) =L org (¢ '(G)) =1 in accordance with
the Boolean function definition.

If g(¢~'(B)) =1 then C; € I'; [B]. Hence in that case the lemma holds true for the
deduction of sequence I' - A.

If g (¢~ '(G)) = I then a result is the same.

Hence the lemma holds true for the deduction of sequence I' - A in all these cases.

g) Let I' - A be obtained from previous sequences by R=>.
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Forms of these previous sequences are I'j - (B=-A) and I, - (B) with T’ =T},I,
in accordance with the definitions of deduction. Hence the lemma holds true for these
deduction in accordance with the recursion assumption because these deductions contain
no more than n elements.

If g (¢ '(B = A)) =0 then there exists sentence C such that C€ T’y and g (¢~ '(C)) =0
in accordance with the lemma. Hence in that case the lemma holds true for the deduction
of sequence I' - A.

If g(¢ '(B=A)) =1 then g (¢~ '(B)) = 0 in accordance with the Boolean function
definition. Hence there exists sentence C such that C € I'; and g ((p_l (C )) =0.

Hence the lemma holds true for sequence I' - A in all these cases.

h) Let I' - A be obtained from a previous sequence by [=-.

In that case a form of sentence A is (B = G) and a form of this previous sequence is
I'y b G with I’ = T'y [B] in accordance with the definition of deduction. The lemma holds
true for the deduction of this sequence in accordance the recursion assumption because this
deduction contain no more than n elements.

If g(¢'(A)) =0 then g (¢ '(G)) =0 and g (¢ '(B)) = 1 in accordance with the
Boolean function definition. Hence there exists sentence C such that C € I'y [B] and
g(e7'(0) =0.

The recursion step conclusion: Therefore, in each possible case, if the lemma holds
true for a deduction, containing no more than »n elements, then the lemma holds true for a
deduction contained n 4 1 elements.

The recursion conclusion: Therefore the lemma holds true for a deduction of any
length [

Th. 1.1.4: Each naturally propositionally proven sentence is a tautology.

Proof of Th. 1.1.4: If a sentence A is naturally propositionally proven then there exists
a natural propositional deduction of form F A in accordance with Def. 1.1.9. Hence for
every Boolean function g: g ((p_l (A)) =1 in accordance with Lm. 1.1.1. Hence sentence
A is a tautology in accordance with the tautology definition (Def. 1.1.13) [

Designation 1: Let g be a Boolean function. In that case for every sentence A:

i { Ael 1)
' (—A) if g (¢~'(A)) =0.
Lm. 1.1.2: Let By, B>, .., By be the simple sentences making sentence A by PC-symbols
(=, &, V, =).
Let g be any Boolean function.
In that case there exist a propositional natural deduction of sequence

g pg g
B},B;,...B; - A%

Proof of Lm. 1.1.2: is received by a recursion on a number of PC-symbols in sentence
A.

Basis of recursion Let A does not contain PC-symbols . In this case the string of one
sequence:

1. A% - A9, NPC-axiom.

is a fit deduction.
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Step of recursion: The recursion assumption: Let the lemma holds true for every
sentence, containing no more than n PC-symbols.

Let sentence A contains n+ 1 PC-symbol. Let us consider all possible cases.

a) Let A = (=G). In that case the lemma holds true for G in accordance with the
recursion assumption because G contains no more than n PC-symbols. Hence there exists a
deduction of sequence

B}.B,.. Bl - G°, (3.5)
here By, B>, .., By are the simple sentences, making up sentence G. Hence By, B>, ..,Bi
make up sentence A.
If g (¢~ '(A)) =1 then
A®=A=(-G)
in accordance with Designation 1.
In that case g (¢~ '(G)) = 0 in accordance with the Boolean function definition.
Hence
G'=(-G)=A
in accordance with Designation 1.
Hence in that case a form of sequence (3.5) is the following:
B}.BS,.. B} AL
Hence in that case the lemma holds true.
If g (¢~'(A)) =0 then
A = (-A) = (=(=G)).

in accordance with Designation 1.
In that case g ((p*1 (G)) =1 in accordance with the Boolean function definition.
Hence

G'=G
in accordance with Designation 1.
Hence in that case a form of sequence (3.5) is
B.BS,...BlFG.

Let us continue the deduction of this sequence in the following way:
1. BY,BS,...B} - G.

2. (=G) F (=G), NPC-axiom.

3. B},BS,..,B} b (= (—G)), I from 1. and 2.

It is a deduction of sequence

B}.BS,.. B} AL
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Hence in that case the lemma holds true.

b) Let A = (G&R).

In that case the lemma holds true both for G and for R in accordance with the recur-
sion assumption because G and R contain no more than n PC-symbols. Hence there exist
deductions of sequences

B}.BS,.. B} - G® (3.6)

and

B}.BS,...Bl F R?, 3.7

here By,B»,..,B) are the simple sentences, making up sentences G and R. Hence
B1, B3, .., B, make up sentence A.
If g (¢~'(A)) =1 then

A9 = A = (G&R)

in accordance with Designation 1.

In that case g (¢~ ' (G)) = 1 and g (¢ '(R)) = 1 in accordance with the Boolean func-
tion definition.

Hence GY9 = G and R® = R in accordance with Designation 1.

Let us continue deductions of sequences (3.6) and (3.7) in the following way:

1. BY,BS,...B} - G, (3.6).

2. BY,BS,...B{ - R, (3.7).

3. B},B3,...B} - (G&R), 1& from 1. and 2.

It is deduction of sequence B?,Bg, ..,Bg FAS.

Hence in that case the lemma holds true.

If g (¢ '(A)) =0 then

A = (=A) = (- (G&R))

in accordance with Designation 1.

In that case g (G) = 0 or g(R) = 0 in accordance with the Boolean function definition.
Hence G? = (—G) or R? = (—R) in accordance with Designation 1.

Let G® = (=G).

In that case let us continue a deduction of sequence (3.6) in the following way:
1. BY,BS,..,B} - (—G), (3.6).

2. (G&R) - (G&R), NPC-axiom.

3. (G&R) + G, R& from 2.

4. BY,B3,...B} - (- (G&R)), I from 1. and 3.

It is a deduction of sequence BY,BS, ..,Bi F A8,

Hence in that case the lemma holds true.

The same result is received if R® = (—R).

c)LetA=(GVR).
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In that case the lemma holds true both for G and for R in accordance with the recursion
assumption because G and R contain no more than n PC-symbols. Hence there exist a
deductions of sequences

B}.BS,...Bl+G® (3.8)

and

B}.BS,...B} - R, (3.9

here B1,B»,..,By are the simple sentences, making up sentences G and R. Hence
B1, B3, .., B, make up sentence A.
If g (¢~'(A)) =0 then

A = (=4) = (~(GVR))

in accordance with Designation 1.
In that case g (¢~ '(G)) =0 and g (¢~ '(R)) = 0 in accordance with the Boolean func-
tion definition.
Hence G® = (—G) and R® = (—R) in accordance with Designation 1.
Let us continue deductions of sequences (3.8) and (3.9) in the following way:
BLBY, L BL(<G), (38).
. B},B5,..,B, - (—R), (3.9).
. GF G, NPC-axiom.
. R+ R, NPC-axiom.
. (GVR)F (GVR), NPC-axiom.
.G,B{,BS,...Bl - (=(GVR)), I- from 1. and 3.
.R,B},BS,...B} - (~(GVR)), I~ from 2. and 4.
.(GVR),B}.B,...Bj - (=(GVR)),RV from 5., 6., and 7.
. B},BS,...BlF (= (GVR)), I~ from 7. and 8.
It is a deduction of sequence B}, BS, .., B} b AS.
Hence in that case the lemma holds true.
If g (¢~'(A)) =1 then

O 0 3N DN B~ W~

A9 =A=(GVR)

in accordance with Designation 1.

In that case g (¢~ (G)) =1 org (¢ '(R)) = I in accordance with the Boolean function
definition.

Hence G9 = G or R% = R in accordance with Designation 1.

If G9 = G then let us continue deduction of sequence (3.8) in the following way:

1. BY,BS,...B} - G, (3.8).

2. B},B3,...BlF (GVR),1V from 1.

It is deduction of sequence B?,Bg, ..,Bg FAS.

Hence in that case the lemma holds true.

The same result is received if R® = R.

d)LetA=(G=R).
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In that case the lemma holds true both for G and for R in accordance with the recur-
sion assumption because G and R contain no more than n PC-symbols. Hence there exist
deductions of sequences

B}.B,...Bl+G® (3.10)

and

B}.BS,..,B} - R, (3.11)

here Bi,B»,..,B; are the simple sentence, making up sentences G and R. Hence
B, B3, .., By make up sentence A.
If g (¢~'(A)) =0 then

AT = (=4) = (~(G = R))

in accordance with Designation 1.

In that case g (¢~ '(G)) =1 and g (¢~ ' (R)) = 0 in accordance with the Boolean func-
tion deduction.

Hence G® = G and R? = (—R) in accordance with Designation 1.

Let us continue deduction of sequences (3.10) and (3.11) in the following way:

1. B{,B3,...B} - G, (3.10).

2. B},BS,...BlF (=R), (3.11).

3. (G=R)+ (G = R), NPC-axiom.

4. (G=R),B{,B3,...B] - R,R= from 1. and 3.

5.B},BS,...B} - (=(G=R)), I~ from 2. and 4.

It is deduction of sequence B?,Bg, ..,B% HAS.

Hence in that case the lemma holds true.

If g (¢~'(A)) =1 then

AY=A=(G=R)

in accordance with Designation 1.

In that case g (¢~ (G)) =0or g (¢ !(R)) = I in accordance with the Boolean function
definition.

Hence G® = (—=G) or R® = R in accordance with Designation 1.

If G® = (—G) then let us continue a deduction of sequence (3.10) in the following way:

1. B}, BS,...B} - (—G), (3.10).

2. G+ G, NPC-axiom.

3. G,B},BS,...Bl F (=(—R)), I~ from 1. and 2.

4. G,B{,B5,..,B} - R, R~ from 3.

5. B{,BS,...B} F (G = R), 1= from 4.

It is deduction of sequence BY, B3, .., B} - AY.

Hence in that case the lemma holds true.

If RY = R then let us continue a deduction of sequence (3.11) in the following way:

1. B{,BS,...B} - R, (3.11).

2.B}.BS,...B} - (G=R),1= from 1.
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It is deduction of sequence B}, B3, .., B} - A®.

Hence in that case the lemma holds true.

The recursion step conclusion: If the lemma holds true for sentences, containing no
more than n PC-symbols, then the lemma holds true for sentences, containing n+ 1 PC-
symbols.

The recursion conclusion: The lemma holds true for sentences, containing any number
PC-symbols [J

Th. 1.1.5 (Laszlo Kalmar)*: Each tautology is a naturally propositionally proven
sentence.

Proof of Th. 1.1.5: Let sentence A be a tautology. That is for every Boolean function
g: 9(9'(A)) =1 in accordance with Def. 1.1.13.

Hence there exists a deduction for sequence

B}.BS,...BlFA (3.12)

for every Boolean function g in accordance with Lm. 1.1.2.
There exist Boolean functions g; and g, such that

g1 (@ '(B1)) =0, g2 (9 '(B))) =1,
g1 (0 '(By)) = g2 (¢ (By)) fors e {2,...k}.

Forms of sequences (3.12) for these Boolean functions are the following:

(=By),B3,...B' A, (3.13)

B1,BY,...By’ FA. (3.14)

Let us continue deductions these sequence in the following way:
(=By),BS',..,B{' FA, (3.13).
.Bi,B5',..,B{' A, (3.14).
(=A)  (—A), NPC-axiom.
(-A),BS',...B{' b (—~(=By)), I- from 1. and 3.
(-A),BS',...B{" b (—By), I from 2. and 3.
. BS', .. .B{' F (= (—A)), I- from 4. and 5.
. BY',.,B{' - A, R~ from 6.
It is deduction of sequence BS', ..,Bi' = A. This sequence is obtained from sequence
(3.12) by deletion of first sentence from the hypothesizes list.
All rest hypothesizes are deleted from this list in the similar way.
Final sentence is the following:

N

FA.

0
Therefore, in accordance with Th. 1.1.3, all tautologies are true sentences.
Therefore the natural propositional logic presents by Boolean functions.

4Laszlo Kalmar (March 27, 1905 August 2, 1976) was a Hungarian mathematician and Professor at the Uni-
versity of Szeged. Kalmar is considered the founder of mathematical logic and theoretical Computer Science
in Hungary.
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3.3. Probability

“The two greatest tyrants on earth: case
and time”
Johann G. Herder

The first significant result in probability theory was obtained by the Swiss mathemati-
cian Jacob Bernoulli® in 1713 [10] (the Bernoulli Large Number law). Further, the devel-
opment of the theory of probability went in two ways: using the axiomatic method, Soviet
mathematician, Andrei Kolmogorov® embed this theory into mathematical analysis [11],
and the American physicist Edwin Thompson Jaynes’ began to develop the theory of prob-
ability from logic [12]. And we continue this way.

Jacob Bernoulli's Opera, 1744

JACOBI

BERNOULLI,

BasiLEENSIS,

O P ER A

Tomus Primus,

GENEV £,
Sumptibus Hzredum CRAMER
& Frarum PHILIBERT.

M. DCC, XLIV.

There is the evident nigh affinity between the classical probability function and the
Boolean function of the classical propositional logic [?]. These functions are differed by
the range of value, only. That is if the range of values of the Boolean function shall be

3Jacob Bernoulli (also known as James or Jacques; 6 January 1655 [O.S. 27 December 1654] 16 August
1705) was one of the many prominent mathematicians in the Bernoulli family.

% Andrey Nikolaevich Kolmogorov, 25 April 1903 20 October 1987) was a 20th-century Soviet mathemati-
cian who made significant contributions to the mathematics of probability theory

7Edwin Thompson Jaynes (July 5, 1922 April 30, 1998) was the Wayman Crow Distinguished Profes-
sor of Physics at Washington University in St. Louis. He wrote extensively on statistical mechanics and on
foundations of probability and statistical inference
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Andrey Nikolaevich Kolmogorov
( 1903, Tambov, Russia—1987 Moscow)
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expanded from the two-elements set {0;1} to the segment [0; 1] of the real numeric axis
then the logical analog of the Bernoulli Large Number Law [10] can be deduced from the
logical axioms. These topics is considered in this article.

Further we consider set of all meaningfull sentences.

3.3.1. Events

Def. 1.6.1.1: A set B of sentences is called event, expressed by sentence C, if the following
conditions are fulfilled:

1.Ce B;

2.ifA€ Band D € Bthen A = D;

3.if D€ Band A =Dthen A € B.

In this case denote: B :=°C.

Def. 1.6.1.2: An event B occurs if here exists a true sentence A such that A € B.

Def. 1.6.1.3: Events 4 and B equal (denote: A4 = B) if A4 occurs if and only if B
occurs.

Def. 1.6.1.4: Event ( is called product of event 4 and event B (denote: C = (4 - B)) if
C occurs if and only if A4 occurs and B occurs.

Def. 1.6.1.5: Events ( is called complement of event 4 (denote: C = (#4)) if C occurs
if and only if 4 does not occur.

Def. 1.6.1.6: (A+ B) := (#((#4)- (#B))). Event (4 + B) is called sum of event 4 and
event B.

Therefore, the sum of event occurs if and only if there is at least one of the addends.

Def. 1.6.1.7: The authentic event (denote: ‘T) is the event which contains a tautology.

Hence, 7 occurs in accordance Def. 1.6.1.2:

The impossible event (denote: ¥ ) is event which contains negation of a tautology.

Hence, F does not occur.

3.3.2. B-functions

Def. 1.6.2.1: Let b(X) be a function defined on the set of events.
And let this function has values on he real numbers segment [0; 1].
Let there exists an event (j such that b((&) = 1.
Let for all events 4 and B: b(A4-B)+b(A- (#B)) = b(A4).
In that case function b(X) is called B-function.
By this definition:

b(4-B) < b(A4). (3.15)

Hence, b(7T - () < b(7). Because 7 - () = (y (by Def.1.6.1.4 and Def.1.6.1.7) then
b(Co) < b(T). Because b((p) = 1then

b(7)=1. (3.16)

From Def.1.6.2.1: b(Z - B) +b(7Z - (#B)) = b(‘T). Because 7D = D for any D then
b(B) +b(#B) = b(‘T). Hence, by (3.16): for any B:
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b(B) + b(#B) = 1. (3.17)
Therefore, b(‘T) +b(#7) = 1. Hence, in accordance (3.16) : 1+ b(F) = 1. Therefore,

b(F)=0. (3.18)
In accordance with Def.1.6.2.1, Def.1.6.1.6, and (3.17):
b(A-(B+C)) =b(A-(#((#B)-(#C)))) =
=b(A)—b((A-(#B))-(#C)) =b(A) —b(A- (#B))+b((1- (#B))-C) =
=b(4)—-b6(A4)+b6(A4-B))+b(#B)-(4-C)) =
b(4 B-

:b(ﬂ~£73)) -C)—b(B-A- C)
And b((4 ) (A-C)) =b(#((#(A-B)) - (#(A-(C)))) =
=1-b((# ( B))-(#(A-0))) =
=1-b(#(A-B))+b((#(A2-B))-(A-C)) =
_1—1+b(ﬂl B)+b((#(A-B))-(4-C)) =
= b(2-B)+b((A-C)) ~b((4-B)-(4-C)) =
:b(ﬂ-$)+b((ﬁl- C))—b(A-B-C)because 4-4=21 .
Therefore:
b(A-(B+C))=b6(A-B)+(A-C)—b(A-B-()) (3.19)
and
b((A-B)+(4-C))=b(4-B))+b(A4-C)—b(A4-B-C). (3.20)
Hence (distributivity):
b(A-(B+C))=b((4-B)+(A-0)). (3.21)

If 4 =T then from (3.19) and (3.20) (the addition formula of probabilities):

b(B+C)=0b(B)+b(C)—b(B-C). (3.22)

Def. 1.6.2.2- 19: Events B and ( are antithetical events if (B- C) = F.
From (3.22) and (3.18) for antithetical events B and C:

b(B+C)=0b(B)+b(C). (3.23)
Def. 1.6.2.3-20: Events B and ( are independent for ‘B-function b events if b(B- ) =
b(B)-b(B).
If events B and C are independent for B-function b events then:
b(B-(#C))=0b(B)—b(B-C)=0b(B)—b(B)-b(C)=0b(B)-(1-b(C))=0b(B)-b(#C).
Hence, if events B and C are independent for B-function b events then:
b(B-(#C)) =b(B)-b(#C). (3.24)

Let calculate:

b(A-(#4)-C)=0b(A-C)—b(A-4-C)=b(A-C)—b(A-C) =0. (3.25)
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3.3.3. Independent tests

Definition 1.6.3.1: Let s7(n) be a function such that st(n) has domain on the set of natural
numbers and has values in the events set.

In this case event A4 is a [st]-series of range r with V- number k if A, r and k fulfill to
some one amongst the following conditions:

Dr=landk=1,4=st(1)ork=0, 4= (#st(1));

2) B is [st]-series of range r — 1 with V-number k — 1 and

A= (B-st(r)),

or ‘B is [st]-series of range r — 1 with V-number k and

A= (B (#st(r))).

Let us denote a set of [st]-series of range r with V-number k as [st](r,k).

For example, if st (n) is a event B, then the sentences:

(B1-Br- (#B3)), (Br - (#B,) - Bs), (#B1) - By Bs)

are the elements of [st](3,2), and
(@1 -232.(#@3)-1;4-@) e [s7)(5,3).

Definition 1.6.3.2: Function st(n) is independent for B-function b if for 4: if
A € [st](r,r) then:

.
b(a)=]]o(st(n).
n=1

Definition 1.6.3.3: Let st(n) be a function such that s7(n) has domain on the set of
natural numbers and has values in the set of events.

In this case sentence A4 is [st]-disjunction of range r with V-number k (denote: t[st](r,k))
if 4 is the disjunction of all elements of [st](r, k).

For example, if st (n) is event G, then:

((#C1) - (#C) - (#G3)) =1t[st] (3,0),

tlst](3,1) = ((C1- (#G) - (#G))+ ((#Q) - G- (#G)) + (#G) - (#G) - G))s

tst1]1(3,2) =((C1- G- (#G))+ (#C) - G- G)+ (G- (#G) - G3)),

(Ci-G-G)=t[st](3,3).

Definition 1.6.3.4: A rational number o is called frequency of sentence A in the [st]-
series of r independent for B-function b tests (designate: ® = v, [s7] (4)) if

1) st(n) is independent for B-function b,

2) for all n: b (st (n)) =b(A4),

3) t[st](r,k) is true and ® = k/r.

Theorem: 1.6.3.1: (the J.Bernoulli® formula [10]) If st(n) is independent for B-
function b and there exists a real number p such that for all n: b (st (n)) = p then

r! )r—k
k- (r—k)! '

b (¢ [st] (k) = P (1-p

8Jacob Bernoulli (also known as James or Jacques) (27 December 1654 16 August 1705) was one of the
many prominent mathematicians in the Bernoulli family.

64



Proof of the Theorem 1.6.3.1: By the Definition 1.6.3.2 and formula (3.24): if B €
[st] (r,k) then:

b(B)=p*-(1-p)".

Since [st] (r,k) contains r!/ (k!- (r—k)!) elements then by the Theorems (3.24), (3.25)
and (3.23) this Theorem is fulfilled.

Definition 1.6.3.5: Let function sz(n) has domain on the set of the natural numbers and
has values in the set of the events.

Let function f(r,k,/) has got the domain in the set of threes of the natural numbers and
has got the range of values in the set of the events.

In this case f(r,k,l) = T[st](r,k,1) if

1) f(r,k,k) = t[st](r,k),

2) f(rk, 1+ 1) = (f(rk,1)+t]st](r,l+1)).

Definition 1.6.3.6: If ¢ and b are real numbersand k — 1 <a <kand !/ < b < [+ 1 then
Tlst](r,a,b) = T|st](r,k,1).

Theorem: 1.6.3.2:

b
Tlst](ra,b) ="< = < v, [st] (A) < = > .
r r

Proof of the Theorem 1.6.3.2: By the Definition 1.6.3.6: there exist natural numbers r
and ksuchthatk— 1 <a<kandI <b<I[+1.

The recursion on [:

1. Letl =k.

In this case by the Definition 1.6.3.4:

Tst](r,k,k) =t[st](r,k) ="< v, [st] (4) = u >

2. Let n be any natural number.
The recursive assumption: Let

k+n
r

k
Tlst(rk k+n) =<~ <, [s1](A) < >

By the Definition 1.6.3.5:

Tst)(r,k,k+n+1) = (T[st](r,k,k+n)+t[st](rnk+n+1)).

By the recursive assumption and by the Definition 1.6.3.4:

Tst](rk,k+n+1)=

k k+ k+n+1
= (< = <[] () < T" > +° < v, [st] (4) = # ).
Hence, by the Definition 2.10:
k k 1
Tlst](rkk+n+1) =< ~ <v, [s1](2) < 2L 5
r r
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Theorem: 1.6.3.3 If s¢(n) is independent for B-function b and there exists a real number
p such that b (st (n)) = p for all n then

(b)) = ¥ gt (=)

a<k<b ™"

Proof of the Theorem 1.6.3.3: This is the consequence from the Theorem 1.6.3.1 by
the Theorem 3.6.

Theorem: 1.6.3.4 If s7(n) is independent for the B-function b and there exists a real
number p such that b (st (n)) = p for all n then

p-U-p
b(T[st](r,r-(p—8),r-(p+€)) > 1 - ;82)
for every positive real number €.

Proof of the Theorem 1.6.3.4: Because

" r!

Z(k—r-p)z-m-pk-(l—p)’_k:r-p-(l—p)

k=0
then if
J={keN|0<k<r-(p—e)}nN{keN|r-(p+¢)<k<r}
then
r! k rk _ P (1—p)
—_ (1= < ——.
,g;k!.(rfk)! po=p /="
Hence, by (3.17) this Theorem is fulfilled.
Hence
ILmb(T[st}(r,r-(p—a),r-(p+£))):1 (3.26)
14 (e}

for all tiny positive numbers €.

3.3.4. The logic probability function

Definition 1.6.4.1: B-function P is P-function if for every event °© < © >>:
If P(° < ®>) =1 then < O® > is true sentence.
Hence from Theorem 1.6.3.2 and (3.26): if b is a P-function then the sentence

<(p—8) <V, [s1](A) < (p+&)>

is almost true sentence for large r and for all tiny €. Therefore, it is almost truely that

v [st] (A) = p

for large r.
Therefore, it is almost true that
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for large r.

Therefore, the function, defined by the Definition 1.6.4.1 has got the statistical meaning.

That is why I’m call such function as the logic probability function.

3.3.5. Conditional probability
Definition 1.6.5.1: Conditional probability B for ( is the following function:
b(C-B)

b(C)

Theorem 1.6.5.1 The conditional probability function is a B-function.
Proof of Theorem 1.6.5.1 From Definition 1.6.5.1:

b(B/C):=

/o) ="
Hence by Theorem 1.1.1:
b(C/C)= :Eci =1
Form Definition 1.6.5.1:
(- 3)/C) +b((A- (#8) /) = LB DC A D))

Hence:

b((4-B)/C)+b((A-(#8))/C) =

By Theorem 1.1.1:

6((2-8)/C)+b((A- #8)) /C) = LA B +OUCA) - (#5))

b(C)
Hence by Definition 1.6.2.1:
b((A-B)/C)+b((A- (#B))/C) = b(bC(éfl)

Hence by Definition 1.6.5.1:

b((4-B)/C)+b((A-(#8B))/C)=b(A/C) o
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3.3.6. Classical probability

Let P be P-function.

Definition 1.6.6.1: {B;,B,,...,B,} is called as complete set if the following conditions
are fulfilled:

1. if k # s then (‘B - By) is a false sentence;

2. (Bi+B,+...+ B,) is a true sentence.

Definition 1.6.6.2: B is favorable for 4 if (B-(#4)) is a false sentence, and B is
unfavorable for 4 if (BAA) is a false sentence.

Let

1. {B),B,...,B,} be complete set;

2.forke{1,2,...,n}and s € {1,2,...,n}: P(By) =P (Bs);

3. if 1 <k < m then By is favorable for 4, and if m+ 1 < s < n then ‘B, is unfavorable
for 4.

In that case from Theorem 1.1.1 and from (3.16) and (3.17):

P((#4) ) =0
fork € {1,2,...,m} and

P(4-B,)=0

forse {m+1,m+2,...,n}.
Hence from Definition 1.6.2.1:

P(A-B) =P(B)

fork e {1,2,...,n}.
By point 4 of Theorem 1.1.1:

A=A-(Bi+B+...+Bu+Bus1---+By)).

Hence by formula (3.21):
P(4)=P(4-B))+P(A-B)+...+
+P(A-B,)+P(A-Bpi1)+...+P(A-B,) =
=P(B))+P(B)+...+P(B,).

Therefore

3.3.7. Probability and logic

Let P be the probability function and let B be the set of events A such that either A occurs
or (#A) occurs.
In this case if P(A) = 1 then A occurs, and (A - B) = B in accordance with Def. 1.6.1.4.
Consequently, if P(B) = 1 then P(A-B) = 1. Hence, in this case P(A-B) =P (A) - P(B).
If P(A) =0 then P(A-B) =P(A) - P(B) because P(A-B) < P(A) in accordance with
(3.15).
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Moreover in accordance with (3.17): P(#A) = 1 —P(A) since the function P is a B-
function.

If event A occurs then (A-B) =B and (A - (#B)) = (#B) Hence, P(A-B)+P(A- (#B)) =
P(A)=P(B)+P(#B) = 1.

Consequently, if an element A of B occurs then P (A) = 1. If does not occurs then (#A)
occurs. Hence, P(#4) = 1 and because P(A) +P (#A) = 1 then P(A) = 0 . Therefore, on
B the range of values of is the two-element set {0; 1} similar the Boolean function range
of values. Hence, on set B the probability function obeys definition of a Boolean function
(Def.1.1.10).

The logic probability function is the extension of the logic B-function. Therefore, the
probability is some generalization of the classic propositional logic. That is the proba-
bility is the logic of events such that these events do not happen, yet.

3.3.8. THE NONSTANDARD NUMBERS

Here some modification of the Robinson® NONSTANDARD NUMBERS [?] is considered.
Let us consider the set N of natural numbers.
Definition A.1: The n-part-set S of N is defined recursively as follows:
DS = {1}
2) S(n+1) =S,U{n+1}.
Definition A.2: If S, is the n-part-set of N and A C N then ||[ANS, | is the quantity
elements of the set ANS,, and if

ANS,
o, () A0S

n

then ®, (A) is the frequency of the set A on the n-part-set S,,.

Theorem A.1:

1) mn(N) =1;

2) mn(w) =0;

) o,(A)+0,(N—A)=1;

4)®,(ANB)+o,(AN(N—B)) =m,(A).

Proof of the Theorem A.1: From Definitions A.1 and A.2. Definition A.3: If "lim” is
the Cauchy-Weierstrass “limit” then let us denote:

F:{AgNuggomn(A):l}.

Theorem A.2: F is the filter [?], i.e.:

I)NeF,

2)0¢ T,

3)ifAcFand B € Fthen (ANB) €F;

4)if A€ Fand A CBthenB €.

Proof of the Theorem A.2: From the point 3 of Theorem A.1:

9 Abraham Robinson (born October 6, 1918 April 11, 1974) was a mathematician who is most widely
known for development of non-standard analysis
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lim @,(N—B) =0.

n—yoo

From the point 4 of Theorem A.1:

0,(AN(N-B)) <®,(N—B).

Hence,

lim @, (AN (N—B)) = 0.

n—roo

Hence,

lim®, (ANB) = lgn o, (A).

n—soo

In the following text we shall adopt to our topics the definitions and the proofs of the
Robinson Nonstandard Analysis [?]:

Definition A.4: The sequences of the real numbers (r,,) and (s,,) are Q-equivalent (de-
note: (r,) ~ (s,)) if

{n €Nlr, =s,} € mix.

Theorem A.3: If r,s,u are the sequences of the real numbers then

Dr~r,

2)ifr ~sthens~r;

3)ifr~sands~uthenr~ u.

Proof of the Theorem A.3: By Definition A.4 from the Theorem A.2 is obvious.

Definition A.5: The Q-number is the set of the Q-equivalent sequences of the real
numbers, i.e. if a is the Q-number andr € d and s € g, thenr ~s; andifrcaandr ~ s
then's € a.

Definition A.6: The Q-number a is the standard Q-number a if a is some real number
and the sequence (r,) exists, for which: (r,) € a and

{neN|r,=a} eF.

Definition A.7: The Q-numbers d and b are the equal Q-numbers (denote: a = b)ifa
acC band b Ca.

Theorem A.4: Let f(x,y,z) be a function, which has got the domain in R x R x R, has
got the range of values in R (R is the real numbers set).

Let (y10) , (V2n) » (3.0) » (21n) » (z2n) » (23.4) be any sequences of real numbers. ).

In this case if <Zi,n> ~ <yi,n> then <f<yl.,n7y2,n7y3,n)> ~ <f(z1,na12,nvz3,n)>'
Proof of the Theorem A.4: Let us denote:
ifk=1ork=2ork=3then

A ={n € Nlyin = zxn}-
In this case by Definition A4 for all k:
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Abraham Robinson, A, €F.
Mathematician

Because

(A1NA2NA3) C{n e NI[f(1m,Y20:Y30) = F(21 05220, 23:0) } >

then by Theorem A.2:

{I’l € N’f(yl7nay2,my3,n) = f(zl,m227naz37n)} el.

Definition A.8: Let us denote: QR is the set of the Q-numbers.

Definition A.9: The function ? which has got the domain in QR x OR x OR, has got
the range of values in OR, is the Q-extension of the function f, which has got the domain in
R x R xR, has got the range of values in R, if the following condition is accomplished:

Let (x,) ,(ya) »(z) be any sequences of real numbers. In this case: if

(n) €X, (yn) €3, (zn) €2, u=F(X,3,2),

then

<f (xnaynazn» € u.
Theorem A.5: For all functions §, which have thei domain in R X R X R, have ~the range

of values in R, and for all real numbers a, b, c, d: if f is the Q-extension of f; a, b, ¢, d are
standard Q-numbers a, b, ¢, d, then:

if d = f(a,b,c) then d = f(a,b,¢) and vice versa.

Proof of the Theorem A.5: If (r,) € a, (s,) € b, (un) € ¢, (ty) € d then by Definition
A.6:

{neN|r,=a} €F,
{neNls, =b} €F,
{neNlu, =c} €F,
{neNJt, =d} €F.

1) Letd = f(a,b,c).
In this case by Theorem A.2:

{I’l € N’tn = f(rﬂ’sn’un)} € F.
Hence, by Definition A.4:

{tn) ~ CF(rny s, tn)) -
Therefore by Definition A.5:

(F(ruysn,un)) €d.
Hence, by Definition A.9:
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d =1§(a,b,c).

2) Letd = (a, b, ).
In this case by Definition A.9:

(F(rn$n,un)) € d.
Hence, by Definition A.5:

{tn) ~ (F(ru, sn,un)) -
Therefore, by Definition A.4:

{n € N|t, = f(ry,sn,un)} € F.
Hence, by the Theorem A.2:

{n eN|t, = §(ru,Sn,ttn),rn = a,8, = byuy, = c,t, =d} € F.

Hence, since this set does not empty, then

d ={(a,b,c).

By this Theorem: if § is the Q-extension of the function f then the expression "§(%,7,2)”

997599

will be denoted as ”f(x,y,z)” and if u is the standard Q-number then the expression ”u” will

be denoted as "u”.
Theorem A.6: If for all real numbers a, b, c:

¢(a,b,c) =wy(a,b,c)

then for all Q-numbers X, y, Z:

P(X,5,2) = Y(X,,2).
Proof of the Theorem A.6: If (x,) € X, (yu) €y, (zn) € Z, U = @(X,,2), then by Defi-
nition A.9: (Q(xn,Yn,20)) € U.

Because @ (X, Yn,2n) = W(%n, Yn, 20) then (Y(xu,yn,20)) € U
If v=y(x,y,z) then by Definition A.9: (W(x,,yn,2,)) € V, t0O.
Therefore, for all sequences (t,) of real numbers: if (t,) € u then by Definition A.5:

<tn> ~ <W(xn7)’nvzn)>'
Hence, (1,) € v; and if (#,) € v then (t,,) ~ (@(x,,yn,2n)); hence, (t,) € u.
Therefore, u = V.
Theorem A.7: If for all real numbers a, b, c:

f(a’(p(bvc)) = W(avb’c)

then for all Q-numbers X, y, Z:

f(},(P()ZE)) = \If(fiaz)
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Consequences from Theorems A.6 and A.7: [?]: For all Q-numbers X, y, Z:
ml: (x+y) = (+x),

m2: (X+ (y+~)) (x+y)+2),

m3: (7+0) -

as: (5-5) = (5.9

m6: (x-(y-2)) = ((x-3)-2),

m7: (x-1)=x

m10: (7 (5+9) = ((F-5) + (7-2).

Proof of the Theorem A.7: Let (w,) € w, f(xX,w) = u, (x,) €X, (yn) €Y, (2n) € Z»
0(y,2) =w. y(x,y,2) = V.

By the condition of this Theorem: f(x,, ©(yn,21)) = W(Xu, Y, 2n)-

By Definition A.9: (W(xn,Yn,20)) €V, (@(Xn,yn)) € W, (F(xn,wn)) € u.

For all sequences (t,) of real numbers:

1) If (t,) € v then by Definition A.5: (t,,) ~ (W(Xn,Yn,21))-

Hence <tn> ~ <f(xn7(p(yn7zn)>>'
Therefore, by Definition A.4:

><><><

{n € N‘tn = f(xnv(P(ymZn))} € F

and

{neN|w, =@ (yn,2)} €F.
Hence, by Theorem A.2:

{n € N|t, = §(x,,wn)} € F.
Hence, by Definition A.4:

{tn) ~ (F(oxn, wn)) -
Therefore, by Definition A.5: (t,) € u.

2) If (t,) € u then by Definition A.5: (t,) ~ (f(xn, wn))-
Because (w,,) ~ (©(y,,z,)) then by Definition A.4:
{n e N|t, = f(xp,wy)} €F,

{neN|w, =@ (yn,21)} €F.
Therefore, by Theorem A.2:

{n € Nlty = f(xn, 9 (yn,21)) } € F.
Hence, by Definition A.4:

{tn) ~ (F(n, @(¥n,20))) -

Therefore,
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<t'l> ~ <l|!(xnaymzn)> :

Hence, by Definition A.5: (t,) € v.

From above and from 1) by Definition A.7: u = v.

Theorem A.8: m4: For every Q-number x the Q-number y exists, for which:

(x+y)=0.

Proof of the Theorem A.8: If (x,) € X then y is the Q-number, which contains (—x;,).

Theorem A.9: m9: There is not that 0 = 1.

Proof of the Theorem A.9: is obvious from Definition A.6 and Definition A.7.

Definition A.10: The Q-number X is Q-less than the Q-number y (denote: X < y) if the
sequences (x,) and (y,) of real numbers exist, for which: (x,) € X, (y,) € y and

{neN|x, <y,} €F.

Theorem A.10: For all Q-numbers X, y, Z: [?]

ml: there is not that X < X

m2: ifx<yandy <Zthenx <Z;

m4: if ¥ < ythen (x+32) < (Y+2);

m5: if 0 <Zand X <y, then (x-2) < (y-2);

m3': if X < y then there is not, that y < X or X = y and vice versa;

m3": for all standard Q-numbers x, y, z: x < y or y < X or x = y.

Proof of the Theorem A.10: is obvious from Definition A.10 by the Theorem A.2.
Theorem A.11: m8: If 0 < |x] then the Q-number y exists, for which (x-y) = 1.
Proof of the Theorem A.11: If (x,) € X then by Definition A.10: if

A={neNJ|0 < |x,|}

then A € F.
In this case: if for the sequence (y,) : if n € A then y, = 1/x,
- then

{n €Nl|x, -y, = 1} € mix.

Thus, Q-numbers are fulfilled to all properties of real numbers, except Q3 [?]. The
property 3 is accomplished by some weak meaning (23’ and Q3”).

Definition A.11: The Q-number X is the infinitesimal Q-number if the sequence of real
numbers (x,) exists, for which: (x,) € X and for all positive real numbers &:

{n eN||x,| <€} €F.

Let the set of all infinitesimal Q-numbers be denoted as 1.

Definition A.12: The Q-numbers X and y are the infinite closed Q-numbers (denote:
x~Yy)if |x—y| =0 or [x—Y]| is infinitesimal.

Definition A.13: The Q-number X is the infinite Q-number if the sequence (r,) of real
numbers exists, for which (r,) € X and for every natural number m:

{neNm<r,} €F.
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3.3.9. Model

Let us define the propositional calculus like to ([?]), but the propositional forms shall be
marked by the script greek letters.

Definition C1: A set R of the propositional forms is a U-world if:

1)if oy, 00,...,0, € Rand oy, 00, ...,0, - B then € K,

2) for all propositional forms o it is not that (o& (—at)) € R,

3) for every propositional form a: o € R or (—a) € R.

Definition C2: The sequences of the propositional forms (o) and (B,) are Q-
equivalent (denote: (o) ~ (B,)) if

{neN|o, =B,} €F.
Let us define the notions of the Q-extension of the functions for like as in the Definitions
AS5,A2,A9, A5, A6,
Definition C3: The Q-form a is Q-real in the U-world R if the sequence (o,) of the
propositional forms exists, for which: (o) € & and
{neNl|o, € R} €F.

Definition C4: The set Kt of the Q-forms is the Q-extension of the U-world R if R is
the set of Q-forms al, which are Q-real in R.

Definition C5: The sequence <9~Tk> of the Q-extensions is the S-world.
Definition C6: The Q-form & is S-real in the S-world <§tk> if

{k eNla e gtk} eF.
Definition C7: The set A (A C N) is the regular set if for every real positive number €
the natural number ng exists, for which: for all natural numbers »n and m, which are more or
equal to ng:

’WH(A) - Wm<A)’ < E&.

Theorem C1: If A is the regular set and for all real positive €:

{k € Nlwy(A) < e} €F.
then

lim Wi (A) =0.

k—yoo

Proof of theTheorem C1: Let be

lim wi (A) # 0.

k—roo

That is the real number €, exists, for which: for every natural number ' the natural
number 7 exists, for which:
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n>n' and w,(A) > .
Let §p be some positive real number, for which: €y — 8y > 0. Because A is the regular
set then for 8y the natural number ng exists, for which: for all natural numbers n and m,
which are more or equal to ng:
Win(A) —wn(A)| < &.
That is

Wi (A) > wy(A) — .
Since wy,(A) > g then wy, (A) > gy — &p.
Hence, the natural number ng exists, for which: for all natural numbers m: if m > ny
then Wm(A) > gy — 9.
Therefore,

{m € N|wp,(A) >ey—3p} €F.

and by this Theorem condition:

{k S N|Wk(A) <& — 6()} eF.

Hence,

{k€N|80—80<80—60}€]F.

That is @ ¢ IF. It is the contradiction for the Theorem 2.2.
Definition C8: Let <5Kk> be a S-world.

In this case the function 20(), which has got the domain in the set of the Q-forms, has
got the range of values in OR, is defined as the following:
If 20(B) = p then the sequence (p,) of the real numbers exists, for which: (p,) € p and

DPn = Wy ({k € N]E € 9~ik}> .

Theorem C2: If {k eN |B € g(k} is the regular set and QU(E) ~ 1 then E is S-resl in
(%)

Proof of the Theorem C2: Since QU(B) ~ 1 then by Definitions.2.12 and 2.11: for all
positive real €:

{n€N|wn ({keN|Ee§?k}> > l—e} eF.

Hence, by the point 3 of the Theorem 2.1: for all positive real €:

{neN| (N—wn ({keN\Eei)}k}» <s} elF.

Therefore, by the Theorem C1:
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lim (N—w,, ({k eN[Be iYik})) = 0.

n—yoo

That is:
Tim w, ({k ENBe 5{,{}) ~1.
Hence, by Definition.2.3:
{keN|Be§ik} eF.

And by Definition C6: B is S-real in <§?k>
Theorem C3: The P-function exists. B
Proof of the Theorem C3: By the Theorems C2 and 2.1: 25(p) is the P-function in

(%),
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Chapter 4

Physics

No group of people can claim power over
the thinking and views of others.
- Friedrich von Hayek

4.1. Planck

mo

Jamééaélerk
Maxwell

In 1865 James Clerk Maxwell' published book ”A Dynamical Theory of the Elec-
tromagnetic Field”. He proposed that light is an undulation in the same medium
that is the cause of electric and magnetic phenomena. Thus, optics, electricity and
magnetism turned out to be united by a unified theory. If we add Albert Ein-
stein’s” theory of space-time here, then we get a beautiful smooth picture of the world.

IJames Clerk Maxwell (13 June 1831 5 November 1879) was a Scottish scientist in the field of mathematical
physics.
2 Albert Einstein ; (14 March 1879 18 April 1955) was a German-born theoretical physicist[5] who devel-



In 1900, Max Planck? discov-
ered that our world is not continu-
ous, but it is discrete [15]. This is
a recognition of our limitations of
our space .

W<

SH
(h = 6.62607004427 - 103)).
Therefore, functions describing
the processes of our world are
represented by Fourier* series by

basis:,

Max Karl Ernst Ludwig

Planck

NX (= n1x| + nxy + n3x3

(n1,n2,n3 - integer numbers).

4.2. Quants

oped the theory of relativity

Quantum the-
ory developed
as a new branch
of  theoretical
physics during
the first few
decades of the
20th  century
in an effort to
understand the
fundamental

properties  of
matter in a

3Max Karl Ernst Ludwig Planck 23 April 1858 — 4 October 1947) was a German theoretical physicist whose

discovery of energy quanta

4_Baptiste Joseph Fourier (21 March 1768 — 16 May 1830) was a French mathematician and physicist born
in Auxerre and best known for initiating the investigation of Fourier series,



discrete world.

Started by exploring interactions. matter and radiation. Some radiation effects cannot be
explained by either classical mechanics or theory of electromagnetism.

Quantum theory was not the work of one individual, but the collaborative effort of

some of the most brilliant physicists of the 20th century, among them Niels Bohr®, Erwin

Schrodinger®, Wolfgang Pauli’, and Max Born®, Max Planck® and Werner Heisenberg!?.

Quantum Field Theory (QFT)

“Science is just is the mathematical and concep-
imagination in a- tual framework for contemporary
straitjacket.™ elementar : :
y particle physics
(Eugene Wigner!!,
Hans Bethe!2, Tomonaga”,
Schwinger'4, Feynman'?,

Dyson16, Yalng17 and Mills'®).
Let (Xa0,Xa1,Xa2,Xa3) be
random coordinates of event A.
Let Fa be a Cumulative Distri-
bution Function i.e.:

Fa (x0,x1,%2,x3) =P ((Xa0 <x0)- (Xa1 <x1)-(Xa2 <x2)-(Xa3 <x3)).

4.3. Physical events

If

SNiels Henrik David Bohr (7 October 1885 - 18 November 1962) was a Danish physicist

®Erwin Rudolf Josef Alexander Schrodinger (12 August 1887 - 4 January 1961) was an Austrian physicist
and theoretical biologist who was one of the fathers of quantum mechanics

"Wolfgang Ernst Pauli (25 April 1900 15 December 1958) was an Austrian theoretical physicist

8Max Born (11 December 1882 5 January 1970) was a German-born physicist and mathematician

9Max Karl Ernst Ludwig Planck (April 23, 1858 October 4, 1947) was a German physicist

10Werner Karl Heisenberg (5 December 1901 1 February 1976) was a German theoretical physicist

"Eugene Paul Wigner (Hungarian Wigner Jeno Pal; November 17, 1902 - January 1, 1995) was a Hungarian
American physicist and mathematician.

12Hans Albrecht Bethe (July 2, 1906 - March 6, 2005) [1] was a German-American nuclear physicist,

13Sin-Itiro Tomonaga (March 31, 1906 July 8, 1979) was a Japanese physicist

14Julian Seymour Schwinger (February 12, 1918 - July 16, 1994) was an American theoretical physicist.

I5Richard Phillips Feynman (May 11, 1918 - February 15, 1988)[2] was an American physicist

16Freeman John Dyson FRS (born December 15, 1923) is a British-born American theoretical physicist and
mathematician

17Chen-Ning Franklin Yang (born October 1, 1922) is a Chinese-American physicist

18Robert L. Mills (April 15, 1927 — October 27, 1999) was an English physicist
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’F

Joo - = 0x10x20x3°
.. 0F
Juos =7 aanX2a)C3 ’
. 0F
2o =  9x0x10x3
_ _ OF

I3 - 8x08x18x2

then  (jo,j1,J2,/3) is a  probability  current  vector  of  event.

If p := jo/c then p is a a prob-
ability density function.

If up :=ja/pa then vector up
is a velocity of the probability of A
propagation.

(for example for uy:

. __9OF

2 ( 0x0x10x3 ) ¢ ( Aoz F AX2>

Mz =——— —_ —_—
3F A123F Ax

P (axlaxza)C3 ) 123 0

)

Probability, for which u? +

2 2 .
u; +u5 < ¢ are called traceable E
probability. Erwin Schrodinger

Let us consider the following set of four real equations with eight real unknowns: b”
with b >0, o, B, %, 0, v, v, A:

=p
2
2

SN—"
I
|
[=
~~
S
—_
N—

b* (cos? (ar) sin (2) cos (6 — y) —sin Eoc) sin (2y)cos (V—A) o
b* (cos? (o) sin (2) sin (6 —y) — sin (Oc) sin (2y) sin (v — A) =—2,
b* (cos? (at) cos (2B) — sin? (o) cos (2x)) = —£.

This set has solutions for any traceable p and
Ja k- For example one of these solutions is the fol-

lowing:
1. A value of b? obtain from first equation.
2. Since
Jk
Uy = —
p
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then
¥) — sin® (o) sin (2%) cos (L —A) = -,
u

{ cos? (o) sin (2B) cos (8 —
cos? (o) sin (2B) sin (8 —y) — sin? (a) sin (2)) sin (L —A) = —
cos? () cos (2B) — sin? (ar) cos (2x) = —2.
3. Letp=1y.
In that case:

{ (cos2 (or)cos (B8 —7) — sin2 (o) cos (v — 7»))) sin (2B) = — 2,
sin =

(cos? (o) sin (8 — ) — sin? (at) sin (v —
(cos? (o) —sin* (at) ) cos (2B) = — 2.

4. Let (0—7v) =(v—A).
In that case:

’

2

cos (2a) sin (8 — ) sin (2
cos (2a) cos (2p) = — 2.

5. Let us raise to the second power the first and the second equations

cos (2at) cos (8 —y) sin (2B) = —*¢
{ p) = &

cos? (2oc)cos (6 —1v)sin® (2B) = (-

cos? (2at) sin (9 Y) sin ( B)
cos (2a) cos (2B) = —=2.

and let us summat these two equations:

sin” (2B) cos? (2at) (cos? (8 —y) +sin® (6 —v))
— (8

cos (2a) cos (2[?))

Hence:

cos (2a) cos (2B) = -4

{ sin® (2B) cos? (2at) = (7%)2+ (,%)2’
6. Let us raise to the second power the second equation and add this equation to the

previous one:

sin? (2B) cos? (20) = (—2)7 + (=12)?,
cos? (2at) cos? (2B) =
(sin® (2B) + cos® (2B)) cos® (20 (
cos? (20)) = (—%>2+ (—%)Z (—%)2, 4.2)

We receive cos? (2a) (for a trackeable probabilities).
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7. From

cos? (2a) cos? (2B) = (—ui) ’

we receive cos (2B).
8. From

cos” (201) cos” (6 — ) sin” (2B) = (_ﬂ> 2

we receive cos® (0 — 7).

If
@1 := bexp (iy) cos (B) cos (a),
@2 :=bexp (i0) sin (B) cos (o),
@3 :=bexp (L) cos () sin (), (4.3)
@4 := bexp (iv) sin () sin (o)

then you can calculate that

p =) 909, (4.4)
s=1

Ja t &

o= ZZ%&wk
k=1s5=1

4.4. Equations of moving

If ¢ := Uy (¢) @ then

P = 0"/ = 9'U, (0) U2 (0) ¢ = peosh 20+ 2 sinh 2
and

», b
2 — "B}, = ~0'Uy, (0) BPU02 (6) 0 = 2 cosh 29+ psinh 20.

Similarly Up; and Up s transform the 3+1 vector (cp,j) by the Lorentz formulas and
Ui, Uy 3, Uy 3 transform this vector by the cartesian formulas.
Because
oo FF 9 __9j2_ s

8xo aanxla)Qa)C} E N 8x2 o a)C3

then (Continuity equation ):

0 J d 0
P+J1+12+J3

8xo 8x1 sz aX3 0 (45)
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In that case:

d(9'o) 9 (¢"Bleg) K (¢"BPo) K (¢"Bllg)

0xo ox; 0x> 0x3 =0

J(e") d(¢)

0xg o 9T o 0xg
((pTB[l]) p) (B[l](p)

B 8x1 (p—(pT 8x1
d (o B2 o (B2

G )(p o (B='o)

x> B 0x>
d(otBbl J (B
_9(e"B )(P_(p‘r (B“'o)

0x3 0x3

d o\
g [1] ] 9 _ Bl 2
( B 0x1 —B axz —B ax3> ?

d d
= 3]
o' <axo ox| B axz B 8x)
=0

Let
42 9

:7_25

(4.6)

Hence,
9 (0'+0) 0=

0'=-0 (4.7)

Therefore, for every function @; here exists an operator Q; x such that a dependence of
@; on ¢ is described by the following differential equations :

4
Oy = 1 (Bidn +BJida-+ 0+ 0 o (438)

and Q% = — 0Ok,
In that case if

Hjo = ic (Y01 + B30z + B0s + )

then H is called a Hamiltonian'® of a moving with equation (4.8).

19Sir William Rowan Hamilton (4 August 1805 2 September 1865) was an Irish physicist, astronomer, and
mathematician, who made important contributions to classical mechanics, optics, and algebra.
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A matrix form of formula (4.8) is the following:

Jd9=c (Bmal + B9, +pBlos + Q) ¢ 4.9)

“There is in my opinion a great
similarity between the problems
provided by the mysterious
behavior of the atom and those
provided by the present

economic paradoxes confronting
the worild."

Paul Dirac

with
0]
®2
(p g
®3
P4
and
1011 10— i03-—®13 1014—Wi4

%7+ 2 %, 03 —Wp3 Y4 — W2y
1 3+®13 103+W23 1033 134 — W34
1014 +014 iOa+Wr4 i034+034 1044

Q)
I

(4.10)

with @,y = Re (Qy x) and Oy = Im (Q, ). Matrix @ is called a state vector of the event
A probability.

An operator U (t,t0) with a domain and with a range of values on the set of state vectors
is called an evolution operator if each state vector @ fulfils the following condition:

o (1) =U(1.10) 9 (t0)- (4.11)
Let us denote:
N 3
H;:=c Z iBla;.
s=1
In that case

[:\I:I‘A]d—l-iCQ

86



according the Hamiltonian definition:

A =ic (B"a, +Ba, + 25+ 0) .
From (4.9):

9,0 = He.

Hence:

ia,(p = (ﬁd + iCé) .
This differential equation has the following solution:

a(;p —_§ (ﬁd +ic§) o,

e 1) N R
— =—i H;+icQ ) ot,
\/l‘—l() (P 1[—!0( ¢ ICQ>
t

t o~ ~
Ing (1) — Ing (1) = <—i / Ayot —iic / Q8t> .
1=ty 1=l

Since Hy does not depend on time then

[ A~ ~
/ Hdal =Hy (l—l‘()).
=ty

Hence, according logarithm properties:

n(;p((;)) = (—iﬁd (t—to)Jrc/t;0 QE%).

Therefore,V:

o (1) =o(t)exp (—i?[d (t—19) +C/tit0 Qa:) .

Hence, from (4.11):

o~ o~ t o~
U (t,10) = exp <—in (t—19) —I—c/ Qat>
1=ty

20For an operator S:

A

exp (S) =1+854 =8

with §A2 :=8Sand S+ :=§" 8.
Here 1 is the unit operator such that for every u: 1u = u.
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A Fourier series for ¢; (¢,x) in Rq has the following shape: a

9;(t0,x) = ch-,p (o) Gp (10, %)
P

with

3
Gp (X) := () exp (—ilpx) if x € Q;
0, otherwise

and with

N Cj,p.(fo) = Gp (X) *@; (10,X) - Eire
That is in a matrix form: :
{;2*.: j ‘L': K*=s — / -
3 {
h 2 h William Rowan/Hamilton m
cp (to) = dxo- | =— | exp(i—px 1o, X 1805-1865 b A
p(O) ./(Q) 0 <27IC> p<Cp ()>(P(O 0) AQ >

Hence,

3 3
h \?2 'h h \2 'h
o (tg,x) = ?/(.) dxg - (2750) exp <1Cpxo> ¢ (f9,%0) <2nc> exp (—1Cpx> .

That is:

¢ (10,X) :/(Q)dxo. (; <2hm>3exp <_1}C‘p(x_xo)>> ¢ (10,X0) -

Therefore,

o= [ () (r 0 E @) gt

An operator

h )3 < Epexp (—ifl (1 —10) +< [}, 03 ) )

K(l‘—t(),X—X(),l,l()) = ( )
2ne -exp (—1%p (x—x))

is called propagator of the event A probability.
Hence:

(p(t,x):/ )dxo-K(t—to,x—xo,t,to)(p(to,xo). (4.12)
(@

A propagator has the following property:

K (t —19,Xx—Xo,1,00) = /dxl K (t —t1,x—x1,8,t1) K (t; —to,X1—X0,11,10) .
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4.5. Double-Slit Experiment

In a vacuum (Figure 1, Figure 2, Figure 3): Here transmitter s of electrons, wall w, and the
electrons detecting black screen d are placed[13].

Electrons are emitted one by one from the source s. When an electron hits against
screen d then a bright spot arises in the hit place of d..

1. Let slit @ be opened in wall w (Figure 1). An electron flies out from s, passes by a,
and is detected by d.

If such operation will be reiterated N of times then N bright spots shall arise on d against
slit a in the vicinity of point y,.

2. Let slit b be opened in wall w (Figure 2). An electron flies out from s, passes by b,
and is detected by d.

If such operation will be reiterated N of times then N bright spots shall arise on d against
slit b in the vicinity of point yj.

3. Let both slits be opened. In that case do you expect a result as on fig. 3? But no. We
get result as on Figure 4%![14].

For instance, such experiment was realized at Hitachi by A. Tonomura, J. Endo, T. Mat-
suda, T. Kawasaki and H. Ezawa in 1989. Here was presumed that interference fringes are
produced only when two electrons pass through both slits simultaneously. If there were
two electrons from the source s at the same time, such interference might happen. But
this cannot occur, because here is no more than one electron from this source at one time.
Please keep watching the experiment a little longer. When a large number of electrons is
accumulated, something like regular fringes begin to appear in the perpendicular direction
as Figure 5(c) shows. Clear interference fringes can be seen in the last scene of the ex-
periment after 20 minutes (Figure 5(d)). It should also be noted that the fringes are made
up of bright spots, each of which records the detection of an electron. We have reached a
mysterious conclusion. Although electrons were sent one by one, interference fringes could
be observed. These interference fringes are formed only when electron waves pass through
on both slits at the same time but nothing other than this. Whenever electrons are observed,
they are always detected as individual particles. When accumulated, however, interference
fringes are formed. Please recall that at any one instant here was at most one electron from
s. We have reached a conclusion which is far from what our common sense tells us.

4. But nevertheless, across which slit the electron had slipped?

Let (Figure 6) two detectors d, and dj, and a photon source sf be added to devices of
Figure 4.

An electron, slipped across slit a, is lighten by source sf, and detector d, snaps into
action. And an electron, slipped across slit b, is lighten by source sf, and detector dj, snaps
into action.

If photon source sf lights all N electrons, slipped across slits, then we received the
picture of Figure 3.

If source sf is faint then only a little part of N electrons, slipped across slits, are noticed

2lSingle-electron events build up over a 20 minute exposure to form an interference pattern in this double-
slit experiment by Akira Tonomura and co-workers. Figure 5(a) 8 electrons; Figure 5(b) 270 electrons; Fig-
ure 5(c) 2000 electrons; Figure 5(d) 60,000. A video of this experiment will soon be available on the web
(www.hgrd.hitachi.co.jp/em/doubleslit.html).

&9



by detectors d, and d,. In that case electrons, noticed by detectors d, and dj,, make picture
of Figure 3, and all unnoticed electrons make picture of Figure 4. In result here the Figure
6 picture is received.

L~

Figure 1:

Let us try to interpret these experiments by events and probabilities.

Denote the source s coordinates as (xo,yo), the slit a coordinates as (x,,y,), the slit b
coordinates as (x,yp). Here x, = x;, and the wall w equation is x = x,. Denote the screen
d equation as x = x,.

Denote
an event, expressed by sentence: <electron is detected in point (¢,x,y)>>, as C (¢,x,y),
an event, expressed by sentence <slit a is open>>, as 4,
and an event, expressed by sentence <slit b is open>>, as B.

Let 7y be an time instant of an electron emission from source s. Since s is a dotlike
source then a state vector @ in instant 7y has the following form:

QOc (1,%,9) |i=1p = ¢ (10,%,¥) 8 (x —x0) 8 (y — yo) - (4.13)

Let t,, be an time instant such that if event C (¢,x,y) occurs in that instant then C (¢,x,y)
occurs on wall w.

Let 74 be an time instant of a electron detecting by screen d.

1. Let slit a be opened in wall w (Figure 1).

In that case the C (¢, x,y) probabilities propagator K4 (f — fo,x — x5,y — ys) in instant t,,
should be of the following shape:
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Figure 2:

Figure 3:
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Figure 4:

¢ BRI (| i

Single-electron Build-up of Tnwerference Pattern

Figure 5:
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Figure 6:

KCﬂ (t _t()vx_-xsvy_ys) ’l:tw
= Kca (tw _tva_xsay_yx)8<x_xa)8(y_ya)-

According the propagator property:

K(t_t0>x_xs>y_ys):
= /RdX1/Rdy1-K(t—h,x—m,y—yl)K(fl—lom—xsm—ys)-

Hence:

Keg (ta—1t0,Xa — X5, Ya — Ys) =
= /Rdx/RdY'KCﬂl(td_tWaxd_xayd_)’)
KC,‘ZI (tw_tny_XS7y_ys)s(x_xa)a(y_ya)'

Therefore, according properties of d-function:

Kea(ta —to,Xqa —Xg,ya — ys) =
= Kcg (td —ly, Xqd —Xa,Yd _ya)KC}Zl (tw —10,Xa — Xs,Ya _)’s) .

The state vector for the event C(¢,x,y) in condition 4 probability has the following
form (4.12):
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Qca(ta, xq,ya) :/dxs/dys'KCﬂ (ta — 10,%Xq — X5, Ya — Ys5) O (10, X5, Vs) -

Hence, from (4.13):

Ocata,xa,ya) = /dxs/dys'Km (ta —10,Xd — Xs5,Yd — Ys)
®c <ZOaXS7)’s)6(xs _XO)S()’S _yO)'
That is:

9ca(ta,Xa,Ya)
/dxs/dys Kc‘ﬂ tWaxd_xaa)’d_Ya)KCﬂ (tw_IOaxa_XS7ya_Ys)
(PC(t07x57y5)5(x5_XO)S(yS_yO)'

Hence, according properties of d-function:

QOca(ta,xq,ya)
= Kea(ta —tw,Xa — XayYa — Ya) Kca (tw — 10,%a — X0, Ya — Y0) ©¢ (10,%0,Y0) -

In accordance with (4.75):

pca(tasxa,ya) = g (tasXa,ya) Oca (tasXa,ya) -

Therefore, a probability to detect the electron in vicinity AxAy of point (x4, y,) in instant
t in condition A equals to the following:

Py (ta, xa,ya) =P (C(ta,AxAy) /| A) = pca(ta,Xa,ya) AxAy.

2. Let slit » be opened in wall w (Figure 2).
In that case the C(z,x,y) probabilities propagator K-z (f —fy,x — X5,y — y5) in instant f,,
should be of the following shape:

Kes (t —to,x—xs,y—ys) ‘t:IW
= K¢ (tw_t07x_xﬁy_ys)a(x_xb)s(y_yb) .

Hence, according the propagator property::

Keg (ta —1t0,Xa — Xs,Ya — Ys) =
‘/RdX/Rd))‘Kc‘g (td_tWrxd —Xa)’d—y)
KCQ% (tw_thx_x57y_ys>S(X_xb>6(y_yb)'
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Therefore, according properties of 8-function:

Kep (ta —10,Xa — X5, Ya — Ys) =
= Keg(ta—tw,Xa —Xxp,Ya — Yu) Kes (ty —t0, X5 — X, b — Vs) -

The state vector for the event C (¢,x,y) in condition B probability has the following
form (4.12):

O3 (ta,%d,Ya) :/dxs/dys'KCGB (ta —to,Xa — Xg,Ya — Ys) O (t0, X5, s) -

Hence, from (4.13):

Oca (ta;Xa,ya) = /dxs/dys'Kcas (ta —1t0,Xq — X5, Ya — Ys)
Oc <ZOaXS7)’s)6(xs _XO)S()’S _yO)'

That is:

QOcs (ta,Xd,ya)
= /dxs/dys'KaB (ta —tw,Xa — Xp,ya — V) Keg (6w — 10, X5 — X5, Vb — Ys)
Oc (10, Xs,Ys) 0 (x5 —x0) 8 (ys — yo) -

Hence, according properties of 8-function:

Oca (ta;Xd,ya)
= Keg(ta—tw,Xa —xp,ya —Yb) Kea (tw —t0,%5 — X0, Y6 — Y0) Q¢ (f0,X0,)0) -

In accordance with (4.75):

Pes (a,Xa,Ya) = Qg (ta,Xa,Ya) 9c (ta Xa s Va) -

Therefore, a probability to detect the electron in vicinity AxAy of point (x,,y,) in instant
t in condition B equals to the following:

Py (ta,xa,ya) =P (C (ta,AxAy) /B) = pcg (ta,Xa,ya) AxAy.

3. Let both slits and a and b are opened (Figure 4).
In that case the C (¢,x,y) probabilities propagator K g5 (t —t9,x — x5,y — ys) in instant
t,, should be of the following shape:

Kcas (t —10,X — Xg,y *)’s) |t:tw =
= Kcas (tw —10,X — X5,y = ¥5) (8 (x = x4) 8 (y = ya) + 8 (x —x5) 8 (y — y»)) -
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Hence, according the propagator property::

Keas (tg—10,X0 — X5, Ya — Ys) =
= Jrdx [gdy-Kcas (ta —tw,Xa —X,Ya — )
Keas (ty —to,X — X5,y —s) -
(B (x—xa) 8 (y—a) +8(x—xp) 8 (y — 1))

Hence,

Keas (ta—to,Xa — X5, ya — Ys) =
Jrdx [rdy-Kcap (ta —tw,Xa —%,ya —y) Kcas (b —10,% — X5,y —ys)-
X (x _xa) d (y _Ya)
+ Jrdx [gdy-Keag (ta —tw,Xa —X,Ya =) Kecas (tw — 10, — X5,y —s) -
B (x—xp) 8 (y—p)-
Hence, according properties of d-function:

Kcas (td —10,Xq — Xg,Yd —ys) =
Keas (ta —tw,Xd — Xa,Ya — Ya) Keas (by —10,Xa — X5, Ya — Ys)
+Kcas (ta —tw,Xa —Xp,Ya — Yb) Kcas (b —10,%5 — X5, Y5 — Ys)

The state vector for the event C (z,x,y) in condition 4 and B probability has the follow-
ing form (4.12):

Qcas (ta,xa,ya) Z/dxs/dys'Kcms (ta — 10,%0 — X5, Ya — Ys) O (t0, X5, Ys) -

Hence, from (4.13):

Qcas (ta,Xa,ya) = /dxs/dys'Kcma (ta —to,Xqg — X5, Ya — Ys)
©c (to)xsays) S(XS _XO)S(ys —)’0) .

That is:

QOcas (ta:Xa,ya) = [ dxs [ dys:
_ < Kcap (ta —tw,Xa — Xa,Ya —Ya) Keas (tw —10,%a — X5, Ya — Ys) >
+Kcas (ta — twsXa — Xp,Ya — V) Kcas (tw —10,%5 — X5, Y5 — ¥s)
Q¢ (10, Xs,Ys) & (x5 —x0) 8 (ys — yo) -

Hence, according properties of 8-function:

Ocas (ta;Xa,ya) =
_ < Keas (ta —tw,Xd = Xa:Ya — Ya) Kcas (ty —10,Xa = X0,Ya = Y0) >
+Kcas (ta —tw,Xa — Xp,Ya —Yb) Kcas (tw —10,% — X0, Y5 — y0)
Q¢ (10,X0,Y0) -
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That is:

(PCJMS (td7-xd7yd) -
= Kcas (ta —tw,Xa — Xa,Ya — Ya) Kcas (tw —10,%4 — X0,Ya — Yo) 9 (to, X0, Y0)
+Kcag (ta —tw,Xa — Xp,Ya — Yb) Kcas (tw —10,X — X0, Y6 — Y0) Q¢ (10,%0,0) -

Therefore,

Ocas (ta,Xa,ya) = Oca(ta,Xa,ya) + Qcs (ta,Xa,Ya) -
And in accordance with (4.75):

Pcas (ta.Xa,Ya) = Qg (taXa,Ya) Ocas (ta,Xa,Ya)

ie.

Pcas = (Pca+ (Pcas)T (Pca+9ca)

Since state vectors Q@7 and @z are not numbers with the same number signs then in
the general case:

(9ca+0cs) (9ca+Pcs) # Ora0ca+ Ory@cm.

Therefore, since a probability to detect the electron in vicinity AxAy of point (x4, y,) in
instant ¢ in condition 4B equals:

Pup (ta,xa,ya) := P (C (ta, AxAy) /AB) = pcas (ta, Xa,Ya) AxAy
then

Pup (tasxq,Ya) 7 Pa(ta,xa,ya) + Py (ta,x4,Ya) -

Hence, we have the fig.23 picture instead of the Figure 3 picture.

4. Let us consider devices of Figure 6.

Denote event, expressed by sentence “detector d, snaps into action”, as 9, and event,
expressed by sentence “detector dj, snaps into action”, as Dj. Since event C (¢,x,y) is a
dotlike event then events D, and D), are exclusive events.

According the property 10 of operations on events:

(Da+Dp)+ (Da+Dp) =T,

according the property 6 of operations on events:

(Dﬂ + @b) = 505179

Hence:

D, + Dy +5a5b =T.

According the property 5 of operations on events:
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C=CT=C(Di+ Dy +D,Dy).
According the property 3 of operations on events:
C = CDy+ CDy+ CDuDy.
Therefore, according the probabilities addition formula for exclusive events:

P(C (1)) = P(C 1) Du) +P (Cta) Dy) +P (C (11) DDy ).
But

(C(ta) Da) = Pulta),
(C(ta)Dy) = Py(ta),
p (C (ld)5a5b> = Pu(ta),

P
P

and we receive the Figure 6 picture.

Thus, here are no paradoxes for the event-probability interpretation of these experi-
ments. We should depart from notion of a continuously existing electron and consider an
elementary particle an ensemble of events connected by probability. Its like the fact that
physical particle exists only at the instant when it is involved in some event. A particle
doesnt exist in any other time, but theres a probability that something will happen to it.
Thus, if nothing happens with the particle between the event of creating it and the event of
detecting it the behavior of the particle is the behavior of probability between the point of
creating and the point of detecting it with the presence of interference.

But what is with Wilson cloud chamber where the particle has a clear trajectory and no
interference?

In that case these trajectories are not totally continuous lines. Every point of ionization
has neighboring point of ionization, and there are no events between these points.

Consequently, physical particle is moving because corresponding probability propa-
gates in the space between points of ionization. Consequently, particle is an ensemble of
events, connected by probability. And charges, masses, moments, etc. represent statistical
parameters of these probability waves, propagated in the space-time. It explains all para-
doxes of quantum physics. Schrodingers cat lives easy without any superposition of states
until the micro event awaited by all occures. And the wave function disappears without any
collapse in the moment when an event probability disappears after the event occurs.

Hence, entanglement concerns not particles but probabilities. That is when event of the
measuring of spin of Alices electron occurs then probability for these entangled electrons
is changed instantly on whole space. Therefore, nonlocality acts for probabilities, not for
particles. But probabilities can not transmit any information
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4.6. Lepton Hamiltonian

Let 9y and ® be terms of Q (4.10) and let ®g, O3, Yo and Y3 be a solution of the
following equations set:

—0Bp+03—Yo+ 3= ”(9171;
—0)— 03— Ty —Y3="D27;
-0 — 03+ Yo+ Y3="733;
—0Og+ 03+ T —T3="044

and O, Yy, Oy, Yo, My, My, MC,O’ M§74, MT]:O’ Mn’4, Me’o, Me’4 be solutions of the
following sets of equations:

{ O+ Y1="012;

-0+ Y1="034;

-0 — =0 ;
0, — Yo=W34;

Mo+ Mg o= 01 3;
My — Mg o= 02.4;

My — Mo a= 24;

Mo —Mna=014;
Mo+ My a= 023;

{
{
{ My + Mo 4= @) 3;
{

{ M4 — My o= 4;
M 4+ My o= 23

Thus the columns of Q are the following:
the first and the second columns:

—i@ +i03 —iYp +il3 0 +iY +0,+ Y,
10 +i1; -0, -1, —i®) —i®3 —iYy —iY3
iMo+iMeo+Ms+Mes  iMgo+iMys+Mgy~+Myo
iMCvO - iMTl74 +MC.,4 - MT],O i1‘40 — iMe70 + My — M974

the third and the fourth columns:
iMo+iMe o — My — Moy iMgo—iMna—Mgy4+Mno
iMC,0+iMﬂ,4_MC,4_Mﬂ70 iMo—iMe70—M4 —I-M974

—10) —103 +1Y +1Y3 —10;4+1Y; — O+ 1>
—i0;+i1; + 0, — 1, -0y +103 +iYy—iY3

Hence,
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Therefore, from (4.9):

*IMQ,OY[Q } + 1M§,4C[4 -
+iM9707g)] + i]\/[9749[4}.

3
)3 BM (av +i0y + in'Y[S]) +

with

Because

v=1
(0]
| +HiMoy? +iM, B -
1 o (i0nB0 1 G051 ¢ —
Ca,(p (1@0[3 +iXoBMy )‘P —IMC,OV[Q]"'IMCACM_
—iMy oty — Mg+
—I—iMe,()'Y(gO] + iM9749[4]
[5] — 12 02
P [02 _12].
(M4l 40 = g

with k € {1,2,3} then from (4.14):

.

(90 +1®g +iYoy)) + Z B (9k + i@ +iYyy)
k=
+2 (Mo + iM4BH)

(80 +10¢ + IYQ'Y )

Z ¢ (O +1@y +iTeyP))

+2 (—imte OY[C] +1Mg4gi4 )

(80 410 + 1YY 5])

+2< My, 0%[1} — iMp g ])

— (90 +i®g +iYoy?!) —

— (p_|_
Z N (9 +i0 +iYyy)
=1 (p+
z 01K (9 +i@ +iYyy?)
¢=0.

i) <1M9 o+ 0 1M9749[4]>
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In (4.14) summands
—ng()'Y[cO] + iMC,4C[4] —
—iMy 0¥y — Mg an¥+

+iMe70'Y[eo] + iM9749[4]

contain elements of chromatic pentads and

3
Y gl (ak +iO + iTkyW) +iMoy® + iM4 B
k=1

contains only elements of the light pentads. The following sum
R 3
Hl =C Z B[k] (iak — ®k — Tk'Y[S]> — CMo’Y[O] — CM4B[4]
k=1

is called lepton Hamiltonian.
And the following equation:

3
(Z B (iak — O — YkY[S]) — Moy - M4|3[4]> ¢=0
=0

is called lepton moving equation

If like to (4.75):
0"yl := —£ and "B e = — L&
and:
pug := ja and pus := js
then from (4.3):

LU oo sinBsiny cos (—6+ ) ’
c +cosBcosycos(y—A)
I —sinBsinxsin.(—9+D) '
c +cosPcosysin(y—A)

Hence, from (4.1):

2 2 2 2 2 2
u1+uz+u3+uﬂ’4+b{5:c .

(4.16)

4.17)

(4.18)

Thus, of only all five elements of a Clifford pentad lends an entire kit of velocity com-

ponents and, for completeness, yet two “’space” coordinates x5 and x4 should be added to
our three x1,x»,x3. These additional coordinates can be selected such that (4.1.)

Coordinates x4 and xs are not of any events coordinates. Hence, our devices do not

detect of its as space coordinates.
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Let us denote:

O (1,x1,X2,X3,X5,x4) 1= @ (1,X1,X2,x3) -
(exp( (X5M() (l‘ X1, XQ,X3)+X4M4 (t Xl,X27X3))))

In this case equation of moving with lepton Hamiltonian (4.16) shape is the following:
3
Y o <1Bk — e —rkﬂ) %535 — Bia, | § =0 (4.19)
k=0

Let g1 be the positive real number and for u € {0, 1,2,3}: F, and B, be the solutions of
the following system of the equations:

_O'SngM+FH: _®,U_Tl1;
—ngM+F = _®,U —f—Yy.

Let charge matrix be denoted as the following:

| 0
Y= [02 2.12]. (4.20)
Thus (2.106),(2.105) :
_G) _T‘ury[s]
= —0,l4— Yy’
- L 0| I, 0 |
ol v ]-nle % ]-

_ ®#12 02 + Yylz 02 _
o 02 @ 12 02 —T,u12 B

0, -
LT et -
0. 5ng +E) 1, 0,
[ (_ng,u+Fy) 1> :|

And

F,+0.5¢1YB, =
= F,u14 —|-0.5g1YB,u

. 1, 0, 1> 02 _
_Fy[oz 12}—1—0.5g1< {02 2_12D3y_

o F‘ulg 02 . 0.5ng'u12 02 o
| 0o Ely 0, 0.5¢1B,2- 1> |
B [ Fu1,—0.5g1B,1, 0> ]

02 F‘ulz—ng'u~12 ’
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Hence,

—0, YY) = F,+0.5g1YB,
and from (4.19):

3
(Z Bl (10 + Fx +0.5g1Y B) —y%ios — B[4]i84> $=0
k=0
Let x (7,x1,x2,x3) be the real function and:
~ exp (i%) 1 0
e R R

0, exp (ix) 12
In that case for u € {0,1,2,3}:

~ exp(i%) 15 0,
U = a“{ ) exp (i) 12

0
[ duexp (1%) 1, 0,02 }
0,02 auexp (ix) 12
_ ia”Txexp (1%) 15 0,
0, idyxexp (ix) 12
dux [ exp (1%) 1, 0,
02 2exp(ix) 12 |’

and

02 2- 1 02 exp (IX) 1

B exp(i%) 1, 0,
0, 2exp(ix) 12 |-

yi - _[12 02 Hexp(i;‘)lz 0, }

Hence:

Moreover you can calculate that:

0 cos X 4 B4 gin X
cos 5 + B sin >
U = BM*cos % — 4l sin%,

vt = 14,
u'yo = v,
plly = oupH

(4.21)

(4.22)

(4.23)



fork € {0,1,2,3}

Let
x’4 = x4cosl—X5sin&,
2 2
x5 = xwos%—i—x‘;sin%.

In that case by the partial derivate definition for any function u:
o / / / Y, X ! . X
Osut = 04U+ 04Xy + J5u - Jaxs = dyu - COS > + d5u - sin 5 (4.24)
Osu = Oyu-0sxy+ dsu-dsxs = dyu- (— sin%) + d5u - cos %
Let d4x = 0 and dsy = 0; hence, 04U = Udy and dsU = U0s.
From (4.21):

3
(Z Bl (10, + F, +0.5g1Y By) — v%ids — B[4]i84) ¢=0. (4.25)

s=0
Let

1
B, =B, — —d.).
a g 81 K

According to (4.24) and since UtU = 14 and UYU =Y then

ZS:O B[S] <las +FS+OSgll7TYﬁ (B/y+ g%asX)> - ﬁT06: 0
—y0l4 (—sin%0} +cos%d%) — Bl (cos %} +sin £0%) .
Hence:
y3 Bl (ias Y F40.5g,0tYU (Bg + g%asx)> - 5560
- (—y[o} sin + B cos %)io, — (Y[O] cos% + B sin %) io§

Since U is a linear operator then
£ 0B (10, + 0561070 (Bi+ Loy ) U7 bo—0
— (—vsin% + B cos £)i0,UT — (Y% cos £ + B sin %) ig Ut
and since 04U = Ud,4 and d5U = U9ds then
v2 B (iaﬁT Y RUT1+0.56,0TY0OU" (B, + gl—lasx)) -

_ <_y[0](7T sin% +BMU" cos % id), Up=0. (4.26)
— (V[O] Ut cos % + [3[4117r sin %) 105
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Since

Uy = y[o]cos%—kﬁwsin%,
Uty = B[4]cos&—y[0]sinl
2 2
then
ulgot = Y[O]ﬁTcos%—i—B[‘”ﬁTsin%,
ﬁTBWﬁﬁT = 6[4]I7Tcos%—y[0](ﬁsin%,
Hence,
Uty = Y[O]ﬁTcos&+B[4](7Tsinl
2 2’
Uip = Bwlﬁcosz—ym(ﬁsinl.
2 2
Therefore,

YOIUT = Uyl cos % —UpH sin%,
BUUT = UTy%sin % + UTBM cos £.

Thus, from (4.26):

y3 Bl (iasﬁT YREUT+0.5¢,0t Y00 (Bg + g%asx)) -
— ( Uty cos 1 U'BM sin %) sin
+ (U sink + UBH cos %) cos % Ugp=0.

B ( Uy cos L U B sin %) cos % o
+ (ﬁ*y[o] sin%%—lﬁﬁm cos %) sin :

Hence:
3 @l (it pOT Uty (B + L = )~
Y3 B <18SU +EU"+0.51U Y<Bs+glasx>> Up=0. (4.27)
~U Mo, — Uiylig;
Since (4.23):

then for s € {0,1,2,3}:
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U =i—2U
Therefore,
2 (0'00) =a,(0" (09)) =
= (20" (09) +U'a, (03) =i%v 0" (0) + 07, (0) =
(aXYUTH?*aS (ﬁ@ :
Since YU = U'Y then

O . ~v  ~ ~
1%YUT—|—UT8SZUT1

Hence,

Therefore, from (4.27):

3 s (77 9sx 7y 77 78 /1 _ -
¥3 Bl ( U %Y + U0, + FO' +0.55,0' (BS+ L asx)) %o
~U"BHig, — UM%,
Hence:
y3 B (ﬁ*ias +UF + o.sglﬁTYB;) oo
~UBMio), — Ui,
with F/ ::~17FS~17T.
Since BIIU = UBY for s € {0,1,2,3} then
Y3 Ul (ias YUTF + o.sglﬁTYB;) Voo
~U'Bl¥ig, — Uty%o, '
Hence, if denote: ¢’ := U ¢ then since U is a linear operator then:

- 3
Ut (Z Bl (19, + F/ +0.5¢1YB,) — B¥ia}, — v%id; > # =0.

s=0
That is
3
Y BY (10, + F +0.581YB}) — B*ia}, — y%id} | ¢’ = 0.
s=0
Compare with (4.25).

Thus, this Equation of moving is invariant under the following transformations:
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Tapestries are made by many artisans

working together. The contributions of
separate workers cannot be discerned in
the completed work, and the loose and

false threads have been covered over. So
it is in our picture of particle physics.

AZ QUOTES

Xg4 — X} :X4COS% — X5 sin %

27
X5 — X5 ZX5COS%+X4sin%;
Xy —>x;, =x, forpe{0,1,2,3}; (4.28)
¢— ¢ =U9,

, 1

B,— B, =B, — —duXs
81
F,—F,=UFRU".

Therefore, B, is like to the B-boson field
of Standard Model?? [16]. field. (h =
6.6260700442710(34)).

4.7. Masses

The scalar product of the following shape:

e b

@0):= [ | dvs [ | dn-d'% (4.29)
T ~h
In that case from (4.75):
(©.9) = pa, (4.30)
G686 — _Jk
((p,B (P) -~

22Sheldon Lee Glashow (born December 5, 1932) is a American theoretical physicist.
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fors € {1,2,3}

Let
cM cM
Ny (t,x1,X2,X3) i= (ho> , Ng (t,x1,x2,x3) 1= <h4> '

In that case :

- . h h
© = (t,x1,x2,x3)-exp | —i xSENﬂ (t,x1,%2,x3) +x4ENm (t,x1,%2,X3)

and Fourier series for @ is of the following form:

_ h
Q(1,x1,%2,X3,X5,X4) = @ (1,X1,%2,X3) - Y 8_ vy (1.x) O Ny (1.x) EXP (—lc (nxs +sx4)>

ns
with

h % .
O N, = e / _exp i
“h

h [ ,
S—S,Nﬁ; - ch/?exp <1

with integer n and s.

. h sinT (n+ Ny)
No—xs | dxs = —— " 0)
(nxs)> exp <1 ﬁCX5> X5 21+ Ny)

. h sinT (s + N,
(sx4)) exp <1Nm Cx4> dxs = 7t(s(+Nm§U)

oz ols

If denote:
F(t,%,—n,—s) == @ (,X) 8, Ny (1,x) O Ny (1,x)

then

$(I,X,X5,X4) -

. 4.31
= %o (%) exp (i (s 53). @30
The integer numbers n and s are denoted mass numbers.
From properties of &: in every point (¢,x): either
$(I,X,X5,X4) =0

or integer numbers ng and sg exist for which:

= f(t,X,n9,50) exp (—i% (noxs +s0x4)) -

That is for every space-time point: either this point is empty or single couple (n9;s) is
placed in this point.
Let us consider a behaviour of the sum

Bno +v%s0

under rotations:
Because
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Figure 7:

Up B0 2 = U 3B 3 = Uy 1B U 5 = UG B0, = UG ,B1 Y U = UG 4B 0 5 = B
and
Uiy YO 2 = U yOU 5 = U3 ¥O025 = US (¥ U1 = U Y0002 = U 5700 3 = v°)

then this sum does not change under cartesian and Lorentz transformation.
But

U WU = y%cos(in) —B™sin (id)
O7'BHT = (B cos(it) +1sin(i))
and
gD = (BW cosh — sin?L) 7
T = (Y[O}COS;WLBH]SmK)
Hence,

= (npcosA+spsin}) BW + (sopcosA —ngsinA) y[o}
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Figure 8:

Therefore, the U trancfurmation rotares vector ﬁ{no;so} into 2-dimension space
(6[4];7[0])0n angle A.

The U trancfurmation rotares this

vector into complex space ([3[4];7[0])011
angle iA. Waclaw Sierpinski is credited with
Numbers ny and sy are integer the discovery of the Serpinski

but undet rotation this naturalness may Triangle in 1915.

fade. However, for some rotations, the
coordinates of this ovector remain inte-
ger: for example, Pythagorean?? triples
(Figure 7),

Let an integer number m is a mass
number if for every angle o there some
angle B (o — 2an <B<o+ 2%0) exist
such that numbers mcosf and msinf3
are integer.

23Pythagoras of Samos[a] (c.?570 ¢.7495 BC) was an ancient Ionian Greek philosopher and the eponymous
founder of Pythagoreanism.
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Figure 9:

Polish mathematician Waclaw Sierpinsk?* in book, Pythagorean Triangles (1954)

proofed the existing such numbers [17] (Figute 8).
Perhaps these mass numbers represent the possible masses of existing elementary par-
ticles

Here are three families (generations) according to the Standard Model of particle

) () ()
aReRe

Each generation is divided into two leptons:

()G ) (),
(2) () ()

The two leptons may be divided into one electron-like (e~ - electron, u~ - u-lepton, T~
- T-lepton ) and neutrino (V,, V, V1); the two quarks may be divided into one down-type (d,
s, b) and one up-type (u, c, t). The first generation consists of the electron, electron neutrino
and the down and up quarks. The second generation consists of the muon, muon neutrino
and the strange and charm quarks. The third generation consists of the tau lepton, tau
neutrino and the bottom and top quarks. Each member of a higher generation has greater
mass than the corresponding particle of the previous generation. For example: the first-
generation electron has a mass of only 0.511 MeV, the second-generation muon has a mass
of 106 MeV, and the third-generation tau lepton has a mass of 1777 MeV (almost twice
as heavy as a proton). All ordinary atoms are made of particles from the first generation.
Electrons surround a nucleus made of protons and neutrons, which contain up and down
quarks. The second and third generations of charged particles do not occur in normal matter
and are only seen in extremely high-energy environments. Neutrinos of all generations
stream throughout the universe but rarely interact with normal matter.

and two quarks:

24Wac?aw Franciszek Sierpi?ski, (14 March 1882 — 21 October 1969) was a Polish mathematician.
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4.8. One-Mass State

Let form of (4.31) be the following:

h 4
ot = —i— t 0).
O (1,X,X5,X4) exp( 1Cnx5> ka( ,X,n,0)

k=1

In that case the Hamiltonian has the following form (from (4.21)):

~ h ~
— (K] 1"0]
H=c < E B™iog + " + G)

k=1
with ;
G:=Y BM(F,+05¢YB,).
u=0
Let
O) = VI 2 = [+ K3+ K3+ 2
and
® (k) +n+k3
1 ki +1iko
er (K) := (4.33)
() 2/0 (k) (0 (k) +n) | ©K)+n—ks
—ky — ik
Let
N 3
Hy:=c Y Vo, +hmy"l, (4.34)
s=1
Let:
2
c
hn=m—
n=m_
then equation of moving with Hamiltonian Hy has the following form:
[£19,9 = (£, B0, +my) o] (4.35)

This is the Dirac equation (Paul Dirac® formulated it in 1928).
Let us denote

NOPSVCI

for s # 0.
Let us calculate:

25Paul Adrien Maurice Dirac (1902 — 1984) was an English theoretical physicist who made fundamental
contributions to the early development of both quantum mechanics and quantum electrodynamics.
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_ OBl OILI |01 g0l g —
O 0IRbIpL 0l 0l plgH —
- (B[S]B[j] n B[j]B[S]) = —25;,

for s # 0 and j # 0.
and

YMY[O] +Y[O Y[O]B[S (0] +Y[0] - _B[S] + BM -0

for s # 0.
From (4.35):

Let us multiply both parts of this equation on
(170]8, Z'y 1a,+mh>
s'=1
11\( Zy 18/+m 717 Zy i —m Q=
h

Hence
—0%3;2
fiy[ }am —l—mCIiy[ 19, 0
+Y3_ 1y oy ¥3  ylia, ¢=0
—I-Zflzly lio /mH—Zﬁzlm vHlio;
_mh;:
Hence,
az
( + Y3 ha z L Yeio, )(pO
_ h2
Since
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3 3
Z Y[s']ias, Z Y[x] i0,
- ¥ Z Y1900, =

s=1s'=

”Y“]a 91 +¥79110,9; +4y 1050,

- — Y[l]y[ 19,0, +y[ ]y[ }azaz+y3]y[2]a3az ) -

+y1y3191 95 4+ v2IyB19,05 + 31319509,
—010;

+y2419,9, +41y210,9,

+y1959; +11yP19; 0

—0,02
+1P21930; +yPy710,05
—0303
Hence,
Z vigy Zy 10y = 0101 + 020, + 0303 = Zag.
s'=1 s=1
Thus,

132 3 2 mPc? _
(-39 +E 8- o0 (436)

This is the Klein-Gordon?®?” equation for a free particle with mass .

Let us calculate:

Hoe, (K) (%)%exp (—itkx) =
( Y B1ig + hnyl ) ( C)%el (k) exp (—i%kx) =
—=cY?  BMliose; (k) (%)%exp (—i%kx) +
+hnylle (k) () J exp (—ilkx) =
—cy?  pl 181( )95 ( 2C)%exp (—ikx) +
+hn (55) exp (—ilkx) Y, (k) =
=cY3  Blie (lg) (—i%%;) ()% exp (—ilk,) +
+hn (5) 2 exp (—i2kx) yPe; (k) =
=T (k) Bler (1) () exp (ithox) +
+hn (27:(;) : exp (—i%kx) Y (k) =

—h(5h) P exp (—iltkx) (53 kB +ny0) ey (k) =

26(Qskar Benjamin Klein; 15 September 1894 5 February 1977) was a Swedish theoretical physicist.
2TWalter Gordon (13 August 1893 24 December 1939) was a German theoretical physicist.
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k3 ky — ik n 0

3
B h \? h ki +iky  —k3 0 n
- h(ZTCC) exp <_lckx) n 0 —k3 —ky + 1k
0 no —k —iky k3
o (k) +n+k3
. 1 ki +1ko
2/0 (k) (0(k)+n) | ©K) +n—ks
—ky —iky
k3 (K) + k2 + k2 + k3 + no (k) + n?

[ 1[4

ox —ihkx ki (k) + ik o (k)
P c n (K) +n? — k3o (k) + k3 + k3 + k3

h
= h|—
2
( nc> —klw(k)—ikzﬂ)(k)
ks +n+o(k)

= ! ki + iky L 7ex —iE X
- w(k)2\/m(k)(w(k)+n) ”+(]’j(k);k3 h<2750> p( Ck >
—k1 —iky

Therefore,

Hoe (k) (;lm> "exp (-ii‘kx) = ho (k) e; (K) (;‘m> "exp (—i}clkx) . (437

3
Hence, function e; (k) (52-) 2 exp (—i

h
c

ho (k) = hv/k2 + n2.

kx) is an eigenvector of ﬁo with eigenvalue

S

Similarly, function e; (k) (2%0) exp (—i%kx) with

ky —ikp
1 _
ez (k) = @ (k) +n—ks 38)
2y/o (k) (o (k) +n) —ky1 +iky
o (K)+n+k3
is eigenvector of Hy with eigenvalue ho (k) = hv/k? + 12, too, and functions
h : h h 3 h
e3 (k) <27tc) exp (—ickx> and e4 (k) <2nc> exp <_1Ckx)
with
—0 (k) —n+ks
1 ki + ik
e3z (k) := (4.39)
»®) 2/0 k) (0(k)+n) | ©K) +n+ks
ki +iky
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and

ki —iky
B 1 —0 (k) —n—k3
W emew i | k-ik o
(0] (k) +n—k3

are eigenvectors of Hy with eigenvalue —ha (k).
Here ¢, (k) with u € {1,2,3,4} form an orthonormal basis in the space spanned on
vectors €, (2?).

4.9. Creating and Annihilation Operators

Let $ be some unitary space. Let 0 be the zero element of §). That is any element F of
obeys to the following conditions:

OF =0,0+F =F,0" =0.

Let 0 be the zero operator on §). That is any element Fof § obeys to the following
condition:

OF = 0F, and if b is any operator on §) then

0+b=b+0=b,0b=50=0.

Let 1 be the identy operator on §). That is any element Fof § obeys to the following
condltlon

1F = 1F F ,and if bis any operator on §) then
1b=01=0.

Let linear operators b, (s € {1,2,3,4}) act on all elements of this space. And let these
operators fulfill the following conditions:

. h
{Bliobon } = blybor +bewh <2) Sic sy 1,

sk’ s’k’}:

{bsx,by x} = bsxby  + by xb

Hence, )
byxbsx = b;.,kbj,k =0.

There exists element 170 of $ such that IEJ }70 = 1 and for any by : bskao =0. Hence,
Fibl =0
0%sk —

Let

4 h
= Z Z brxers (k) exp (—1Ckx> .

k r=1
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Because
Z ers ers = 657s’

and
Few <_i}clk(x_x')> _ <2hm>36(x—x’)

then

i), we (X)) = wix)we (X) +ye (x) vl (x)
= §(x—x) 8S7S/T.

And these operators obey the following conditions:

i () Fo = 0. {ws (%) v ()} = {wi (%), w) ()} =00
Hence,
vy () yy (X) =y () \VZ’ (x) = 0.

Let A
P (1,x) =Y @, (1,x) v (x) . (4.41)

s=1

These function obey the following condition:
P (6, x) P (t,x) = ¢ (1,x) @ (t,x)5 (x—X).
Hence,

/dx’-lpT (£,x') ¥ (t,x) = p (t,X). (4.42)

Let a Fourier series of @; (7,x) has the following form:

4
.h

s 7, = r\t, rv —1— .

0.0 =% Yorp)ess e (-igpx

r=1

In that case:

21\’
E([,p) = h Zcr Lp brpFO
r=1
If
Ho (x) =" (x) How (%) (4.43)
then % (x) is called a Hamiltonian Hy density.
Because

ﬁo(P (I,X) = igt(pO?X)
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then 5
/d"' o (X)W (1,%) =i (1,%). (4.44)

then if

]ﬁl::/dx’-%(x’)
then H acts similar to the Hamiltonian on space 9.

And if B
E‘P (FO) Z\PT 7p 7p)

then Ey <Fvo> is an energy of ¥ on vacuum K.

Let us consider operator N, (o) := ! (x0) Wy (Xo).
Let us calculate an average value of this operator:

<ﬁa(x0)>\y::/de-ﬁa(xo)p(t,x).

In accordance with (4.42):

No(x0)) = [ dx dx' " (¢,x') W (x0) W (x0) P (2,X) .
v Ja Ja

Since in accordance with (4.41):

\|M4>
2

(t,x 1|IJ
then
<N”(XO)>\P:
4 ~
:/dx/dx Z(pstx Fg\ps( )\lfaxollfaxoz tx\|f,
4 4
= [ax [ ax XY 03 (%) 0 (0%) Fv (%) W (x0) i (%0) W () F
s=1j=1
Since
Wl (%0) W () 4+ (X') W (x0) = 8 (x0—x') 8501
then
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s=1j=1
F (8 (x0-x) 8y = W (x0) Wi (X)) Wi (x0) W} (%) Fy
!/ 4 4 !
= dx | dx - * . .
/Q X/Q X S;j;(ps(t,x)(p](t,x)

) <8 (x0—x') S‘WFJ/I\— FO%WZ (X0) Wy (X’)) Yo (X0) W (X) Fo.
Since I?J/l\ = Fy and Fy v (xo) = 0 then
<Na (XO)>‘P -
4 4 _ o
_ /Q dx /Q XYY 9 (1:X) 05 (1,%)8 (x0—X) 8 uFy W (x0) W7 (%) .

s=1j=1

According with properties of 8-function and &:

4 ~. ~
(M)}, = [ dx- ¥ 02 0.%0) 0 030 Ff v (0) ¥} (9 .
j=1
Since

W (%) Wa (%0) + Wa (X0) W (%) = 8 (x0—%) 841
then

<N“ (XO)>\11 -
4 ~u —~ ~
— / dx- Z 0, (1,%0) @, (t,x) F (5 (X0—X) ;41 —1|I;r. (X)W, (xo)) F
4 A~ AN~ o~ ~
=[x Y00 x0) 0 0,30 (850-%)810F T~ Fw] () wa (o) o)
j=1

4 ~ ~ o~y o~
_ /Q dx- Y @} (1,%) 05 (1,%) (8 (x0—%) 845 Fy —0'0) .
j=1

= /dx~
Q

= /dx~
Q

Thus:

™=

P, (1,%0) ; (1,%) (8 (x0—x) 8,41 = 0)

~.
Il

M-

@, (t,%0) @; (1,%) 8 (X0—X) 8 4-

~.
Il
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(M (x0) ), = 0 (1:30) @ (1-30).

(4.45)

That is operator N, (xp) brings the a-component of the event probability density.
Let ¥, (t,x) := Wy, (x0) ¥ (7,X).
In that case

(Mato)), = [ dx [ ax' " (1) (x0) W (x0)
Wi (%0) Wi (X0) W (%0) ¥ (1,).
Since

o~

W (X0) Wa (X0) =0
then

<ﬁa (xo)>% =0.

Therefore y, (xo) “annihilates” the a of the event-probability density.

4.10. Particles and Antiparticles

Operator H obeys the following condition:

P 2me? 2 4
o= <h> Y ho (k) (Z bibrk— Y bikb,,k> :
k r=1 r=3

This operator is not positive defined and in this case

_ I7C 3 2 4
Ey (Fo) = <h> ;hw(p) (Zl ‘Cr(tvp)|2_r:23|cr (tvp)\2> :

This problem is usually solved in the following way [18, p.54]:

Let:
nk) =1 (K),
va(k) =%, (k),
dix @ =-b} .
dx : =—b, .
In that case:
es(k) = —vi(—k),
es (k) = —w»(-Kk),
bix = —d;,k,
bix = —dj_,.



Therefore,

y(x) @ o= ; f (br,ker,s (k) exp <—ilclkx) +

The first term on the right side of this equality is positive defined. This term is taken
as the desired Hamiltonian. The second term of this equality is infinity constant. And this
infinity is deleted (?!) [18, p.58]

But in this case d, kFo =+ 0. In order to satisfy such condition, the vacuum element F
must be replaced by the following:

4 3
~ ~ 27C + o~
Fy— &y = HH <h> br,kFO'
k
But in this case:

And condition (4.44) isn’t carried out.
In order to satisfy such condition, operators W (x) must be replaced by the following:

Wy (X) = 05 (x) 1=

2

_ g; (br,kem (K) exp (—iEkx) + vy (K) exp (iikx) ) .

Hence,
ﬁ:/dxﬂ /dxqﬂ ) Hot (x) =
_ <2n0> Y ho (k Z(bzkbnk—dzkd,,k).

r=1

And again we get negative energy.

Let’s consider the meaning of such energy: An event with positive energy transfers this
energy photons which carries it on recorders observers. Observers know that this event
occurs, not before it happens. But event with negative energy should absorb this energy
from observers. Consequently, observers know that this event happens before it happens.
This contradicts Theorem 1.5.2. Therefore, events with negative energy do not occur.

Hence, over vacuum @ single fermions can exist, but there is no single antifermions.
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A two-particle state is defined the following field operator [?]:

L ¢s1 (X) ¢52 <X)
Y5 (X,¥) 1= 05, (¥) Os, (¥)

. 2me\® f~ -
il — 2h <m> (HaJer)

In that case:

where

and

+e! (k)e,(p) e; (p)e; (k)
X (—i—bikbj b j,kbr,p) +
(

+blpb;, kbhkb’:P) }

If velosities are small then the following formula is fair.
2me\% /1~ -
H =4h < hc> (P + 1)
where
P
2 2
<X )

+
‘ ( -p rkbrkd} —-p—b; pdr kdr— kap)
r=1j=1
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and

p)) X

(bjpbrkbrkbjp dj pdr kdr kdj-,—p>'

k p
2 2
Therefore, in any case events with pairs of fermions and events with fermion-
antifermion pairs can occur, but events with pairs of antiftrmions can not happen.
Therefore, an antifermion can exists only with a fermion.

4.11. Electroweak Fields

In 1963 American physicist Sheldon Glashow?? [20] proposed that the weak nuclear force
and electricity and magnetism could arise from a partially unified electroweak theory. This
was the beginning of the Standard Theory. But ... there is major problem: all the fermions
and gauge bosons are massless, while experiment shows otherwise. Why not just add in
mass terms explicitly? That will not work, since the associated terms break SU(2) or gauge
invariances. For fermions, the mass term should be myy?

myy = my(PL+Pr)y =
m (Y (PLPL) W+ (PrPR) V)
m(WrYL + W WR) -

However, the left-handed fermion are put into SU(2) doublets and the right-handed ones
into SU(2) singlets, so WYz, and Y, Yg are not SU(2) singlets and would not give an SU(2)
invariant Lagrangian. Similarly, the expected mass terms for the gauge bosons,

1 2
imBB/JB,U

plus similar terms for other, are clearly not invariant under gauge transformations B, —
B;, =B, —9,/g, The only direct way to preserve the gauge invariance and SU(2) invariance
of Lagrangian is to set m = 0 for all quarks, leptons and gauge bosons:. There is a way to
solve this problem, called the Higgs mechanism” [19].

No. The Dirac Lagrangian for a free fermion can have of the following form:

Lf = \|IT (B[O]ao + [3[”81 + [3[2]az + BB]a% + lm’Y[O}> V.

Indeed, this Lagrangian is not invariant under the SU(2) transformation. But it is beautiful
and truncating its mass term is not good idea.
Further you will see, how it is possible to keep this beauty.

28Sheldon Lee Glashow (born December 5, 1932) is an American theoretical physicist.
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4.12. Bi-mass state

Let U be a 8 x 8 matrix such that for every @: (4.29, 4.30):

US.UG) = pa (4.46)
~ Ky ~ j.S
(o) = —&

here (2.106)

¢ = olg; BV = By,

In that case:
UTB[“]U — [3[#}

foru € {0,1,2,3}.
Such transformation has a matrix of the following shape:

(a”+b”i) 1 0, (C”—i—ig”) 1 0,
U:— 02 (a‘—l—b‘i) 12 02 (c‘—l—ig‘) 12
’ (u”+1v”) 1, 0, (k" +1is”) 12 02
02 (u‘+iv‘) 12 02 (k‘—l—is‘) 12

with real functions
a”(t,x), b’ (t,x), ¢’ (t,x), g’ (¢,x), u” (¢,X), vV’ (¢,X), k£’ (¢,%x), s” (¢,
a‘(t,x), b*(t,x), c* (t,x), g* (¢,x), u* (¢t,x), v (t,x), k* (£,X), s°(£,X).

These functions fulfil the following conditions:

~—r

v”2 +b’72 +u’,2 +a”2 _ ]7
C”Z +g7’2 +k”2 +S”2 — 1’

2 ’9 2 991.%% .9 2 9 ” 99 9999
oo W —ub +avchV + b7g"

”2+V”2 ’
—M”a” » ”b”g”—i—v”a”g” b”C” 99
k - ”2+V”2 °
v42+bc2+u42+a‘2 — 17
c‘2+g‘2 +k‘2+S42 — 1’
. aégé,/[‘_uébﬁc4+aécév‘+b€g‘v‘
u?+v? '
k‘ _uéaéc4_u6bg +v6a6g‘ b‘ 6 3

‘2+v‘2

U has 4 eigenvalues: exp (iai; ), exp (io2), exp (ict3), exp (ioa) for 8 orthonormalized
eigenvectors:
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€1,1,€12,€21,€22,€31,€32,€4,1,€4 2.
Let

K:= [ €11 €12 €1 €2 €1 €2 €11 €2 ] .
Let 61, 6,, 63, 64 be solution of the following system of equations:
01+0,+03+04=0qa,
01+62—63—064 =01,

01 —0,+03—04 =0y,
0, —0,—05+064=0;.

and

U, :=exp(i0;),

exp (i62) 14 04 ¥
=K . K
U2 04 exXp (—192) 14 ’
[ exp(i63) 15 0, 0, 0, ]
02 exXp (—i93) 12 02 02 +
Us:=K . KT,
3 02 02 exXp (193) 12 02
L 02 02 02 eXp (—i93) 12 i
I eXp (i94> 12 02 02 02 i
02 exp (—i64) 12 02 02 +
= . K'.
U4 K 02 02 exp (—194) 12 02
L 02 02 02 exp (ie4) 12 i
In this case:
U U,UUy =U
and
exp (i62) 12 0, 0, 0,
Uy — 02 exp (—iez) 12 02 02
2T 0, 0, exp (i62) 1, 0,
02 02 02 exp (—192) 12
Besides
ei(91+92) 0 0 0
0 £i(01—62) 0 0
Ui, = 0 0 £i(01+62) 0
0 0 0 £i(01-62)
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Let x and ¢ be thesolution of the following set of equations:

{ 0.5x+¢=06;+06,,

X+G=061—6y,
ie.:
X = —462,
C=0)+36,.
Let
Ul = exp (ic)
and (4.22)

~ exp (1%) 1 0, ‘
0, exp (ix) 12

In that case:

vUleg = U U;.

Here real functions
a(t,x), b(t,x), c(t,x), g(t,x), u(t,x), v(t,x), k(t,X),s (t,X)
exist such that:

02
(u+iv) 1,
0>

(—k—l—is) 12

(c+ig) 1n 02

02 (k+1is) 1,
(a—ib)1, 0

02 (u—iv) 12

a?+b*+c+gr =1,
WV 2 =1.

02
(u+iv) 1,
02
(—k+is) 1,

(a+ib)1, 0,

0, I

(—c+ig)ly 0y

(a + ib) 15
0,
U3Uy = .
e (—c+ig) Ly
0,
and
If
1>
0
(+) .— 2
U 0,
0>
and
v .=
then

02 02
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02 0,
0, (k+is)l,
1> 0,
0, (u—iv) 1,

(C+ig) 1, 0

02 0,
(a—ib)1, 0,
0, 1,

(4.47)

(4.48)



UsUy = vyt = yHy-).

Let us consider U,
Let:

1 { (bJrM) 14 (g —ic) 14

by = ———e 4.49
2/ (1 —a?) (g+ic) 14 (x/(l—az)—b> 14 ] 49

and

. (1—a2)—b) b (—gtio)ls

1
2/ =a?) |: (—g—ic) 1y (b—{—\/(l—az)) 14

These operators are fulfilled to the following conditions:

] . (4.50)

boly =Uo, Ll =y
bl =0="0.1,,
(lo— L) (b —1,) = 13,
bo+1, =13,
LyO = yl00g, 0 4O = y0lg,
0B = Ble,, 0, B = BHle,

and
USYOITE) = gyl — (0, —0,) V1 —a2B,
UOBHYE) — aBH 1 (0, — £,) v/ T— a2y, 4.51)
From (4.21) the lepton equation of motion is the following:
3
Y B (19, + F, +0.561YB,) +¥"ids + B“hm) uTu-g =o.

u=0

If
o U =yt (4.52)

for k € {0,1,2,3,4,5} then

UStiy3 B (19, + F,+0.5g,YB,) ~
u=0 u T Ly 14 Bu g —
< POy Htigs + U (H)Tig, )U e=0

Hence, from (4.51):

Yo oB¥ (id, + F,+0.581YB,)
i Y h aa5—(€o—€*)\/l—a284> UG =0,
B (VI— a2 (ZO—E*)85—|—aa4>
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Thus, if denote:

Xy = (bo+ L) axs + (Lo — £.) V1 — dPxs,
XIS = (eo +€*)CZX5 - (Eo —E*) MJM

then
3
(): B (10, + F, +0.5¢1YB,) + (ymiag + BWiag)) ¢ =0 (4.53)
u=0
with
¢ =U"%.
That is the lepton Hamiltonian is invariant for the following global transformation:
¢ ¢ =U"g,
x4 = Xy = (bo +4y) axg + (bo — L) V' 1 — aPxs, (4.54)

x5 — x5 = (Lo +4y) axs — (bo — L) V' 1 — aPxy,

/ —_—
Xu —>X‘u = Xy-

4.13. Electroweak Transformations

During the 1960s Sheldon Lee Glashow discovered that they could construct a gauge-
invariant theory of the weak force, provided that they also included the electromagnetic
force.

The existence of the force carriers, the neutral Z particles and the charged W parti-
cles, was verified experimentally in 1983 in high-energy proton-antiproton collisions at the
European Organization for Nuclear Research (CERN).

Let (4.52) does not hold true, that is U(~) depends on x. And let denote:

3
K:=Y B (F,+05¢YB,). (4.55)
u=0

In that case from (4.21) the equation of moving is of following form:

3
<K+ Y Bio, +yPios + B[4lia4> ¢ =0. (4.56)
u=0
Let us consider for this Hamiltonian the following transformations:
0— ¢ = U(’)ﬁ,
xg = Xy = (bo + L) axg + (o — €)' 1 — a’xs,
x5 — x5 = (bo + L) axs — (o — €)' 1 — a’xy, (4.57)

Xy — Xy, :=xy, for u € {0,1,2,3},

3
K—K =UCkuC)T iy gk (aym—)) Ut
u=0
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with
84U(*) = U(f)a4 and 85U(*) = U(f)asi

Since

(bo— L) (bo—4,) =13
then

x4 = axy—(lo—0)\/1—a?xs and
x5 = (bo—L)V1—ax, +axk.

Since for any f:

a:lf = a4f . aax;; + 85f . E)st,
O5f = Oaf-05x4+40sf-0sxs

then

W = Oaf-atdsf-(lo—t)\1—a2,
/Sf a4f <_ (fo _E*) ﬂ) +85f'(1.

Therefore, if

3
(1« Y B, i) + s[mg) U5 —0
u=0

then
UG KT = iZﬁ:o Bl (aﬂU(*)) vt
+ X3 o BHia, + i ((— (lo— L)V = a2> A +aas) UG =0,
B (aa4 F(le— )T a285)
Hence,

v KkUOUE) —ix3 gk (9,u)) U TU )
530 BHIRU ) +y Ui (= (o~ ) VT=a?) dy+ads) |G =0
BT i (ady + (€ —0.) VT—a%5)

since U is a linear operator such that 9,U(~) = U(-)9, and 95U () = U()0s.
Since
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and

then
UK —iy3 Bk (8,0))
+ X0 BYi ((0,0)) +U Ty,
+y) (a'y[O] —(l,—1,) MBM) %
<i((~ (Vi@ aitads) |®
+U) (aB + (¢, _g*)mym %
xi (dy + (€ — ) VT = a5 )

I
e

Therefore,
UGK — i):zzo Bl (ayU(*))
+Zf,:0 Bk ((9.U)) + U(_)au)
(ay[o] (b — 1)) \/WB[‘”) X
x (— (6o —0.)VT— 20, +aa5) P
+ (B + (€ — ) VT = a9 x
X (aa4 Yl —0) mas)

|
N

+iu )

3
<U()K_|_ Z B[ﬂ]iU(*)a# + iu-) <+’Y[O]a5 + B[4]a4>> 6 =0,
u=0
Hence,
3
v <K+ Y Blio, +i <+Y[O]35 + 3[4]84) ¢=0
u=0

since BHU ) = UCIBH for u € {0,1,2,3}.
Therefore, this equation of moving is invariant under the transformation (4.57).

Let g» be some positive real number.
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If design (here: a,b, c,q form U in (4.48)):

- (040 b — g (b a+ (9ue) 4+
v =23 (e b loe e )

_ (0ua) a* — bq (duc) +a(3yub) b+
WUP‘2§q<—HN%00+qz@m0+§@ﬂ0q>

._ (dua)c —a(dya)b — b (dub) —
Wayi= =2 1 ( q—c(auc)b — (9ub) ¢* — (9uc) qa >

84
and _
W()”ulz 02 (W] o IWZHU) 12 02
0, 0, 0, 0,
W, := ; 4.58
" (Wl,y+1W2,y) 1, 05 —W()_"ulz 0, ( )
0, 0, 0, 0,
then |
i COAY 71Co kI
i(0,u U S82Wi (4.59)
and from (4.55), (4.56):
Yo oBMi(0,—i0.581B,Y —i3gW, —iF,) ' ~
=0. 4.60
( %0l + Bi, ¢ (4-60)

Let (4.48) d' (t,x), b’ (t,x), ¢ (¢,x), ¢’ (¢,x) are real functions and:

(a’+ib’) 1, 0 (C/—I-igl) 1, 0,

U e 02 I5) () 0>
’ (—c’ + ig/) 1, 02 (a’ — ib/) 1, 02
0, 0, 0, 15
In this case if
v =u'v")

then there exist real functions a” (¢,x), b” (¢,x), ¢” (t,x), ¢" (¢,x) such that U" has the similar
shape:

(@ +ib") 1, 0, ("+ig") 1, 0

U’ = 02 1 0, 0,
(—C” —I—ig”) 1, 0, (d” - ib”) I, 0,
0, 0, 0, 1,
Let:
=2 o o)) o)
82
Hence,
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no— A s oy (oY A s pe) (o)
W= - @U)U (vv) LU (vv)
- _ 2 (9,U") UGyt — EU’ (a'uU(*)> y iyt
) 2
_ A aonyt By -\ yOiyrt
= @)U U (a0 v,
Since from (4.59):
W, = —ig <a U(—)) Sl
u o u
then
wr = A uut -ty ((a UH) UH*) Ut
a 82 g 82 H
- (U UT+U'WU".
82
Therefore, if
Z,, B 1 i (b//+ (1 _a/’2)> 14 (q//_icll) 14 i
o " 2 (1 _a//2) (q//+iC//) 14 ( (1 _a//z) _b//) 14 s
o 1 _ (\/(1 —a"z)—b"> L (g i) ]
* * ‘2 (1 _a//z) (—q”—ic”) 14 (b”—l— (1 _a/a)) 14

then under the following transformation

0—¢":=U"0,

X4 — Xy = (Eg —I—EZ) a’xq+ (Eg —f;’) mxs,

X5 — X2 1= (E;' —i—ﬁ;’) a’'xs — (E;' —ﬁ;’) \/mm, 4.61)
Xy —>x/’j == x,, forp e {0,1,2,3},

3
1
K—K':=Y pW <F,, +0.581YB, + 2g2W;/>

u=0

fields W, and W, are tied by the following equation

" _ 7l 21 ! T
Wi = U'WU" = & (9,U) U] (4.62)

like in Standard Model.
From (4.59):
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W, — —igzz (YU

Let us calculate:

al_,Wv - ava -

9 <_ig22 (a0 U()T> Y (_i; (a,0) U()T> _

.2 ( (aﬂaVU(*)) Ut 4 (E)VU(*)) (aﬂU(*)T) )

= *15 — (ava'uU(—)) U=t — (aﬂU(_)) (avU(_)%)

Since

9,0yU) = 9y0,U7)

then

AWy — W, = (4.63)

_ g22 (30 (2u07) - (2,00) (2,1,

And let us calculate:

W,UWV - va —

_ (igzz (aHUH) U()T) <ig22 (aVUH) U()T) -
_ <_igzz (avU(*)) U()T) <_igzz (ayU(*)> U()T)

4( (U U (U U )

2\ @u)yur @u ot
Since
UOU) — 1
then
d, (U(’)U(’)T) — 0, and 9y (UHU(*)“) —0,
Hence,

(a,,UH) U+ u9,u" =0, and (aVUH) Ut LU, ui =0
Hence,
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(auUH) Ut =y, U and (aVUH) Ut = _yOa, Ut

Therefore,
WIJWV_W\/WIJ:
4 _(aﬂU(—))U(—)*U(—)aVU(—)u_
- & + (aVU(*)) U(*)W‘U(*)a#U(*)T
4
I (=) (=)F (=) (=)F
=~ (- (0) () + (a) (a0))
since

v = 1.

Therefore, in accordance with (4.63):

’a‘uW\/ - a\/W‘u - 1% (W,UWV - WVW/J)‘

In accordance with (4.58) matrix W,W, — W, W, has the following columns:
the first and the second columns are the following:

21W] ,,UWZ,V - 21W27’uW] RY 02
02 02

2W()7VW1 ut ZiWO’VWZ,M — ZWO"UW1 v— 2iW0"uW27V 0,°
02 02

the third and the fourth columns are the following:

ZWO,,uWI,v — ZiWO’I_,W27V — ZWO’VW1 ut ZiWO,VWQ"L, 0,

02 02
_21W1 ,/JW2,V + 2iW2,‘uW1’V 02 ’
02 02

And matrix d,Wy — dyW,, has the following columns:
the first and the second ones are the following:

a‘uWQN - avwonu 02
02 02

a'uWLv + ia‘uWZN - avwl"u - iavwz,‘u 02 ’
02 02

the third and the fourth columns are the following:

a,uW1 v ia‘uW2,V - a\/WI N7, + iaVWZ,,_, 02

02 02
—a,,WON + aVW()”u 0, °
02 02

134

(4.64)



Therefore, in accordance with (4.64):
182 (2iW)  Way — 2iWa Wi y)
= 9 Woy—Wou,
i% (2Woy Wi o+ 2iWoy Wa o — 2Wo Wiy — 2iWp Wa )
= O,Wiy+id,Way — Wi, — i Wi,
152 (W Wiy — 2iWo Wy — 2Woy Wi o+ 2iWo y Wa )
= Wiy —idWoy —oyWi ,+idyWa 4,

i% (—2iW) Wy + 2iWs Wi )
= —a,uWO,v + aVWO,,U'
Hence,
oWWou = 9 Woy—g Wi Woy—WiyWa,), (4.65)
Wiy = 0 Wiy—g W Woy—WayWo,), (4.66)
oWWa, = 9 Way—g Wo, Wiy —WoyWiy). (4.67)

The derivative of (4.65) with respect to xy is of the following form:

ava\/VVO,y = ayavWO,v_

—g ( (aVWI,,u) W2,v + Wl,y (aVWZ,v) )
: - (avWI ,v) Wz,y -W RY (avWZ,,u) )

Let us substitute dyW; , and dyW, , for its expressions from (4.66) and (4.67):

avav"VO,/J = a,uaVWO,V_
(0uWiy — 82 Wa, Woy — WayWo ) Way
—& +Wi 4 (0 Way) — (Oy Wi v) Wa =
Wiy (0,Way — 82 (Wo Wiy —WoyWiy))

— aluavW(),v
(0uWiy) Way — g2 (W WoyWay — Wa yWo Way)
-2 +Wi 4 (W Way) — (Oy W1 v) Wa =

—Wiv0 Way + 82 (Wi yWo Wiy — WinWoy Wi )

= —g3 (Wi Wiy +Wa Way) Wo i+
+83 (Wi y Wi+ Wa,Wa ) Wo v
—g < (ayWI,v) W27v - Wl,vayWLv ) +
+Wl M (avW2,v) - (avwl ,v) WZ,,u
—i-a,,aVWON

Hence,

135



avavVVO7,u =
= —gZ (Wi Wiy +WayWay) Wo it
+83 (Wi yWi i+ Wa , Way) Wo y
(a,qu ,v) Wz,v - Wl ,va,uwz,v
—82 +
+W N7 (avWZ,v) - (avWI ,v) Wz,p
"'I_ayavw()’v.

Therefore:

avavVVO# =
= —g3 (WoWoy + Wi yWiy +Way,Wa ) Wo i+
+83Wo.yWoyWo
+85 (Wi yWi i+ Wa Wa v ) Wo y
(a,qu ,v) W2,v -W ,va,uWZ,v )
—&2 +
+W1 A (avWZ,v) - (avWI ,v) Wz,y
“I_a‘uavwo’v.

Thus,

avavaO,y =
= _g% (WO,VWON +WivWiy + WZ,vWLv) Wo ut
+85 (WoyWou + WiyWi o+ Wa ,Way) Woy
< (a,uW] ,V) WZ,V -W ,va,uWZ,V )
—&2 +
Wi (avW2,V) - (ale,V) Wau
+a‘ua\/WO7v.

(4.68)

Since

sz =WoWoy +WiyWiy +WoyWay

and

<Wv |Wu> = WoyWou+WiyWiu+Wo, Wayy = <V~Vv |V~Vu>
for
N Wou Wov

Wy=| Wi, | and W, = | Wiy
Wa Way

then

~ \2
avavVVO,,u = - (gZWv) WO7,u+
+63 (Wl W, ) Woy

_g2< (0uWiy) Way — Wi y0,Way )+
+Wi M (avW2,V) - (ale,V) WZ,#
+a‘ua\/WO7v.
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Hence,

N2
d0doWo = — <82W0> Wo,ut
+83 (Wo [W,,) Wo o
( (0uW1,0) Wa,0 — Wi 00, Wa 0 >
—&2 +
+W1 4 (doW2,0) — (doW1,0) Wa
+a,ua()W070.

Since 9y = %B, then

N2
Clﬁa;zWO,y =— (82W0> Wout
+3 <W0 \Wp> Wo.0
(0uW1,0) Wa,0 — Wi 00, Wa 0
—&2 +
+Wi 4 (doWay) — (doWi0) Wa
+ap80W0$0.

And for s € {1,2,3}:

~\2
asasVVO,,u = - (gZWs) WO,,u
+g% <Wv’Wp> WO.,s
< (a,qu,s) WZ,S - Wl,sa,uWZ,s )
—&2
+Wl W] (asWZ,s) - (asWI ,s) WZ,,u
+3,0,Wos.

Therefore,

_c%a?gv07u + 23:1 aEWOW =
- <82VT’0) Wo.+ 83 <VT’0 !Wy> Wo,0
- ( (0uW1,0) Wa0 — W1 09, W2 0 ) +
—82

+Wi 4 (doWa,0) — (doW1,0) Wa

+8,,80W0_,0

2

Z?:l - (gZVVS WO,/,l
+g2 <VT/S|VTIN Wo.s

+
-2 < (a,uWLs) W27s - Wl,sa,uWZs >
+W1 u (asW2,s) - (asz,s) WZ,,u
+a#asW075

Hence,
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- 0%212 Wou+ X3 1 95 Wou s
(gzwo) Wo,— Yo, (gzﬁ’x) Wo.u
+3 Yo <WsIWu> Wos — & <W0|Wp> Wo,0
( (0uW1,0) Wa,0 — Wi 00, Wa 0 >
te +Wi 4 (doWa0) — (doWi0) Wa
o 23 ( (a,uWI,s) W2,s - Wl,sa/JWZ,s )
+W1 Nl (asWZ,s) - (aswl,s) W2,,u
+0, Y21 dsWo.s — 0,00Wo 0 — -

Hence,

(— 3+ L0 82) Wou = g3 (W3 — Xy W2) Wot
+85 (Zf:l <Ws\Wy> Wo,s — <W0’W,u> Wo,o)
( (0uW1,0) Wa 0 — W 00, Wa g >
22 +Wi 4 (doWay0) — (doWi0) Wa
o 23 ( (a,uWI ,s) WZ,S -W 7sa,uVVZ.s )
- "’Wl,,u (asWZ,s) - (asWI,s) WZ,/J
+0u Y51 0sWo s — 9,00 Wo.o- (4.69)

2930

This equation looks like to the Klein-Gordon equation®! of field Wo,. with mass

h o, &
m= g [W5 =} W? (4.70)
s=1

and with additional terms of the Wy, interactions with others components of W. You can
receive similar equations for W ,, and for W ;.

If
Wo — *Wk ~ Wy — *Wo

/ / .

e e

29Walter Gordon (13 August 1893 — 24 December 1939) was a German theoretical physicist.
300skar Benjamin Klein ( 15 September 1894 — 5 February 1977) was a Swedish theoretical physicist.
31

(4.36)

W, =W, if s £k

then

(_Czat + ;as> = h2 ¢
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N O N S O =
_ W3+ (1) W2 —W2— (2)°Wg T
R - () L"
(@))% o,

Hence,
17/2 : (/2 72 : 72
/ 7
Wor = Y W2 =wg— Y W/
s=1 s=1

Therefore, such “mass” (4.70) is invariant for the Lorentz transformations:
You can calculate that it is invariant for the transformations of turns, too:

W/ = W,cos\ — WjsinA.
W/ =W, sinA+ W;cosA;

with a real number A, and r € {1,2,3}, s € {1,2,3}.

That is the form
h O R
m= g, [Wg— Y w2
s=1
1S a mass.

A mass of the W-boson was measured, between 1996 and 2000 at LEP32 [?].
Let??

oL := arctan %’
Z, = (Woucoso— Bysinav), (4.71)
Ay = (Bycoso+ Wy, sinar).

In that case:

ZV gv7vgvavw()’p = COSO- ZV gv’vavavz# + SanL . ZV gv’vava\;A‘u.
If

ngyavavA,u =0

v

32The Large Electron-Positron Collider (LEP) is largest particles accelerator (ring with a circumference of
27 kilometers built in a tunnel under the border of Switzerland and France.)
Bhere o is the Weinberg Angle. The experimental value of sin® oL = 0.23124 4 0.00024 [?].

139



then
nmy

myz =
(o1 Y04

with myy from (4.70). It is like Standard Model.
The equation of moving (4.60) under F,, = 0 has the following form:

Yo _oBHi (9, —i0.581BY —i5gaW,) \ ~
( 05 + B, o0 @
Hence, in accordance with (4.58) and (4.20):

2,31:0 BMiX
3, —i0.5g1B, <_ [ (1)2 29212 D -
W()le 0, (Wl,,u — inw) 1, 0O
X i1 02 02 02 02
1282 Wiy +iWay,) 12 02 —Woul2 02
02 02 02 02
+v%i95 + B4io,
90 =0.

In accordance with (4.71) [?]:

81 82
o _Z”/z 2+A”/2 2 ]’

g1 +t& g1+
Wo, = Z, 82 +A, 81

Veit+es /et

Let (e is the elementary charge®*: e = 1.60217733 x 10717 C).

_ 818
and let

(&+g1)l 0 0, 0,

A 02 2¢712 0, 0,

g @ e @ oo |
2 0> 02 0, 2831,
02 0, (WLN — iWZvH) 1, 0,
wm s Wiy +iWa,) 12 02 0, 0, ’

02 02 0, 0y-1o

34Sir Joseph John ”J. J.” Thomson, (18 December 1856 — 30 August 1940) was a British physicist. He is
credited for the discovery of the electron and of isotopes, and the invention of the mass spectrometer.
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~ 0 1o 02 0
A=Al 0, 0, 1o 0
0 0 0 1y

In that case from (4.72):

(zf;:() Bl (a,, +ieA, —i0.5 (2,1 + W,,)) +99%i05 + Bl 184) $=0.

4.73)
Let
gv
o= 02
(Pe,L
(Pe,R
In that case
. ~ . (pe7 . = s ~
Yoo Bl <8y(p—|—1A#e [ (Pe,zLe ] —i0.5 (Zy +Wy) (p> _o.
+ (v%0s + B¥io,) ¢ 4.74)

Here the vector field A, is the electromagnetic potential 33 And (Z, + W#) is the weak
interaction potential Evidently neutrinos do not involve in the electromagnetic interactions.

4.14. Neutrinno

Wolfgang Pauli postulated the neutrino in 1930 to explain the energy spectrum
of beta decays, the decay of a neutron into a proton and an electron. Clyde

Cowan, Frederick Reines found the neutrino experimentally in 1955. Enrico |l e i o)
the progress of knowledge.

Fermi®® developed the first theory describing neutrino interactions and denoted [ i
than knowledge”

this particles as neutrino in 1933. In 1962 Leon M. Lederman, Melvin Schwartz
and Jack Steinberger showed that more than one type of neutrino exists. Bruno
Pontecorvo’” suggested a practical method for investigating neutrino masses in -
1957, over the subsequent 10 years he developed the mathematical formalism [ i
and the modern formulation of vacuum oscillations...

Let:

35 James Clerk Maxwell of Glenlair (13 June 1831 — 5 November 1879) was a Scottish physicist and math-
ematician. His most prominent achievement was formulating classical electromagnetic theory.

30Enrico Fermi (29 September 1901 — 28 November 1954) was an Italian-born, naturalized American physi-
cist particularly known for his work on the development of the first nuclear reactor, Chicago Pile-1, and for his
contributions to the development of quantum theory, nuclear and particle physics, and statistical mechanics.

3TBruno Pontecorvo (Marina di Pisa, Italy, August 22, 1913 — Dubna, Russia, September 24, 1993) was an
Italian-born atomic physicist, an early assistant of Enrico Fermi and then the author of numerous studies in
high energy physics, especially on neutrinos.
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6(1‘,)(,)65,)64) =
= eXp (—ihSOX4) Zﬁ:l ¢4J (t> X, 07 SO) &
+exp (—ihn0x5) Zle ¢5,r (Z, X, ngp, 0) g,

and
I:\I074 Déf‘ Z?:l B[r]lar + h (l’lo'Y[O] -+ 305[4]) .
[ 0
0
0
u; (k,n) et 1 0
o 2 /o (k,n) (o(k,n)+n) | OKn)+ntks
ki 41k
(O] (k, l’l) +n— k3
—ky — ik
and
[ 0
0
0
Def 1 0
u k,n = .
. ( ) 2\/(’0 (k7n) ((0 (k, f’l) +I’L) kl —1k2
® (k7 n) +n—k3
—k +1ky
| o(k,n)+n+k; |

correspond to eigenvectors of 1?1074 with eigenvalue

o (k,n) = VK2 +n?

and 8-vectors

[ 0
0
0
Def 1 0
uy (k,n) =
s (k. ) 2/ (k,n) (o (k,n)+n) —m(lliy”l;cn—i-lﬂ
1 +1k2
o(k,n)+n+k;
ki +iky

and
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Def

1

Uy (kvn) -

2/ (k,n) (o (k,n)+n)

_ 0 ;
0
0
0
ki —1ika
—o(k,n)—n—k;
ki —iky
| o(k,n)+n—k3

correspond to eigenvectors of flo74 with eigenvalue — (k,n).

Let
Def
i, (k,n) = U
That is
uy (k,n) = !
ST o kon) (o(kn) +n)
uh (k,n) = !
2T /o kon) (o(k,n) +n)
u (k) = :

2/ (k,n) (o (k,n)+n)

143

?1674 = UG Hy U,
(*)gy (k,n).

 (c+ig) (0(k,m) +n+ks) T
(c+ig) (ki +ik2)
0
0
(a—ib) (0 (k,n) +n+k3)
(a—ib) (ki +ik>)
OJ(k,n) +n—k;
—ky —iko

(c+iq) (ki —ika) ]
(c+ig) (@(k.n) +n—k)
0
0
(a — ib) (k] - ikz)
(a—ib) (o (k,n) +n—k3)
—ki + ik

[ —(c+ig) (@(kn)+n—ks) ]

o(k,n)+n+k3

(c+iq) (ki +ik2)
0
0
—(a—ib) (o (k,n) +n—k3)
(a—ib) (ki +iks)

o(k,n)+n+k;
ki +ik




(c+iq) (k1 —ikz)
—(c+iq) (o(k,n) +n+k3)
0
1 0

2/o(k,n) (o (k1) +n) (a —ib) (ki —ikz)
—(a—1ib) (0 (k,n) +n+ks)
ki — ik
o (k,n)+n—ks

ﬂit (k,n) =

Here u| (k,n) and i} (k,n) correspond to eigenvectors of I-AI(')7 4 with eigenvalue © (k,n) =
Vk?+n?, and i} (k,n) and i (k,n) correspond to eigenvectors of I-AI(’L4 with eigenvalue
—o(k,n).

Let asin (2?):

vy (eom) ™ s ().
Y2) (k,l’l) Déf ﬂﬂg (k7 I’l) >
De
uy) (k,n) = (k).
De
oy (&) "y (k).
Hence
_ 0 B
0
—(c+iq) (o (k,n) +n—k3)
vy (kn) = 1 (c+ig) (k1 +ik2)
ST 2 o (k,n) (0 (k) + ) o (k,n)+n+ks
ki + 1k
—(a—1ib) (0 (k,n) +n—k3)
(a—ib) (ky +iky) |
and
_ 0 -
0
(c+ig) (ki —ik2)
B 2o (kn) (@(k.n) + ) ki —iky
w (k, I’l) +n—ks
(a—ib) (ky — ik»)
| (a—ib) (@ (k) + k)

g’(a) (k,n) are denoted as bi-n-leptonn and v g, (k,n) is are denoted as bi-anti-n-leptonn
basic vectors with momentum k and spin index o.
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Hence bi-anti-n-leptonn basic vectors are a result of acting of U(*) (4.47).
Vectors

[ (a—ib) (o(k,n)+n+k3) |
(a—1b) (ki +iks)
by (ko) - = o (k,n) +n—ks and
—ky —iky
(a—ib) (ki — ik»)
(a—ib) (@ (k,n) +1 — ks)
—k1 +iky
o (k,n) +n+ks

o) (kyn) =

are denoted as leptonn components of bi-n-leptonn basic vectors, and vectors

m(k,n)—l—n—f—/g ki —iky
vty = | TR gy, o e = | 000 ks
0 0

are denoted as neutrinno components of bi-n-leptonn basic vectors.
Vectors

w(k,n)+n+k3

_ B ki +iko
L1y (k1) = —(a—ib) (o (k,n) +n—k3)
(a—ib) (ks +iks)
and
i ky —ikp ]
- B OJ(k,n) +n—ks
o) (ko) = (a—ib) (ki — iky)

| —(a—1ib) (o (k,n)+n+k3) |
are denoted as leptonn components of anti-bi-n-leptonn basic vectors, and vectors

0
0
— (0(k,n)+n—ks)
ki + ik

and

0

_ 0
Va,(2) (k,l’l) = ky —iky

| —(o(k,n)+n+k3) |
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are denoted as neutrinno components of anti-bi-n-leptonn basic vectors.

Vectors
@ (k,n) +n+ks ki — ik,
Vi (k,) = ki —(F)ikz and v,, ) (k,n) = w(k,n)(;i—n —k3
0 0
—(n+o(kn) —k) (ki — ik2)
Vi (3) (k1) = . T)ﬂq) V()= | ot w%(7n) )

0 0

are denoted as neutrinno components of bi-n-leptonn basic vectors. These vectors form
a linear space of functions of the type

01
R )

0

Because

p = ) 90, (4.75)
s=1

; 4 4

%==— Y 9B o
k=1s=1

then

= 0'o=010] + 003
= —0"Blo=— (0193 +9:07),

= "B =—i(¢:i9; — 9:0]),

oI5 olyols o

= —0"BYlo==—(¢:1¢] — 0:03).

Because velocities:

Ji_ (@195 +029])

uy =
P 197 + 203
wy = 2 09— 9:9)
p 197 + 203
y — J3 _ —c(@19] — 9293)

p Q107 + 9205
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then

u%+u%+u%:c2.

Hence, the neutrimo velocity eqaual to the light velocity.

Because the neutrino mass:

m=¢q' (B[‘”no +v[°]so) ¢,

and
¢'Bo=0 and ¢"ylp=0.
thenm =0.
Hence, a neutrino has ZERO mass.
Because the electromagnetic potencial:
0 0 0 0O O O 07
000 90 000
001 0O0O0OO0DO
~ 0001 O0O0O0DO0
A=A 00 0 O0OT1TTUO0OTO0ODO
00 0O0O0OT1TUO0OFPO0
000 O0O0O0OT1TOPO0
L O 0 0 0 0 0 0 1|
then :
A\E,l (k>n) = Ay (k,}’l) >
AE,Z (kv n) = Au, (ka n) >
Eg (k,n) = Aﬂ3 (ka n) )
uy (k,n) = Auy(k,n).

Hence, the neutrino does not interact with the electomagnetic field.

Linear space of vectors v, () (k,n) can be representated as linear space of vectors
Vou,(s) (K,m). Therefore, neitrinos of lepton with mass n oscillirues on neutrinos of lepton
with mass m.

Therefore,

A netrino is derivative from a lepton under some unitar transformation.

the neutrino does not interact with the electomagnetic field,

a neutrino has ZERO mass,

the neutrimo velocity eqaual to the light velocity,

neitrinos of lepton with mass 7 oscillirues on neutrinos of lepton with mass m.
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4.15. Quarks and Gluons

The quark model was independently
proposed by physicists Murray Gell-
Mann?®® and George Zweig> in 1964.

The first direct experimental evi-
dence of gluons was found in 1979
when three-jet events were observed
at t he electron-positron collider PE-
TRA. However, just before PETRA%
appeared on the scene, the PLUTO
experiment at DORIS*!' showed event
topologies suggestive of a three-gluon
decay.

The following part of (4.14):

3

George Zweig

-

Bt o kgl srg i) il Gesrge_faelg bg

Y B (—idk + O + i) —

k=0

—M Q,OY[CO] + Mg L+

_Mn,OYI[’?] _Mn74n[4] +
+Me,ng)] + My 4014

is called the chromatic equation of mov
Here (2.111), (2.113), (2.115):

0 0 0
o_ {001
“="101 0
1 0 0
are mass elements of red pentad;
0O 0 O
o | 0 0 —i
=10 i o
-1 0 0

ing.

S O O =

=

S O O -

¢=0. (4.76)
0 0 0 i
0 0 i 0
0 —i 00
i 0 0 0
0 0 0 1
0 0 —-10
0 -1 0 0
1 0 0 0

3¥Murray Gell-Mann (born September 15, 1929) is an American physicist and linguist

39George Zweig (born on May 30, 1937 in Moscow, Russia into a Jewish family) was originally trained as a
particle physicist under Richard Feynman and later turned his attention to neurobiology. He spent a number of
years as a Research Scientist at Los Alamos National Laboratory and MIT, but as of 2004, has gone on to work

in the financial services industry.

4OPETRA (or the Positron-Electron Tandem Ring Accelerator) is one of the particle accelerators at DESY in

Hamburg, Germany.

4IDORIS (Doppel-Ring-Speicher, "double-ring storage”), built between 1969 and 1974, was DESY’s second
circular accelerator and its first storage ring with a circumference of nearly 300 m.
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are mass elements of green pentad;

0O 0 -1 0 0 0 -1 0

[0 O 0 0 1 04l 0O 0 0 1

=1 _10 0 0"’Y Tl =0 0 0

O 1 0 O 0O i 0 O

are mass elements of blue
I call:

* Mgy, Mgy red lower
and upper mass mem-
bers;

* Myo, My4 green lower
and upper mass mem-
bers;

* Moo, Mpy4 blue lower
and upper mass mem-
bers.

The mass members of this equation form the following matrix sum:
0
— Mgty + M -
~ o
M:= *Mn,OY%] —Mpm¥ 4| =

+Me,07g)} + Mg 4014

pentad.

0 0 —Moo Mino 0 0 Mo 4 MZJL“

_ 0 0 M., Moo i 0 0 Mgna —Meos
_MG,O Mc’n./o 0 0 _Me,4 _MZ-,T]A 0 0
Mo Moo 0 0 ~Mina Mo 0 0

with MZ;.n,O = MC,O — iMn,() and MQTIA = MC74 — iMn74.
Elements of these matrices can be turned by formula of shape:

cos g ising Z X—1Y cos g —isin%
isin % cosS % X +iY —7Z —1 sin% cos g B
ZcosO—Ysin® X—1 YCO.SO
_ +Zsin®

X+i< Y cos® ) —ZcosO+YsinB

+Zsin0
Hence, if:
cosQL 1sino 0 0
isinot  coso 0 0
U273 (OC) = ..
0 0 coso.  1sinQ
0 0 isin® coso
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and 0
_M/C,OYC +M&4C[4]_

0= | M)yl | = Ul (0t (@)
+M Yy +Mp 01
then
My o =Mz,
M,'LO = My ocos20+ Mg osin2a,

My o = Mg ocos 20, — My g sin 20,
M/C,4 - M§,4 )

My, 4 = M ac0s200+ Mo 4 5in 20,
My 4 = Mo 4c08 20— My 4sin201.

Therefore, matrix U, 3 (o) makes an oscillation between green and blue chromatics.
Let us consider equation (4.14) under transformation U, 3 () where o is an arbitrary
real function of time-space variables (a0 = o (7,x1,x7,x3)):

1 : :
U2T73 (OC) <C d; +10¢ + IY()'Y[S]> U ((X,) O©=

3
Y. BM (y +i®y +iYyy)) +
1

=Uj5(0) | 2 Usz (@) Q.

+iMoYO +iM4BH + M

Because
Uy (0) Upz (@) = Lu,
Uj 3 (0) Y903 (o) =47,

Uz 5 (0) Y0053 (o) =y,
UZ 5 (o) B0 5 (o) = B4,

U;,a () Bl = B[I]U;a (o),

U;3 (o) B! = (B cos 20+ BBl sin20) U5 5 (00)
UZT,3 (o) BB = ([3[3] cos20,— & sin20t) UzT,s (),
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then

1 3 1 . .
(C 0+ U;,s (o) c 0,Uz3 (0) +10g + 1Yoy[5]> o=

Bl (31 + U2T73 ) 01Uz 3 () + 10 +iY1Y[SD +

(
(
+Uj 5 (00) €os 20092 — sin20t-93 Un 3 ()
+1(®;cos200 — O3 sin2a)
+i (Yzy[s] cos20.— Y3y sin 20c)
- (cos2o- 03 +sin20- 05) ?-
Lp| Tt Us 5 (a)' ¢os2q -3+ sin2a-9) Up 3 (o)
+1(®2sin20 + O3 cos2)
+1i (Y3'y[5] cos 20+ YoP) sin 20L)

cos20.-dy — sin20.- 93)

+[3[2]

4.77)

+ MY+ iM B + M

Let x5 and x; be elements of other coordinate system such that 2.118:
d, : =(cos2a-0d, —sin2a-03), (4.78)
d5 : = (cos2a-d3+sin2a-9;).

Therefore, from (4.77):
1 T 1 . .
(C o + U2[,3 (o) < ;U3 () +10g + 1Yoy[5]> Q=
Bl (a1 +US 5 (@) 91Uz3 (a0) +i0) + iYw[51)
+ B (8/2 + U2T,3 (@) Ua 5 () +i05 + iY’ZyW)

+ B (9% + Uf (o) 95U (1) +i0% + 05
+iMoYO +iMy B+ M

with
@), := 0, cos20.— O3 sin 20,

@) := 0, sin20+ O3 cos2a,
Y, :=TY,cos200— Y3sin2a,
Y% :=TY3cos20.+ Y sin2a.

Therefore, the oscillation between blue and green chromatics curves the space in the x,,
x3 directions.
Similarly, matrix

cos¥ sind 0 0

—sind cosY 0 0
Ui (9):= 0 0 cosd sind
0 0 —sind  cos?Y
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with an arbitrary real function ¥ (7,x,x;,x3) describes the oscillation between blue and red
chromatics which curves the space in the x|, x3 directions. And matrix

el 0 0 0

0 & 0 0
Ual@:=1 o o o= o
0 0 0 et

with an arbitrary real function ¢(z,x;,x2,x3) describes the oscillation between green and red
chromatics which curves the space in the x1, x, directions.

Now, let
coshe —sinho 0 0
—sinhc  cosho 0 0
Uo.1 () := 0 0 coshc sinho
0 0 sinhc cosho
and 0
—Mé’ng +M; 4C4]_
= _M// ,Y[O] M// = UJ}I (6) MUy, (o)
+Mé',oY[e] +Me,49[ }
then:
M/(:/,O = MC./O )
My o = (Myocosh26 — Mo 4sinh2G)

Mg o = Mg ocosh26 + My 4sinh 20,
MY, =Mgg,

My 4 = My 4cosh26 + Mg g sinh 26,
MgA = Mg 4cosh26 — My osinh2G.

Therefore, matrix Uy, () makes an oscillation between green and blue chromatics with

an oscillation between upper and lower mass members.
Let us consider equation (4.14) under transformation U () where © is an arbitrary

real function of time-space variables (¢ = G (¢,x1,x2,x3)):
1 . .
U&1 (o) (C 0, +i®y + 1Yoy[5}> Uo,1 (0) @ =

3
Y. BM (0y +i®y + iYVy[S]) +
1
+iMoy® +iMy B

— U(L (o) | = Uo,1 (0)9.
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Since:

then

_ 13[1]

— B @2 +Uy (6) (9200, (0)) +i0; + iTzY[SD

— BBl @3 +Us (0) (03001 (0)) + i@ + iY3Y[SD

U, (6)Us,i (o) = (coshzcs — B sinh 20) ,
Ugl (o (cosh20 -+ Bl sinh20> U*1 (o),

o Bl] — (B[l]cosh26—smh26) U01 ( )

)=

51(0)

Uy, (0)BP = pU; | (o),

OFRE S Uil (o),

(o)
)

J
Ug, (0)¥"Uo,1 (o) =77,
Us.1 (o) B00.1 (o) = B,
Uy f(G)Uol( c) = ly4,

Upt (0)¥ 00,1 (0) =™,
Ug, (0)¥ Uy (0) =y (COSh20' o sinhZG) ,

Uy (0) fosh2c - 10, +sinh26-9) Uy 1 (o)

+ (cosh26- 19, +sinh26-9,)
+1(0®cosh26 + O sinh20)
+i(Yocosh26 +sinh26 - Y1)y —
U&ll (6) fosh26 -9 +sinh26- 19) Uy ; (o)

+ (cosh26- 9 +sinh26- 19;)
+1(®; cosh26 + @ sinh 26)
+i (Y cosh26 + Yy sinh2c) y?!

Moy — M, B — A7
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Let 1" and x| be elements of other coordinate system such that:

axl

—- =cosh2c

ox}

ot 1

= = —sinh20

ox; ¢

oxy .

5 = csinh20 . (4.80)
t

5 = cosh2c

dx Ox3 dxy  Ox3 _o

o' o ax’l N ax’l N

Hence:

’-_i_iﬁ_ki%_i_i@_’_i%_

U0 otor  Ox; o Oxp off  Oxz ot
0 .

—cosh20-§—|—cs1nh26-a—xl—

= cosh26 -9, +csinh26- 9y,

that is | |
—d, = — cosh26 -0, +sinh20 -9,
c c

and

)
. 9 _
d| = 3
da dam 9du 9 au_
ot ox)  Ox;ox]  Oxpdx] 0x30x] N
0 _ 10
=cosh26- — +sinh26- — — =
8x1 c ot
= cosh26-9; +sinh2c- %at.
Therefore, from (4.79):
BO (L1914 Ug (o) 10jUs.1 (0) + 1@} + iy
+BY (3] + Uy ! (0)3Us, (0) + 0] + X}y

4B (34 Uy (0) L1 (0) + 0, +iT2y

~_ — N
RS
|
(aw]

+BB <a3 +Uy (6)93U0,1 (0) + i@3 + ix3y°)

+ iMooy + iM, B + M7
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with
Q) := O cosh26 + O sinh20,

0] := ®; cosh20 + Oy sinh 20,
Y{ :=Yocosh26 +sinh26- Y,
Y := 7Y cosh26+ Yysinh2c.

Therefore, the oscillation between blue and green chromatics with the oscillation be-
tween upper and lower mass members curves the space in the ¢, x; directions.
Similarly, matrix

cosh¢  isinho 0 0

| —isinh¢ coshe 0 0
Uop () == 0 0 cosh¢ —isinh¢
0 0 isinh¢  cosh¢

with an arbitrary real function ¢ (¢,x1,x2,x3) describes the oscillation between blue and red
chromatics with the oscillation between upper and lower mass members curves the space in
the 7, x, directions. And matrix

¢ 0 0 0

0 et 0 0

GsW:i=1 9 o ot o
0 0 ¢

with an arbitrary real function 1 (z,x;,x2,x3) describes the oscillation between green and red
chromatics with the oscillation between upper and lower mass members curves the space in
the 7, x3 directions.

Now let
ex 0 0 0
~ 0 X 0 0
U (X) . 0 0 eZiX 0
0 O 0 &%
and
_ M/C,OY[CO] + Mé74C[4] _
M= | Mg~ My | =0 () MU (1)
0
+M6,0YL] +M6,49[4]
then:
Mé’o = (MQO cosy — M4 sinx) ,
My, = (M 4cos + M gsiny)
My, = (Myacosy —Mygosiny),
Mﬂ,o = (Myocosy +Myg4siny),

(
(

M(,ap = (Mpgcosy+Mpg4siny),
( )

Mgy = (Mgacosy —Mggsiny).
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Therefore, matrix U (x) makes an oscillation between upper and lower mass members.
Let us consider equation (4.76) under transformation U () where 7 is an arbitrary real
function of time-space variables () = x (¢,x1,x2,x3)):

. 1 ~
U'(x) (C at+i®o+iYov[5]) U(p)e=
~ 3 o~ ~
=U"(x) <): Bl (av +i®, +mvm) +M> Ux)e.
v=1

Because

then

1 1~ ~
(302000 (60 ) +i00+ Tr ) o=

> v 7 7 @0+ Tl
_ ( VEIB (av‘|‘UT (X~),(BVUA(§)) + 10y + Yv75> ) 0.
+U" (x) MU (%)

Now let:
0
eK
0 eZK
0

and o
_ M&,oYz[g +My G-
W= | My o =y | =07 () MO ()
0
+M6,07£>] +1‘/16749[4]
then:

M(la,o = (Mpg,ocoshk —iMg 4 sinhk

’

( )
Mgy, = (Mpacoshk+iMgsinhk),

)

My o = (Myocoshi —iMy4sinhi),
M), = (Myacoshi+iMy gsinhk),

n,
M& 0= (MQO coshk +iM¢ 4sinh K) ,
My, = (Mggcoshk —iMygsinh).
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Therefore, matrix U (x) makes an oscillation between upper and lower mass members,
too.

Let us consider equation (4.76) under transformation U (x) where X is an arbitrary real
function of time-space variables (k = (7, x1,x2,x3)):

U~ (x) (i d; +i09 +iYoy[5]> U(x)o=

v=1

— 0 (x) (i Bl (av +i0, +my[51) n M) 0 ().

Because
WU () = U (x)y7,
01 () Bl = BT (x)
U~ (x) B = BEIT (x),
U~ () B =BRIT! (x),
U (x)U (x) = 14,
then

3

(iaf +U! (1) (iatﬁ (K)> +10 +iTo'Y[5]> Q=
X B (3 -+ 0 () (0 (1)) + i@y + 0 ) +
1

— | v= (p.
+U ' (x) MU (x)
If denote:
0 -1 0 0
-1 0 00
A=106 0 01|
0 0 1 0
0 i 00
i 000
M=149001il|
00 i O
0 1 0 0
10 0 0
A=106 0 0 1|
0 0 —1 0
0 i 0 0
- 0 0 0
M=1 10 00 il
0 0 i O
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A5 =

c oo
co = o
1l o
=N

| o
—
oo

© o - o OO~ O o O
N O OO

then

o)

L
\a)
—

&
Q -
7
—_ = -
Il
>
Q
&
~

Let U be the following set:
U:= {Uo,l,U273,U1,3,Uo,27U1,z,Uo,37ﬁ,ﬁ}-

Because

Us3 (00) AjUs 3 (0) = A
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U~ (1) AU (3) = A
U1 () AU () = Ay
Uz (1) AUp3 (1) = Agcosh 21— Aysinh 2t
Ule (6) A2U1 2 (G) = Aacos2¢— Azsin2g
Us (0) AaUo2 (0) = Agcosh20 + Ag sinh 20
Uf31 (0) AU; 3 (0) = Az cos 29+ Assin 20
Ust (0) Al (0) = Ay
Uyt (0) AsUp,1 () = Azcosh26 — Agsinh 26
Uy (@) AsUs 3 (o) = Az cos 20— As sin 2t

1

Uys (1) A3Up3 (1) = Azcosh2t+ Ajsinh2t
U1 (x) AsU (¥) = As
U~ () AsU (x) = As
U~ (x) AU (1) = Ma
U~ (k) AU (K) = Ay
U (1) AgUp3 (1) = Aycosh2u— Agsinh 2t
Uy, (6) AalU12(g) = Ascos2G+ A, sin2g
U3 (8) AsUi3(0) = A4

; (

(
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U~ (k) AsU (x) = Ag

then for every product U of U’s elements real functions G’ (t,x1,x2,x3) exist such that
) =5 ZA el

with some real constant g3 (similar to 8 gluons).
The chrome states equations of moving are the following [21, p.86], (4.74):

(802, + (28405

+z# o Bl ( sA +05<z —|—W>
Lo (- a, (y[o]a”—n[4lap
(-

—sAy+05(Z,+W,)

)
& =0 4.81)
3
& = 0,
)
Lo (—9["}) 9u-+ (1508 +61a¢)
+X0 Bl (—SKN—FO.S (Z,-H)Avﬂ»
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here:

( [ di } is a lower chrome state, and {
dp UR

s is an electric charge, and [21, p.145]

0 0 02 02
~ 0 1, 02 O
A=Ay 0 0 12 0Oy
0, 0 0 1
Hence,
%
0 02 02 0O dr 0,
B 0, 1, 0, 0, dr | _ dg
sAE = sAL 0 0 1o 0 u = sA, u
0 02 02 1y UgR Ug
— 0
.

Sum of the equations (4.81) is the following:

i (~ (8 +n+64)) 0+

+| —Wa —nlar

[0]

+0.5-353_ Bl (Z,+W,
+yy 00 + 81419 H0 ( 8 ”)

Because Bl = — (¢ 4k + G[k]) rhen

Y00+

| —w'al —nal

u .
L ] is a upper chrome state);

VOIS 4 rl41gd R
Y 05 +LTo: +< ¥ B (~35) 4, ) £,

_NOIRE 4 rl41gt R
Ve 05 +{ Y0z +( T3 0Bk (=354, ) £—0.

+0.5-353_ Bl (Z,+W,
Lo ()

Hence, from (4.73):



that is:

1 g, 1
S§=———— = ——¢

3+

(e is a lepton electric charge).

Because
_)
0>
—~ 1 d
SA,ug = —geA’u uIZ
Up
u 0
then a charge of [ uL ] is —%e and a module of charge of [ J 2 } is %e.
R R

4.16. Asymptotic Freedom, Confinement, Gravitation

The Quarks Asymptotic Freedom phenomenon and the Quarks Confinement phenomenon
has been was discovered by J. Friedman*?, H. Kendall**, R. Taylor** at SLAC in the late
1960s and early 1970s.

Researches of the phenomenon of gravitation were spent by Galileo Galilei*’ in the late
16th and early 17th centuries, by Isaac Newton*® in 17th centuries, by A. Einstein*’ in 20th
centuries.

From (4.80):
ot
e cosh20, (4.82)
0
a% — csinh2o.

Hence, if v is the velocity of a coordinate system {7',x'} in the coordinate system {7, x}
then

sinh2c =

Therefore,

42Jerome Isaac Friedman (born March 28, 1930) is an American physicist.

43Henry Way Kendall (December 9, 1926 — February 15, 1999) was an American particle physicist

4Richard Edward Taylor (born November 2, 1929 in Medicine Hat, Alberta) is a Canadian-American pro-
fessor (Emeritus) at Stanford University.

#Galileo Galilei ( 15 February 1564[4] — 8 January 1642), was an Italian physicist, mathematician, as-
tronomer, and philosopher

46Sir Isaac Newton PRS (25 December 1642 — 20 March 1727 was an English physicist, mathematician,
astronomer, natural philosopher, alchemist, and theologian

47 Albert Einstein ( 14 March 1879 — 18 April 1955) was a German-born theoretical physicist
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v = ctanh20. (4.83)

Let ;
20:=® -
OF

with A
(D()C) = T

x|

where A is a real constant with positive numerical value.
In that case

Aot
v(t,x) = ctanh <> . (4.84)
e [
and if g is an acceleration of system {',x] } as respects to system {z,x; } then
v cm (x)

a (cost? o (x) 5 ) Ix|

]

g(tvxl):

T T 1
150 200 250
X

T T T
-250 -200 -150

Figure 10: the dependency of a system {',x] } velocity v (z,x;) on x; in system {z,x; }.

This velocity in point A is not equal to one in point

B. Hence, an oscillator, placed in B, has a nonzero ve-

[SAAC locity in respect to an observer, placed in point A. There-

N,EWTON fore, from the Lorentz transformations, this oscillator

frequency for observer, placed in point A, is less than
own frequency of this oscillator (red shift).

If an object immovable in system {z,x; } is placed in

point K then in system {¢/,x} } this object must move to

the left with acceleration g and g ~ %

I call:
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Figure 11: a dependency of a system {¢’,x| } acceleration g (z,x;) on x; in system {z,x; }.

* interval from C’ to o the Newton Gravity

Zone,

* interval from B’ to C’ the the Confine-
ment Force Zone.

* and interval from A to A’ the Asymptotic

Freedom Zone,

4.16.1. Dark Energy

In 1998 observations of Type la supernovae suggested
that the expansion of the universe is accelerating [25].
In the past few years, these observations have been cor-
roborated by several independent sources [26]. This ex-
pansion is defined by the Hubble*® rule [27]:

V(r)=Hr, (4.85)

here V (r) is the velocity of expansion on the dis-
tance r, H is the Hubble’s constant (H ~ 2.3 x 10~ 18¢~!
[28D).

Let a black hole be placed in a point O. Then a
tremendous number of quarks oscillate in this point.
These oscillations bend time-space and if ¢ has some
fixed volume, x > 0, and A := Ar then

v(x) = ctanh <;\2> .

“BEdwin Powell Hubble (November 20, 1889 September 28, 1953)[1] was an American astronomer
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Figure 12: Dependence of v (light year/c) on x (light year) with A = 741.907

A dependency of v(x) (light years/c) from x (light years) with A = 741.907 is shown in
Figure 12.

Let a placed in a point A observer be stationary in the coordinate system {z,x}. Hence,
in the coordinate system {#’,x’} this observer is flying to the left to the point O with velocity
—v(x4). And point X is flying to the left to the point O with velocity —v (x).

Consequently, the observer A sees that the point X flies away from him to the right with
velocity

A A
V4 (x) = ctanh (xf‘ — x2> (4.87)

in accordance with the relativistic rule of addition of velocities.
Let r :=x —x4 (i.e. ris distance from A to X)), and

V4 (r) :=ctanh (12 - A) . (4.88)

Xy (XA + I”)z

In that case Figure 13 demonstrates the dependence of V4 (r) on r with x4 = 25 x 10°

Ly.
Hence, X runs from A with almost constant acceleration:
V,
ar) _ gy, (4.89)
,

Figure 14 demonstrates the dependence of H on r. (the Hubble constant.).
Therefore, the phenomenon of the accelerated expansion of Universe is explained by
oscillations of chromatic states.
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4.16.2. Dark Matter

300} -
v 200t
(km/s)
100
| | |
20 40 60

Radius (Million ly)

Figure 15: A rotation curve for a typical spiral galaxy. The solid line shows actual mea-
surements (Hawley and Holcomb., 1998, p. 390) [30]

”In 1933, the astronomer Fritz
Zwicky*® was studying the motions of
distant galaxies. Zwicky estimated the
total mass of a group of galaxies by
measuring their brightness. When he
used a different method to compute the
mass of the same cluster of galaxies, he
came up with a number that was 400
times his original estimate. This dis-
crepancy in the observed and computed
masses is now known as “the missing
mass problem.” Nobody did much with
Zwicky’s finding until the 1970’s, when

P,

L %

1/

FRITZ ZWICKY

scientists began to realize that only large amounts of hidden mass could explain many of
their observations. Scientists also realize that the existence of some unseen mass would
also support theories regarding the structure of the universe. Today, scientists are searching
for the mysterious dark matter not only to explain the gravitational motions of galaxies, but
also to validate current theories about the origin and the fate of the universe” [29] (15 [30],

16 [31])).
Some oscillations of chromatic states bend space-time as follows (2.118):
0 0 0
P, = cos2u- P sin20. - a—y (4.90)
0 0 . 0
a—yl = cos2oc~$+s1n20c-a.

“OFritz Zwicky (February 14, 1898 — February 8, 1974) was a Swiss astronomer.
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Figure 16: Rotation curve of NGC 6503. The dotted, dashed and dash-dotted lines are the
contributions of gas, disk and dark matter, respectively.
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Figure 17: For t = 10000, 6 = 131/14:
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Figure 18: For t = 10000, 8 = 0.98:

Let

z 1 =x+iyz=red.

/

7 0 =X+

Because linear velocity of the curved coordinate system (x’,y’) into the initial system
{x,y) is the following>:

then in thic case:

V=

Let function 7' be a holomorphic function. Hence, in accordance with the Cauchy-
Riemann conditions the following equations are fulfilled:

o 0y
ox 0y’
o 9y
dy  ox

°
L@

50,/

3
k\
v

‘\<\

=

i
o

i

169



Therefore, in accordance with (4.90):

dZ/ — e—i(z(l)dz

where 2 is an holomorphic function, too. For example, let

200 :=

In this case:

() Hi -0

t

Z,:/exp<<<x+y>+i<y

Letk:=y/x.
Hence,

—x))2> dx+i/exp (((x—i—y) +ti(y—x))2) dy.

t

/= /exp (((x—i—kx)—i—i(kx—

Calculate:

t

) 1 G200,

/exp ((()H—kx)—i-i(kx—

t

9D ol L f< Vi + 4e-2i)
> =3V NERT T
0

Jon(20115-

t

Calculate:

o7 1

i))2) erf \/ (2ik2 + 4k — 21))

\/ L (20 + 4k — 2i)

—4y (k—i)* —12i(k— )exp(kzt 22i (k—i)*
ik (k— i)/ — 2 (k- )exp(‘ X22i (k— )2)

U R ri(k—i) =20 | Hiv/mk2i(k \f\/,;erf w20 (k )2>

For large ¢:

++/Tkt2i (k — i) \/;\/kjerf x\/—12i(k )2>

7 .
e W )Flszl?l —1i) \/7\/];6&( (_1)2>
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Hence,

1
8

V=

(l—i)k\/iierf (x —i2i(k—i)2>‘.

Because
k=tan0O, x = rcos0

then

V=

% (I —1i)(tan®) ﬁtané — ierf (r (cosB) \/—:Zi((tane) - i)2> ‘

Figure 17 shows the dependence of velocity v on the radius r at large ¢ ~ 10* and at
0 = 13nt/14. Compare with 15

Figure 18 shows the dependence of velocity v on the radius r at large ¢ ~ 10* and at
0 = 0.98w. Compare with 16

Hence, Dark Matter and Dark Energy can be mirages in the space-time, which is curved
by oscillations of chromatic states.

The idea of curved time-space belongs to Albert Einstein (the General Relatively The-
ory. 1913).

Albert Einstein,
theoretical physicist,
Nobel Laureate.

4.16.3. Baryon Chrome

According to the quark model, [22] the properties of hadrons are primarily determined
by their so-called valence quarks. For example, a proton is composed of two up quarks
and one down quark. Although quarks also carry color charge, hadrons must have zero
total color charge because of a phenomenon called color Confinement. That is, hadrons
must be “colorless” or “white”. These are the simplest of the two ways: three quarks
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of different colors, or a quark of one color and an antiquark carrying the corresponding
anticolor. Hadrons with the first arrangement are called baryons, and those with the second

arrangement are mesons.

Let o be any real number and

Since j4 is a 3+1-vector then

x6 = X0,
x| 1= xjcos(a) —xpsin(a);
x5 = xysin (o) +x;cos () ;

/. .
X3 1= X3,

from [21, p.59]:

jo = —0'p%,
jﬁ\,] = —¢ ([3“] cos (o) — B[Z] sin (oc)) 0;
Jaa = -0 (ﬁ“] sin (o) + B2 cos((x)) 0;
Jaz = —¢'Blle.
Hence if for ¢':
J;x,o = —(P/Tﬁ[o]({)/,
JIIA _ _(p/TB[l](P/;
],/4 _ _(p/TB[Z}(P/;
Jaz=—0"pg,
and
¢ :=U2 ()¢
then
Uf5 () B2 () = B,
UIT72 () B () = BUcosa—BPsina;
U1T,2 () BPU 2 (a) = BPleosa+plsina;
Ufy () B2 () = B2
from [21, p.62]: because
pa=0'0=0¢"¢,

then

If

)

UI-I;Z (OL) Ui» (OL) =14.
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Uz () == cos% Ay —sing ) B[HB[Z}

2
ie. 2.116:
e 0 0 0
-1
0 e'2* 0 0
U —
12(0) 0 0 e 2% 0

then U, » (o) fulfils to all these conditions (4.93), (4.94).
Then let

Xo = X0,
X} = xjcos(o) —x3sin(a),
b= x,
Xy = xp sin (a) +x3cos ().

Let

)

U (o) i=cos 5 - 14 —sin > - BB,
In rhis case 2.117:

cos%oc sin%oc 0
. 1 i
_ | —smzo cossa 0
Uisle) = 0 0 cos%oc sin%oc
0 0 —sin%oc cos%oc
and
U1T,3 (OC)B[O]Ul.s () = B,
U1T,3 () BMU 3 () = PBllcoso—BPlsina,
Ul () B2Ui5 () = B2,
U1T73 () BPU 53 () = BPleosa+ Bl sina.
If
(P/Z: U173 ((X)(p
and

Jaw=0" BN’
where (k € {0,1,2,3}) then

Jao = Jaos
Jag = Ja1cos— jazsina,
Ja2 = Jazs
Jaz = JA3COSOL+ jasina,
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Then let

X0 = X0,

x’l = X1,

x, = coso-xp+sino-xz, (4.101)
x5 = coso-x3—sino-x;.

Let o )
Uz (o) = cos 5 14— sin = BBIpAl

In this case:

cos%oc isin%oc 0 0
Us s (0) = isin%oc cos%oc 0 0 “102)
3,2 = 0 0 cos%oc isin%a ) .
0 0 isin%oc cos%a
and
U3T,2 (o) U 5 (o) Lo,
Ug,z(“)@”%,z(“) = pl,
Ui, (@)U 2 () = B%cosa+pllsina, (4.103)
U;,z(a)ﬁ[g]Un(Ot) = BPlcosa—BPsina
If
¢ :=Usz ()@
and
Jagi= ¢’
where (k € {0,1,2,3}) then
./ .
Jao — JAO»
Jag = Jat (4.104)
Jaz = Ja2COSOL+ ja3sina,
Jaz = JA3COSOQL— jasina,
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and

Let v be any real number such that —1 <v < 1.

And let:

In this case:

Let

Let

That is 2.119:

U170 (OL) =

In rhis case:

If

1. 1—v
o:=—=In .
2 1+v
1
coshat = ,
V1—2
. v
sinhoe = — .
V12
x6 : = xpcosho— x; sinha,
x/l : = xjcosho— xpsinha,
X/z =X,
x’3 D= x3.

Upp(a) = cosh% 14— Sinh% . B[I]B[O]_

cosh%(x sinh%oc 0 0
sinh%oc cosh%oc 0 0
0 0 cosh%oc —sinh%(x
0 0 —sinh%oc cosh%oc
(@) B0 o () B cosho— B! sinha,
() BMU o (a) = PBUcosho— B sinha,
(o) BP0 o (cv) g
(o) BP0 (o0) Bl
¢ :=Upo(0)0

o =9"pe
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where (k € {0,1,2,3}) then

J'ix,o = Jjaocosha— jusinha,
jix,l = ja,1cosha — js osinha,
J.,/Lx,z = Jja2
Jaz = Jas
Then let
x'o : = xpcosho— xysinha,
X/l L=,
x/z : = xpcosha — xpsinh o,
x’3 . =X3.
Let
o o
Uz (@) := coshE g — sinhE B2l
That is:
COSh%O( —isinh%(x 0 0
isinhior  coshlo 0 0
= 2 2
Uzo(®) 0 0 cosh%oc isinh%oc
0 0 —isinh%(x cosh%oc
In rhis case:
UzT,o (o) B0 (o) B coshot — B sinha,
Uf o () BlU1o (@) = B,
Uy o () BPUi o (o) = PP cosho—B¥sinha,
Ujo(@)Botng () = B
If
¢ 1= U (0) ¢
and

Jag = 0"ple
where (k € {0,1,2,3}) then
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Jao = Jaocosha— jy sinha, (4.113)

Jar = Jals
jg_yz = japcosho — jsosinha,
J';x.s = jA73-
Then let
x6 : =xpcosha —x3sinhq, (4.114)
x'l L= X,
x’2 = X2,
xg : =x3cosha — xpsinho.
Let
o o
Usp(a) := coshE g — sinhE -BRIRLL,
That is:
2 0 0 0
1
0 e2% 0 0
= 4.11
Uso (o) 0 0 o o (4.115)
0 0 0 e
In rhis case:
Ui (0)BUs 0 () = Bl%cosha—B?sinha, (4.116)
Uso(a) Uz (@) = B
Uso () BPUs o () = B
Uso (o) BPUs o () = BPlcoshor— B sinhar.
If
¢ :=Us (o)
and
o =9"p¢
where (k € {0,1,2,3}) then
jim = Jjaocosha — js3sinha, 4.117)
Jar = Jal
Jaz = Jap
];/43 = jA73COShOC—jA_’()SiIlhOL.
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Function @ submits to the following equation:[21, p.82]

%at(p (1B +ixoBly) @ =
(L BM (3y +i®y +iTyF) +

V_

+iMoy® +iM, B —
_IMCaOY[C] +1M§’4C[4 —
_iM“vOYE] — My
~|—iMe,ng] +iMo 4614

That is:
(X ﬂ%&ﬂ&+mWD

v=0

+iMoyO + iR —
—lMg,ov[g | iy 0 (4.118)
—iMy oY — My a4+
+iMe,0Yg)] + iMe,49[4])(P =0.

Like coordinates x5 and x4 [21, p.83] here are entered new coordinates yl3 , 28, yc, ZC, 1,
71, y9, 2% such that

TC B TC TC B TC
- < YW<—,——<zr<—
h h h h’
TC C TC TC 4 TC
-— < < —,—— <7< —
h h’ h h’
TC TC TC TC
—— < <=, —=<N<
h h’” h h
TC TC TC TC
—— < W< <A<
h h’ h h
and like @, [21, p.83] let:
(0] (txyﬁ B 38, 25,y z) (4.119)

= @ (t,%) x exp(i(P Mo+ PMy+ "M o+ M4 +
+Y"My 0+ 2"Min 4+ Moo + 22 Mg 4)),

In fhis case if
e (ﬂ!:C(p] ’ [X]) 1:'CC: c
::/hdyﬁ/hdzﬁ/hdyc/hdzcx
- - - -
X/de“/?dz"/dee " ddx
- - - -
x o] [x]

(4.120)
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then

(lel.[el) = pa, (4.121)
(ol BUfol) = —%2%.

and in this case from (4.118 ):

3
(L BM (0 +i0y +iYyyP)) +
v=0

+y000 + BIaf —
_Y[CO]ag INCP (4.122)
gvﬁﬂaﬂ—n[‘”a%
+1'03 +610) [o] =0
Because
0 0 0 i 0 0 0 —i
w=|o i o o ""=0o ;o0 0l (4.123)
i 0 0 0 i 00 0
0 0 -1 0 0 01 0
0 0 0 1 0 00 —1
01 0 0 0 10 0
0 0 0 -1 0 0 01
0 0 -1 0 0 0 10
=10 1 o o I'%=i] 0 0ol (4.125)
1 0 0 0 1 0 00
then from (4.122):
3
Y BM (9y +i®y +ixyyP!) [g]
v=0
+Y98 (@] + B8 [g] +
0 0 C—ay9 35 — il
( 0 : 0  d+ioy 09 N
—oy dy—id) 0 0 (4.126)
K4y 0 0
0 0 9 il
- 0 0 il o
! 0 ¢ .an ' )
—9®  —9:—io] 0 0
—ot+idl 9P 0 0
x [¢] = 0.



Let a Fourier transformation of

(9] (t,X,yB,zﬁ,yc,zg,y”,zn,ye,ze)
be the following;

0 _0
(9] <t,x,yﬁ,zﬁ,yc,zg,y“,zn,y 2 ) =
= Z C(valanPBu”BvSB,
w7p1 7p27p37nB75B7nC7sc7nn VSn ’ne'se

n®, 8" s n® s0) x
.h
X exp(—i(wxo + p1xi + paxa + paxs + (4.127)

—FnByB +sPP 4 n‘;yC 5525+
+aMyN 4521 4 0y 4 5929)).

Letin (4.126) ®, =0 and Yy = 0.
Let us designe:
3
Go = ( ZOBMav 0198 4 plaf—
V=
—y 05 + (ot
—yal — a4
75009 +614199).

(4.128)

~+33 -y - a5 —ioy
9 +id -3 i) h+al
A8 i) —-9 —d+id
o +id)  H4a®  —3—idy —d+0s
0 0 P +08 %+ idl

. 0 0 oc—idl o —2°
S e R | ), Y 0
—oe4il —f+a® 0 0

that is:
Gy =

(4.129)
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Golgl =i 3 Ow

w,p1,p2,p3,n8 5B n& s& s pd 0

pl7p2ap37nB7sﬁvncvsc>nnvsnanevse)

3
0 0
Zck(val7p27p37nB7SB7nC7scann7sn7n S )X

k=0
.h
X exp(—i_(wxo + p1xi + paxa + p3xs +
—|—nﬁyB +sPP 4 n(;yC 5525+
+aMy 4 52N 4 20y 4 5929)).
here
Ck(val 7p27p37nB7sB7nngC?nnasnanevse)

is an eigenvector of
3 0 0
g(W7p17p27p37nﬁ7sﬁancasgvnnwgnﬂ/l 7S )

and

v

g(w,p1,pz,p3,nB,sB,nC,sC,n",Sn,ne,se) =
= BChw + Bl p + B2 py +BEIps +
+70nP 4 BB Y[CO]nC + M8
—yﬁ)]n” — i —I-Yg)]ne + 00,

Here

{co,c1,¢2,¢3}

is an orthonormalized basis of the complex4-vectors space.
Functions

ck(w7p17p27p37n57sﬁancusgvnn7sn7ne7se> X
'h

X exp(—lg(WXO + pi1x1 + p2x2 + p3x3 +

+rPyP PP

JrnCyC +SQZ§ + +nnyn +ST1ZT] +n9y9 +SGZ9))

are eigenvectors of operator Gy.

h
0% = c(w,p, f) exp(—i= (wxo + px+ 1. /7))

—i-
C
is a red lower chrome function,

B uxo + px — 14 725))

—i-
c

¢z == c(w,p, f) exp(
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is a red upper chrome function,

.h
@) :=c(w,p, f) CXp(—lE(W)Co —l—px—i-%[qo}fyn))

is a green lower chrome function,

h
of i=c(w,p,.. /) exp(—i_(wxo +px—inlf2"))

is a green upper chrome function,

.h 0
90 = c(wp,f)exp(—i_ (wxo + pxt1p /3"))
is a blue lower function,
.h :
0 = (0D, xp( it (v + px — 1011127
is a blue upper chrome function.
Operator —a§a§ is called a red lower chrome operator, —a§a§ is a red upper chrome
operator,
—0dy9y is called a green lower chrome operator, —379; is a green upper chrome oper-
ator,
—a;’ag is called a blue lower chrome operator, —999? is a blue upper chrome operator

For example, if (pg is a red upper chrome function then

ot~ —oanet = el -

= oot = —olet =0
but

h \2
et = (2r) of
Because
Golg] =0

then

UGU'U[g] =0

If U = U5 () then Gy — Uy 2 (@) GoUy, () and [@] — Uy 2 (o0) [@].
In this case:

d; — d] := (coso- 0 —sino- 0s),

0y — d5 := (coso- 0 +sino-dy),

80 — 86 = a(),

83 — 8’3 = 83,

o — ) ==ab,

P oF =P,

85 — 8%’ = (cosoc-ag - sinoc~a;1),
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oy — o) = (cosoc-a;l +sinoc~8§),
8% — a%’ = (cosoc'ag—i—sina'a?),
N — oY = (cos(x-a? —sinoc'ag),
2 58 = P,

)

Therefore,

h 2
_aglagl(pg — (fccos(x> (PS’
h\ 2
—VV S = (—sin(x~fc> .
Ifo= —% then

—9¥o¥gt = 0,

Z

h 2
-t = (rp) o

C

That is under such rotation the red state becomes the green state.
If U = Uz, (o) then Gy — Uz (a1) G0U3_721 (o) and [@] — U3z (o) [@].
In this case:

80 — 86 = ao,

81 — 8/1 = 81,

0y — d5 := (cosou- 0z +sino- 03),

83 — ag = (COSOC . 83 —sino - 82),

P b=

95— 9% =25,

) — 9) := (cosa-9) —sinar-09),

0% — 0¥ := (cosa- 9% +sina-9Y),

O ol =ab,

9> — 3 =5,

o1 — oy = (cosa-a? - sin(x-Bg),

0% — 0¥ := (coso- 9% +sina- 97,

Therefore, if (p;1 is a green lower chrome function then

2

-0Vl = (lclcosoc-f> -9},
h 2

—Y) g = (Csinoc-f> @l

If oo = 7t/2 then
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—ayalel = 0,

_aelaelq, = (hf> ’ ol
y y:

C

That is under such rotation the green state becomes blue state.
IfU = Us (Ot) then Gy — Us (Ot) G0U3_71] (0() and [(P] — Uz (O() [(p]
In this case:

ao — 86 = ao,

d; — d} :=(coso-d; —sina-d3),
82 — 8’2 = 62,

d3 — 05 1= (cosol- 93 +sina- dy),
b -0, :=0b,

aC aC’ (cosoc ac—i-sm(x 0 )
0y — a“’ =Y,

89—>89’ (cosoc ae—smoc J ),
aB — aB’ =,

8C—>8§/ (cosoc Bc—smoc d )
o1 — 97 := o,

89 89’ (cosoc 89+smoc 8§>

Therefore,
h 2
0990 =~ (heosa) ok
_9¥a¥e¢ — (s h ? ¢
0 = smoc-fc 0.
If o = /2 then
e = 0
h\ 2
aG/aG/(PZ _ _<fc> (PS

That is under such rotation the red state becomes the blue state. Thus at the Cartesian
turns chrome of a state is changed.

One of ways of elimination of this noninvariancy consists in the following. Calculations
in [21, p.156] give the grounds to assume that some oscillations of quarks states bend time-
space in such a way that acceleration of the bent system in relation to initial system submits
to the following law (Figure 19):

g(t,x) = cA/ (x*cosh? (A/x?)).

Here the acceleration plot is line (1) and the line (2) is plot of A/ X2,
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Figure 19:

Hence, to the right from point C" and to the left from poin C the Newtonian gravitation
law is carried out.

AA’ is the Asymptotic Freedom Zone.

CB and B'C’ is the Confinement Zone.

Let in the potential hole AA’ there are three quarks (p%, (pD, (p)e, . Their general state
function is determinant with elements of the following type: (p;;ne = }c(p;1 (p(y’. In this case:

h \2
6 6
—3§a§¢§“ = <cf> <P§“

and under rotation U, » (o):

e -

_ <hf)2 (Y[CO] cos(x—’yq[?] sinOL)2 (<P§<Pl7‘Pg> -

C

h 2
- (o) o

That is at such turns the quantity of red chrome remains.

As and for all other Cartesian turns and for all other chromes.
Baryons A~ =ddd, AT = uuu, Q= = sss belong to such structures.
If U = Uy o (o) then Gy — Uy ¥ () GoUy g (o) and [] — Uy (a0) [@]-
In this case:

do — 0, := (cosha- 9y +sinho- 9y ),

d; — 0} := (cosha-9; +sinho-dp),

82 — 8’2 = 82,

83 — 8/3 = 83,

o — 3y =ay,

% -y == 35,

dy — 9y := (cosha-dy —sinha-9?),

185



09 — 0¥ := (cosha- 99 +sinho-d7),
o ol =aP,

& — oY =,

07 — 97 := (coshat- 97 +sinha-09),
0% — 0 := (coshot- 0% —sinhat-9y).
Therefore,

. h\?
—oya) ¢} (1+sinh*at) - (Cf> oy,

h 2
—¥ ) = sinhzoc-<cf> ol

Similarly chromes and grades change for other states and under other Lorentz transfor-
mation.

One of ways of elimination of this noninvariancy is the following:

Let

0._ 0 8
951 == prollofpzolol.
Under transformation Uj o (a1):

ho\?
e = (it ot

That is a magnitude of red chrome of this state doesn’t depend on angle o.
This condition is satisfied for all chromes and under all Lorentz’s transformations.
Pairs of baryons
{p=uud,n=ddu},
{Z+ = uus,EO = uss} ,
{A" = uud,A° = udd}
belong to such structures.

Baryons represent one of ways of elimination of the chrome noninvariancy under Carte-
sian’s and under Lorentz’s transformations.

4.17. Dimension of physical space

Arthur Cayley
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Further I use Cayley-Dickson algebras
"""""""""""""""""" [23, 24]:

= n=1248 |

product of this algebra is defined the
following way [23]:
1. for every basic element e:

4 it 3‘ 6O§ Let 1,i,j,k,E,I,J,K be basis ele-
B g i ments of a 8-dimensional algebra Cay-
q iy E ley (the octavians algebra) [23, 24]. A

.................................

ee = —1;

2. If uy, up, vy, vo are real number then

(I/ll + uzi) (v1 +V2i) = (u1v1 — V2M2) + (Vzl/t] —+ urvq ) 1.
3. If uy, up, vy, v are numbers of shape w = w; +wai (w;, and s € {1,2} are real
numbers, and W = wi — wpi) then
(ur 4 uaj) (vi +v2j) = (u1vi —vauz) + (vou +uavy) j (4.133)

and ij = k.
4. If uy, up, vi, v2 are number of shape w = wy +woi+w3j+wak (ws, and s € {1,2,3,4}
are real numbers, and W = wi — w»i — w3j — wsk) then

(Lt] +M2E) (V] +V2E) = (u1v1 —Vguz) + (Vzul +M2V1)E (4.134)
and
iIE=1,
jJE=1,
kE =K.

Therefore, in according with point 2.: the real numbers field (R) is extended to the
complex numbers field (R), and in according with point 3.: the complex numbers field
is expanded to the quaternions field (K), and point 4. expands the quaternions fields to
the octavians field (O). This method of expanding of fields is called a Dickson doubling
procedure [23].

If

u=a+bi+cj+dk+AE+Bl+CI+K
with real a,b,c,d,A,B,C,D then a real number
&l 0.5
lull Y Vit = (a® +b* + P +d* + A2+ B>+ C* 4+ D?)

is called a norm of octavian u [23].
For each octavians u and v:

vl = e[ []V]] - (4.135)
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Algebras with this conditions are called normalized algebras [23, 24].
Any 3+1-vector of a probability density can be represented by the following equations
in matrix form (4.75)

P=0'0,
jr=0"BNo

with k € {1,2,3}.

There B[k] are complex 2-diagonal 4 x 4-matrices of Clifford’s set of rank 4, and @ is
matrix columns with four complex components. The light and colored pentads of Clifford’s
set of such rank contain in threes 2-diagonal matrices, corresponding to 3 space coordinates
in according with Dirac’s equation. Hence, a space of these events is 3-dimensional.

Let p(¢,x) be a probability density of event A (¢,x), and

pc(t7X’t07XO)
be a probability density of event A (7,x) on condition that event

B (t,X0).
In that case if function ¢(,x|to, X) is fulfilled to condition:

Pe(t,X|t0,X0) = q(t,X|tg,X0)p(t,X), (4.136)

then one is called a disturbance function B to A.

If ¢ = 1 then B does not disturbance to A.

A conditional probability density of event A (¢,X) on
condition that event B (fy,Xo) is presented as:

Pc= (pI(Pc
like to a probability density of event A (¢,x).
Let
011 +1912
o= | ! +iQ2
03,1 +1932
Q4,1 +1042
and
Q1,1 +19c 12
_ | Pe21Fi0c22
Qc = .
Qc,3,1 T1Q:32
Qca1 +10c42

(all @, and @, ,.; are real numbers).
In that case octavian

U=0Q11+Q120+@2 1]+ @22k + @3 1E+ @321 4+ @4 1] + 942K

is called a Caylean of ¢. Therefore, octavian
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Ue = Qc 1,1+ (pc,l,Zi + (pc,Z,lj + (Pc,2,2k + (pc,S,IE + (Pc,3,21 + (Pc,4,lJ + (pc,4,2K
is Caylean®! of ..

In accordance with the octavian norm definition:

2
HucH2 =Pe
Jul”=p
Because the octavian algebra is a division algebra [23, 24] then for each octavians u and
u. there exists an octavian w such that

(4.137)

U, = wi,

Because the octavians algebra is normalized then

2 2 2
ot 1= = [lw]* {Jael}-

Hence, from (4.136) and (4.137):

_ 2
q=[wl".
Therefore, in a 3+1-dimensional space-time there exists an octavian-Caylean for a dis-

turbance function of any event to any event.

In order to increase a space dimensionality the octavian algebra can be expanded by a
Dickson doubling procedure:

Another 8 elements should be added to basic octavians:

21,22,23,724,25,26,27,28,

such that:
7o =71,
73 = jz1,
Z4 = kZ],
75 = EZ],
76 = 174,
77 = JZ],
zg = Kz,

and for every octavians uy, us, vy, v:

(u1 + uzZl) (v1 +V2Z1) = (u1v1 *Vzuz) + (v2u1 +u2ﬂ) 71

(here: if w = wy +wai + wsj + wak + wsE + wel +w7J +wgK with real wg then w =
w1 — wal — w3zj — wak — wsE — wel — w7 —wgK).

It is a 16-dimensional Cayley-Dickson algebra.

In according with [32]: for any natural number z there exists a Clifford set of rank 2°.
In considering case for z = 3 there is Clifford’s seven:

3! Arthur Cayley FRS ( 16 August 1821 26 January 1895) was a prolific British mathematician who worked
mostly on alge
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= i 04 _ ,7 ()4 _ 9
[ gBl 0 4 0
gl = %4 _B“m },B[‘” = [ %4 _[;‘[4] ] (4.138)
Bl = (YO 0,
e
6 | 04 14 m_ .| 04 —lg
B _[14 04},[3 _1[14 o | (4.139)

Therefore, in this seven five 4-diagonal matrices (4.138) define a 5-dimensio-nal space
of events, and two 4-antidiagonal matrices (4.139) defined a 2-dimensi-onal space for the
electroweak transformations.

It is evident that such procedure of dimensions building up can be continued endlessly.
But in accordance with the Hurwitz>? theorem>’ and with the generalized Frobenius>* the-
orem>> a more than 8-dimensional Cayley-Dickson algebra does not a division algebra.
Hence, there in a more than 3-dimensional space exist events such that a disturbance func-
tion between these events does not hold a Caylean. I call such disturbance supernatural.

Therefore, supernatural disturbance do not exist in a 3-dimensional space, but in a more
than 3-dimensional space such supernatural disturbance act.

52 Adolf Hurwitz ( 26 March 1859 18 November 1919) was a German mathematician who worked on algebra,
analysis, geometry and number theory.

53Every normalized algebra with unit is isomorphous to one of the following: the real numbers algebra R,
the complex numbers algebra C, the quaternions algebra K, the octavians algebra O [23]

34Ferdinand Georg Frobenius (26 October 1849 3 August 1917) was a German mathematician, best known
for his contributions to the theory of elliptic functions, differential equations, number theory, and to group
theory.

S5 A division algebra can be only either 1 or 2 or 4 or 8-dimensional [24]
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Conclusion

Models are not needed, because fundamental theoretical physics is part of probability the-
ory.

Physics is a game of probabilities in space-time. Irreversible unidirectional time and
metric space is an essential attribute of any information system, and probability is the logic
of events that have not yet occurred.
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