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Abstract 

In this book, the Gentzen variant of the propositional logic is  
used to substantiate the space-time relations, including the Lorentz 
transformations. The logical foundations of probability theory,  
including Jacob Bernulli's Big Numbers Law and the statistical definition of 
probability, are also derived from this logic.  
 
All concepts  and statements of the Standard Model (except for the Higgs) are 
obtained as concepts and theorems of probability theory. The masses, spins,  
moments, energies of fermions are the parameters of the distribution of such a 
probability. The masses of the W and Z bosons are the results  
of the interaction of the probability flows into space-time. 
 
Quark-gluon relations, including the phenomena of confinement and asymptotic 
freedom, are also a consequence of the properties of this probability. 
 
The phenomenon of gravity with dark matter and dark energy is a continuation of 
these quark-gyonic relations. 
 
For understanding of the maintenance of this book elementary knowledge in the 
field of linear algebra and the mathematical  
analysis is sufficient. 
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Introduction  

 

 

 

The Manhattan Project began on September 17, 1943. It was attracted many 

outstanding physicists, many of whom were refugees from Europe. By the 

summer of 1945, the Americans had managed to build 3 atomic bombs, 2 of 

which were dropped on Hiroshima and Nagasaki, and a third had been tested 

shortly before. 

And the atomic race began. 

In the following years, the governments of many states allocated enormous sums 

of money to scientific organizations. Following these money, huge masses of easy 

luck seekers moved to physics.  
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They invented SUSY, WIMP, BIG BANG, HIGGS  and other theories of the same 

kind. 

Giant laboratory facilities were built and enormous human resources were 

attracted to experimentally confirm these theories.  

 

Results of the LHC and other science giant laboratory work are describe in 

[Farewell to Higgs] ( since 10 September 2008 till 14 February 2013: RUNI) and 

[Runii: no Susy, no Wimp, no Higgs, no New Physics] (from June 2015 to January 

2018,  RUNII)  

Large Hadron Collider (LHC) worked since 10 September 2008 till 14 February 
2013 RUNI. RUNII works from June 2015 for today. Huge resources have been 
spent, but did not receive any fundamentally new results - no superpartners, no 
extra dimensions, or gravitons, or black holes. no dark matter or dark energy, etc. 
etc .. As for the Higgs, the_rstly, there is no argument in favor of the fact that the 
particle 124.5 -126 GeV has some relation to the Higgs mechanism. Secondly, the 
Higgs held permeates the vacuum of space, which means that the mass of the 
Higgs vacuum and stability are closely linked. For a particle of mass near 126 GeV 
- enough to destroy the cosmos. The Standard Model of particle physics has not 
given an answer to the question of why the universe did not collapse after the Big 
Bang. Moreover, Nothing in Standard Model gives a precise value for the Higgs’s 
own mass, and calculations from first principles, based on quantum theory, 
suggest it should be enormous—roughly a hundred million billion times higher 
than its measured value. Physicists have therefore introduced an ugly fudge 
factor into their equations (a process called “fine-tuning”) to sidestep the 

http://vixra.org/pdf/1510.0105v3.pdf
http://vixra.org/pdf/1801.0340v5.pdf
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problem.  Third, all the known elementary bosons are gauge - it is photons, W- 
and Z-bosons and gluons. It is likely that the 125-126 particle is of some hadron 
multiplet. 
 
That is, in recent years, many theoretical physicists have studied what is not in the 
nature. It are SUSY, WIMP, Higgs, BIG BANG hypothesis, etc. On the other hand 
already in 2006 - 2007 the logic analysis of these subjects described in books [1], 
[2] it showed that all physical events are determined by well-known particles - 
leptons, quarks and gauge bosons. 
 

"The Fundamental Theoretical Physics is the Part of the Probability Theory" 
contains development and continuation of ideas of these books. 
 

For understanding of the maintenance of this book elementary knowledge 
in the field of linear algebra and the mathematical analysis is sufficient. 

 
 

1. Truth 

Science presents its ideas and results with language texts. Therefore, we will 
begin by considering narrative sentences: 
By Alfred Tarski1 [4. Tarski, A. The Semantic Conception of Truth and the 
Foundations of Semantics, Philoso phy and Phenomenological Research, 4, 1944.]: 

 
A sentence «Θ» is true if and only if Θ . 
 
For example, sentence «It is raining» is true if and only if it 
is raining. 
 
A sentence «Θ»  is false if and only if there is not that Θ. 
 
For example, «2 + 3 = 4».  
 
Still an example: Obviously, the 

following sentence isn't true and isn't 
false [4]2:  
 

                                                           
1
 Alfred Tarski January 14, 1901 – October 26, 1983), born Alfred Teitelbaum,

 
was a Polish-American

 

 logician and mathematician . 
2
 Liar paradox, also called Epimenides’ paradox, paradox derived from the statement attributed to the Cretan 

prophet Epimenides (6th century BCE) that all Cretans are liars. 
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«This sentence is false».  
 
Those sentences which can be either true, or false, are called as meaningful 
sentences. The previous example sentence is meaningless sentence.  
 
Further, we consider only meaningful sentences which are either true, or false.  
 
 

2. Time and Space 

Here I use numbering of definitions and theorems from book [1. pp.`9--52] 
which contains detailed proofs of all these theorems. 
 

2.1. Recorders  
Any information, received from physical devices, can be expressed by a text, 

made of sentences. 

 

Let    be some object which is able to receive, save, and/or transmit an 

information. A set a of sentences, expressing an information of an object   , is 

called a recorder of this object. Thus, statement: “Sentence «A» is an element of 

the set a” denotes: “   has information that the event, expressed by sentence ≪A≫, 

took place”. In short: “   knows that A”. Or by designation: “a٭•«A»”. 

 

Obviously, the following conditions are satisfied: 

I. For any a and for every A: false is that a٭ (A&(￢A)), thus, any recorder 

doesn’t contain a logical contradiction; 

 

II. For every a, every B, and all A: if B is a logical consequence 

from A, and a٭A, then a 

 

III. * For all a, b and for every A: if a٭«b٭A» then a٭A. 

 

2.2.  Time 

Let’s consider finite (probably empty) path of symbols of form q•. 
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Def. 1.3.1: A path α is a subpath of a path β (design.:α << β) if α can be got from β 

by deletion of some (probably all) elements. 

Designation: (α)1 is α, and (α)k+1 is  α (α)k. 

Therefore, if k ≤ l then (α)k < (α)l. 
 
Def. 1.3.2: A path α is equivalent to a path β (design.: α ~ β) if α can be got from β 
by substitution of a subpath of form (a•)k by a path of the same form (a•)s. 
 

In this case: 

III. If β ≺ α or β ~α then for any K: if a*•K then 
a* (K&(αA ⇒ βA)). 
Obviously, III is a refinement of condition *III. 
 
Def. 1.3.3: A natural number q is instant, at which a registrates B according to κ-
clock {g0,A,b0} (design.: q is 
[a*B ↑ a,{g0, A, b0}) if: 
1. for any K: if a*K 
then 
 

and 

 

2. 

 

 

Def. 1.3.4: κ-clocks {g1,B b1} and {g2 B,b2} have the same direction for a if the 
following condition is satisfied: 
If 
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then 

 

Th. 1.3.1: All κ-clocks have the same direction. Consequently, a recorder orders its 

sentences with respect to instants. Moreover, this order is linear and it doesn’t 

matter according to which κ-clock it is established. 

 

Def. 1.3.5: κ-clock {g2,B,b2} is k times more precise than κ-clock {g1 B,b1} for 

recorder a if for every C the following condition is satisfied: if 

 

 

 

then 

 

 

 Def 1.3.6: A sequence    of κ-clocks: 

 

 

 
Is called an absolutely precise κ-clock of a recorder a if for every j exists a natural 
number kj so that κ-clock (gj,A bj) is kj  times more precise than κ-clock {g−j-1A,bj−1}. 
In this case if  
 
 
 
and 
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then 

 

 

2.3. Space 
 

Def. 1.4.1: A number t is called a time, measured by a recorder a according to a κ-

clock   , during which a signal 
C did a path a*αa*•, design.: 

 

If 

 

 

Th. 1.4.1 

 

 

Def. 1.4.2: 
1) for every recorder a: (a*)† := (a*); 
2) for all paths α and β: (αβ)† = (β)† (α)†. 
 
Def. 1.4.3: A set Ȓ of recorders is an internally stationary system for a recorder a 

with a κ-clock     (design.: ℜ is 

ISS(a,   )) if for all sentences B and C, for all elements a1 and a2 of set ℜ, and for all 
paths α, made of elements of set ℜ, the following conditions are satisfied: 
 

Def. 1.4.4: A number l is called an a  (B)-measure of recorders a1 and a2, design.: 
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if 

 

Th. 1.4.3: If 

 

thwn 

 

Thus, all four axioms of the metrical space are accomplished for ℓ(a    ) in an 

internally stationary system internally stationary system of recorders. 

Consequently, ℓ(a    ) is a distance length similitude in this space. 

 

Def. 1.4.6: B took place in the same place as a1 for a (design.: (a) (a1B)) if 

for every sequence α and for any 

sentence K the following condition is satisfied: if a*K then 

 

 

Th. 1.4.4: 
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Th. 1.4.5: If 

 

 

then 

 

Th. 1.4.6: If 

 

 

 

 

 

then 

 

 

 

Th. 1.4.7: If {a1, a2, a3} is ISS(a,   ) and there exists sentence B such that 
 

 

 

then 

 

 
Def. 1.4.7: A real number t is an instant of a sentence B in frame of referen 

(Ra    , design.: 
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if  

1.  

 

2. there exists a recorder b so that b ϵ R   and  

3.  

 

 
 
Def. 1.4.8: A real number z is a distance length between B and C in a frame of 

reference    (Ra  , design. 

 

If 

1) 

 

2) there exist recorders a1 and a2 so that a1 ∈ ℜ, a2 ∈ ℜ, 

♮ (a) (a1, B)) and ♮ (a) (a2,C)),  

 

3) 

 

According to Theorem 1.4.3 such distance length satisfies conditions of all axioms 

of a metric space. 
 

Def. 1.4.1: A number t is called a time, measured by a recorder a according to a κ-

clock   , during which a signal C did a path a•αa•, design 
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If 

 

 
 

 

Th. 1.4.1: 

 

 

 

Def. 1.4.3: A set ℜ of recorders is an internally stationary system for a recorder a 

with a κ-clock     (design.: ℜ is ISS(a,   ) if for all sentences B and C, for all 

elements a1 and a2 of set ℜ, and for all paths α, made of elements of set 

ℜ, the following conditions are satisfied: 

1)  

 

 

 

 

2)  

 
 

Th. 1.4.2: 

 

 

 

Def. 1.4.4: A number l is called an a    (B)-measure of recorders a1 and a2, design.: 

 

 

 

Th. 1.4.3: If   

 

then 
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Thus, all four axioms of the metrical space are accomplished 

for ℓ(a,     in an internally stationary system internally 

stationary system of recorders. 

Consequently, ℓ(a,     is a distance length similitude in this space. 

 

Def. 1.4.6: B took place in the same place as a1 for a (design.:  (a) (a1, B)) if for 

every sequence α and for any sentence K the following condition is satisfied: if a•K 

then a•(K&(αB ⇒ αa1
•B). 

 

Th. 1.4.4: 

 

Th. 1.4.5: If 

 

 

then 

 

Th. 1.4.6: If 
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then 

 

 

Th. 1.4.7: If {a1, a2, a3} is ISS(a,   ) and there exists sentence B such that 

 

 

 

then 

 

 

Def. 1.4.7: A real number t is an instant of a sentence B in frame of reference Ra  , design 

 

 

 

2.4. Relativity 
 

Def. 1.5.1: Recorders a1 and a2 equally receive a signal about B for a recorder a if 

 

 

 

Def. 1.5.2: Set of recorders are called a homogeneous space of recorders, if all its 

elements equally receive all signals. 

 

Def. 1.5.3: A real number c is an information velocity about B to the recorder a1 in 

a frame of reference Ra   
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Th. 1.5.1: In all homogeneous spaces: c = 1. 

 

That is in every homogenous space a propagation velocity of every information to 

every recorder for every frame reference equals to 1. 

 

Th. 1.5.2: If R is a homogeneous space, then 

 

 

Consequently, in any homogeneous space any recorder finds out that B “took 

place” not earlier than B “actually take place”. “Time” is irreversible. 

 

Th. 1.5.3: If a1 and a2 are elements of R 

 

 

 

 

 

 

then z = q − p. 

 

According to Urysohn’s3 theorem [5]: any homogeneous 
space is homeomorphicto some set of points of real Hilbert  
space. If this homeomorphismis not Identical 

transformation,then R  will represent a non- Euclidean 

                                                           
3
 Pavel Samuilovich Urysohn (   вел       лов ч     о н) (February 3, 1898 – August 17, 1924) was a Soviet mathematician who is best known for his contributions in dimension theory, 

and for developing Urysohn's metrization theorem and Urysohn's lemma both of which are fundamental results in topology. 
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space. In this case in this “space-time” corresponding variant of General Relativity 

Theory can be constructed. Otherwise, R  is Euclidean space. In this case there 

exists coordinates system Rμ such that the following condition is satisfied: for all 

elements a1 and a2 of set R  there exist points x1 and x2 of system Rμ such that 

 

 

 

In this case Rμ is called a coordinates system of frame of reference Ra   

and numbers <xk,1, xk,2, . . . , xk,μ> are called coordinates of recorder ak in Rμ. 

A coordinates system of a frame of reference is specified accurate to  

transformations of shear, turn, and inversion. 

 

Def. 1.5.4: Numbers <x1, x2, . . . , xμ> are called coordinates of B in a coordinate 

system Rμ  of a frame of reference Ra   if there exists a recorder b such that  

  

 

 

and these numbers are the coordinates in Rμ of this recorder. μ 

 

Th. 1.5.4: In a coordinate system Rμ of a frame of reference are called coordinates 

of B in a coordinate system Rμ  of a frame of reference Ra   : if z is a distance 

length between B and C, coordinates of B are (b1, b2,… bμ), coordinates of C are 

(c1, c2,… cμ) then 

 

 

 

Def. 1.5.5: Numbers (x1, x2, . . . , xμ) are called coordinates of the recorder b in the 

coordinate system Rμ at the instant t of the frame of reference Ra   if for every B 

thecondition is satisfied: if 

 

 

                                                                                             

then coordinates of   
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in coordinate system Rμ offrame of reference Ra    are the following: 

(x1, x2, . . . , xμ). 

 

. 

Let v be the real number such that |v| < 1.                                                                            

Th. 1.5.5: In a coordinates system Rμ of a frame of reference Ra    : if in every 

instant t: coordinates of: 

 

 

 

 

 

and 

 

 

 

 

 

 

then 

 

 

Consequently, moving at speed v κ-clock are times slowerthan the one at rest. 

 

Th. 1.5.6: Let: v (|v| < 1) and l be real numbers and ki be natural ones. 

Let in a coordinates system Rμ  of a frame of reference Ra     : in each instant t 

coordinates of 
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for all   

 

 

then coordinates 

 

 

 

In that case: I  is ISS(b,   ) 

Therefore, a inner stability survives on a uniform straight line motion. 

 

Th. 1.5.7: Let: 

1) in a coordinates system Rμ of a frame of reference Ra    in every instant t: 

 

 

 

 

 

for every recorder qi: if qi i ϵ I  then coordinates of 
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2) in a coordinates system Rμ′ of a frame reference (I  b   : 

 

 

 

 

In that case 

 

 

 

 

 

This is the Lorentz4 spatial-temporal transformation. 

Thus, if you have some set of objects, dealing with information, then “time” and 

“space” are inevitable. And it doesn’t matter whether this set is part our world or 

some other worlds, which don’t have a space-time structure initially. 

                                                           
4
 Hendrik Antoon Lorentz (18 July 1853 – 4 February 1928) was a Dutch physicist who shared the 1902 Nobel Prize 
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I call such “Time” the Informational Time. Since, we get our time together with 

our information system all other notions of time (thermodynamical time, 

cosmological time, psychological time, quantum time etc.) should be defined by 

that Informational Time 

2.5.  Matricies 
 

Let 1n be an identical 4×4 matrix and 0n is a 4×4 zero 

matrix. 

 

 

The Pauli5 matrices:  

 

A set          of complex n x n matrices is called a Clifford 

set of rank n if the 

following conditions are fulfilled:  

 

If n = 4 then a 

Clifford6 set either contains 3 matrices (a Clifford 

triplet) or contains 5 matrices (a Clifford pentad) 

[6].  

Here exist only six Clifford pentads: 

 

 

                                                           
5
 Wolfgang Ernst Pauli ( German:  25 April 1900 – 15 December 1958) was an Austrian theoretical physicit 

6
 William Kingdon Clifford  (4 May 1845 – 3 March 1879) was an English mathematician and philosopher. 
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one light pentad β:  

 

 

 

 

 

three chromatic pentads: 

the red pentad ζ:  

  

 

 

the green pentad        : 

 

 

 

 

the blue pentad   Θ  :  

 

 

two gustatory pentads: 

the sweet pentad⧋:  

 

 

 

   

    .
01

10
:,

01

10
:

;3,2,1
0

0
:

22

224

22

220

2

2


































i

kfor
k

kk








      ,
0

0
:,

0

0
:,

0

0
:

32

233

22

222

12

211
















































    ;
0

0
:,

0

0
:

21

124

21

120


































  i


      ,

0

0
:,

0

0
:,

0

0
:

32

233

22

222

12

211
















































    ;
0

0
:,

0

0
:

22

224

22

220


































 i

      ,
0

0
:,

0

0
:,

0

0
:

32

233

22

222

12

211
















































    ;
0

0
:,

0

0
:

23

324

23

320


































 i

     
,

0

0
:,

0

0
:,

0

0
:

23

323

22

222

21

121





















































    ;
01

10
:,

10

01
:

22

224

22

220




















 i



22 
 

22 
 

 

the bitter pentad     :  

 

 

 

Further we do not consider gustatory pentads since these pentads are not used 

yet in the contemporary physics. 

 
 Let us consider an information space-
time [1. Pp.19—52] encrypted into a 
Cartesian7 coordinates system [1, 
pp.37,38]: 
 
In this space-time an event B which is 
placed into coordinates point (t, x) is 
called the dot event B(t, x) (here: 

 x : = (x1; x2; x3) , 
x : = (x0; x)  

t : = x0/c, (c =  299,792,458) 
 

All dot events are physics events and all events which are received from physics 
events by operators “+”, “∙”, or “┐” are physics events, too. 
 
Let (tA, xA) be coordinates of event A and (tB, xB) be coordinates of event B.  
In rhis case if  

m(A; B} = (tB − tA)2 − (xB,1 − xA,1)2 − (xB,2 − xA,2)2 − (xB,3 − xA,3)2 
 
then m(A; B} is called the Minkovski8 interval 
between events A and B [1, p.36]. 
 
A Minkovski interval  is invariant under the 
Cartesian transformation: 

                                                           
7
 René Descartes March 1596 – 11 February 1650) was a French philosopher, mathematician, and scientist .  

8
 Hermann Minkowski  22 June 1864 – 12 January 1909) was a German mathematician and professor at Königsberg, Zürich and Göttingen.  
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



sincos

,sincos
'

'

kjj
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xxx

xxx




.0 jkfor  (a turnabout of the coordinates system for 

angle α) 

And a Minkovski interval is invariant under the Lorentz transformation [1. p.52]: 
,sinhcosh0

'

0   kxxx    ,sinhcosh 0

'   xxx kk  
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Then  xĈ  is the clift of the point x. 

Let. ]2[]1[

42,1 sin1cos  U  

That is: 
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In this case: 
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Therefore, U1,2 rotates of the coordinates system in the plane x1Ox2 on an angle 
2λ. 
 

Similar, ]3[]2[
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U2,3 rotates of the coordinates system in the plane x2Ox3 on an angle 2λ. And 
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U1,3 rotates of the coordinates system in the plane x1Ox3 on an angle 2λ.  
 
Hence, U1,2, U2,3, U1,3 correspond to all Cartesian rotations. 
 
Let ]1[]0[

41,0 sinh1cosh:  U   . 

In that case: 
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Here:  x0’ = x0coshλ −  x1coshλ ; x1’ = x1coshλ −  x0coshλ. 

Therefore, U0,1  moves the coordinates system on the direction Ox1 with velocity v 

= c∙tanh λ. 

Similar,  
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That is , U0,2  moves the coordinates system on the direction Ox2 with velocity v = 

c∙tanh λ. 

And let  
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U0,3  moves the coordinates system on the direction Ox3 with velocity v = c∙tanh λ. 

Therefore,  U0,1 , U0,1 , U0,1 are  correspond to all 3 Lorentz transformations. And  

U0,1 , U0,1 , U0,1,  U1,2, U2,3, U1,3 correspond to the Poincare transformations. 

Two more matrices exist here. which do not change the clift 
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Here:  

CUCU ˆ~ˆ~†  and  CUCU ˆ~ˆ~ 1   . 

 

All this space-
time structure 
can be 
formulated in 
terms of the 
theory of 
hypercomplex 
numbers [7 ]. 
The Cailey9 and 
Hurwitz10 

theorems give the explanation of the 4-
dimensionality of our time-space [8]. 
 
 
 
 
 
 
 
 
 

                                                           
9
 Arthur Cayley  16 August 1821 – 26 January 1895) was a prolific British mathematician who worked mostly on algebra. 

10
 Adolf Hurwitz (German: 26 March 1859 – 18 November 1919) was a German mathematician who worked on algebra, analysis, geometry and number theory. 
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3. Probability 

Here we follow the ideas of Jaynes11 that  the notion of probability theory is 

extended logic [9] 

 
There is the evident nigh affinity between the classical probability 
function and the Boolean function of the classical propositional 
logic [10]. These functions are differed by the range of value, 
only. That is if the range of values of the Booleanfunction shall be 
expanded from the two-elements set {0; 1} to the segment [0; 1] 
of the real numeric axis then the logical analog of the Bernoulli 
Large Number Law [11] can be deduced from the logical axioms.. 

 

3.1. Propositional logic 
 

Def. 3: Sentences A and B are equal (A = B) if A is true if and only if B is true. 

Def. 4:  The sentence C is called  a conjunction of sentences A and B (denote: C = 
(A&B)) if C is true, if and only if A is true and B is true. A and B are called conjuncts 
of this conjunction. 

Def. 5: The sentence C is called a negation of sentences A (denote: C = (¬A)) if C is 
true, if and only if A is not true. 

Let A0 be a set of sentences each of which is either false or true. In this part only 

elements of A0 are considered. 

Natural Propositional Logic 

1.  Further I set out the version of the Gentzen12 Natural Propositional 
calculus (NPC) [12]: 

  
Expression «Sentence C is a logical consequence of the list of sentences Γ» 

will be written as the following: «Γ Ⱶ C». Such expressions are called sequences. 
Elements of list Γ are called hypothesizes. 

                                                           
11 Edwin Thompson Jaynes (July 5, 1922 – April 30, 1998) was the Wayman Crow Distinguished 
Professor of Physics at Washington University in St. Louis. 
12

 Gerhard Karl Erich Gentzen (November 24, 1909 – August 4, 1945) was a German mathematician and logician. He made major contributions to the foundations of mathematics, proo 

theory, especially on natural deduction and sequent calculus. He died of starvation in a Soviet prison camp in Prague in 1945, having been interned as a German national after the Secon World 
War 
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Def. 6:  

1) A sequence of the form C Ⱶ C is called NPC-axiom. 
2) A sequences of form Γ Ⱶ A and Γ Ⱶ B is obtained from a sequence of form Γ Ⱶ 

(A&B) by the conjunction removing rule (denote: R&). 
3) A sequence of form Γ1,Γ2 Ⱶ (A&B) is obtained from a sequence of form Γ1 Ⱶ A 

and a sequence of form Γ2 Ⱶ B by the conjunction inputting rule (denote: 
I&). 

4) A sequence of form Γ Ⱶ C is obtained from a sequence of form Γ Ⱶ (¬ (¬C)) by 
the negation removing rule (denote: R¬). 

5) A sequence of form Γ1,Γ2 Ⱶ (¬C) is obtained from a sequence of form Γ1,C Ⱶ A 
and from a sequence of form Γ2,C Ⱶ (¬A) by the negation inputting rule 
(denote: I¬). 

6) A finite string of sequences is called a propositional natural deduction if 
every element of this string either is NPC axiom or is received from 
preceding sequences by one of the deduction rules (R&, I&, R¬, I¬). 
 

These logical rules look naturally in light of the previous definitions. Hence, if a 
sequence  
Γ Ⱶ A is contained in some natural propositional deduction, then sentence A 
follows logically from the list of hypotheses Γ. 
 
Example 3:  

1. A Ⱶ A, NPC-axiom; 
2. ((¬A)&(¬B)) Ⱶ ((¬A)&(¬B)), NPC-axiom; 
3. ((¬A)&(¬B)) Ⱶ (¬A), R&, 2; 
4. A Ⱶ (¬ ((¬A)&(¬B))), I¬, 1,3. 

 
This string of 

sequences is a 
propositional natural 
deduction in accordance 
with point 6 of Def. 6 
because every element of 
this string either is NPC 
axiom or is received from 
preceding sequences by 
one of the deduction 
rules (R&, I&, R¬, I¬). 
Since sequence A Ⱶ (¬ 
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((¬A)&(¬B))) is contained in this deduction then 
sentence (¬ ((¬A)&(¬B))) follows logically from 
sentence A. 
 
 Example 4: 

1. (A&(¬A)) Ⱶ (A&(¬A)), NPC-axiom; 
2.  (A&(¬A)) Ⱶ A, R&, 1; 
3. (A&(¬A)) Ⱶ (¬A), R&, 1; 
4. Ⱶ (¬ (A&(¬A))), I¬, 2,3. 

 
This string is a propositional natural deduction, too. There sentence (¬ 

(A&(¬A))) follows logically from the empty list of hypothesizes. Such sentences are 
called propositionally provable sentences. 
 
Boolean functions13 
Def. 7:  Let function g has the double-elements set {0; 1} as a range of reference 
and A0 as a domain. And let 

1) g(¬A) = 1     g( A) for every sentence A; 
2) g(A&B) = g(A) × g (B) for all sentences A and B; 

In this case function g is a Boolean function. 
 
Hence if g is a Boolean function then for every sentence A: (g(A))2 = g(A) . 
 

A Boolean function can be defined by the following table: 
 

A B (¬A)    (A&B) 

0 0 1 0 

0 1 1 0 
1 0 0 0 

1 1 0 1 
 
Such tables can be constructed for any sentence. For example: 
 

A B C (¬ ((¬(A&(¬C))) &((A&B) &(¬ C)))) 
0 0 0 1 

0 0 1 1 
0 1 0 1 

0 1 1 1 

1 0 0 1 

                                                           
13

 George Boole ; 2 November 1815 – 8 December 1864) was a largely self-taught English mathematician, philosopher and logician, most of whose short career was spent as the first 

professor of mathematics at Queen' College, Cork in Ireland.  
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1 0 1 1 

1 1 0 1 
1 1 1 1 

 
If g is a Boolean function then by Def.7: 
 

g(¬ ((¬(A&(¬C))) &((A&B) &(¬ C)))) = 1     g((¬(A&(¬C))) &((A&B) &(¬ C))) = 

= 1     g(¬(A&(¬C)))×g((A&B) &(¬ C)) =1     (1     g(A&(¬C)))×g(A&B)×g(¬ C) = 

=1     (1     (g(A)×g(¬C)))×g(A&B)×g(¬ C) = 

=1     (g(A&B)×g(¬ C)     g(A)×g(¬C)×g(A&B)×g(¬ C)) = 

=1     (g(A&B)×g(¬ C)     g(A)×g(A&B)×g(¬ C)) = 

=1     ( g(A)×g(B)×g(¬ C)     g(A)× g(A)×g(B)×g(¬ C)) = 

=1     ( g(A)×g(B)×g(¬ C)     g(A) ×g(B)×g(¬ C)) = 1. 

  Therefore, for every Boolean function g: 

g(¬ ((¬(A&(¬C))) &((A&B) &(¬ C)))) = 1. 

Such sentences are called tautologies. 

Def. 8: A set A0,0 of sentences is called a basic set if for every element A of A0,0 
there exist Boolean functions g1 and g2 such that the following conditions are 
fulfill: 
 1) g1 (A) ≠ g2 (A); 
 2) for every element B of set A0,0: if B ≠ A then g1(B) = g2(B). 
 
 Set A0,0 does not contain conjunctions and negations of this set elements 

because if (A&B) A0,0, A A0,0, and B  A0,0 then Boolean functions g1 and g2 
exist such that 
 g1 (A&B) = 0, g2 (A&B) = 1, 
 g1 (A) = g2 (A) , 
 g1 (B) = g2 (B) . 
But it is impossible. Similar argumentation is for and negations. 
 
Def. 9: A set [A0,0] of sentences is called a propositional closure of the set A0,0 if 
the following conditions are satisfied: 

 1) if A A0,0 then A [A0,0]; 

 2) if A  [A0,0] then (¬A)  [A0,0]; 

 3) if A  [A0,0] and B  [A0,0] then (A&B)  [A0,0]; 
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 4) there are no other elements of the set [A0,0] except the enumerated 
above. 

 

Henceforth, [A0,0] = A0. 

 
Th. 1: Each naturally propositionally proven sentence is a tautology14. 
 
Th. 2 (Laszlo Kalmar):[4] Each tautology is a naturally propositionally proven 
sentence. 
 
  Consequently, whole propositional logic is defined by a Boolean 
function. 

Th. 3: Each naturally propositionally proven sentence is a true sentence. 
 
Th. 4: Each tautology is the true sentence. 

Probability 

Further we consider set A (the set of all sensible sentences). 

3.2. Events 
 

Def. 10: A set B of sentences is called event, expressed by sentence C, if the 

following conditions are fulfilled: 

C B; 

if  A B and D B then A = D; 

if  D B and A = D then A B. 

 

In this case denote: B := C. 

 

Def. 11: An event B occurs if here exists a true sentence A such that A B. 

 

Def. 12: Events A and B equal (denote: A = B) if A occurs if and only if B occurs. 

 

Def. 13: Event C is called product of event A and event B (denote: C = (A∙ B)) if C 

occurs if and only if A occurs and B occurs. 

                                                           
14

 Please see the proofs in Appendix 
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Def. 14: Events C is called complement of event A (denote: C = (#A)) if C occurs if 

and only if A does not occur. 

 

Def. 15: (A+B):= (#((#A)∙(#B))). Event (A+ B) is called sum of event A and event B. 

 

 Therefore, the sum of event occurs if and only if there is at least one of the 

addends. 

 

Def. 16: The persistent event (denote: T) is the event which contains a tautology. 

 

 Hence, T occurs by Th.4. 

 

Def. 17: The impossible event (denote: F) is event which contains negation of a 

tautology. 

 

 Hence, F does not occur by Th.4, too.  

 

3.3. B-functions 
 

Def. 18: Let b(X) be any function defined on the set of events. 
 And let the real numbers segment [0; 1] is this function frame reference. 
 Let there exists an event C0 such that b(C0) = 1. 
 Let for all events A and B: 
 

b(A∙B)+b(A∙(#B)) = b(A). 
 

 In that case function b(X) is called a B-function. 

 By this definition:  

b(A∙B)  b(A).                                                             (p1) 

 Hence, b(T∙C0)  b(T). Because T∙C0 = C0 (by Def.13 and Def.16) then b(C0)  

b(T). Because b(C0) = 1 then  

b(T) = 1.                                                                   (p2) 
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 From Def.18: b(T∙B)+b(T∙(#B)) = b(T). Because T∙D = D for any D by Def.13 

and Def.16 then b(B)+b (#B) = b(T). Hence, by (p2): for any B: 

b(B)+b (#B) =1.                                                            (p3) 

 Therefore, b(T)+b (#T) =1. Hence, in accordance (p2) and in accordance 

Def.14, Def.16, and Def.17 : 1+b (F) =1. Therefore, 

b (F) = 0.                                                                   (p4) 

In accordance with Def.18, Def.15, and (p3): 

b(A∙(B+C)) = b(A∙(#((#B)∙(#C)))) = b(A)    b(A∙((#B)∙(#C))) = b(A)     b((#C)∙((#B)∙ A)) = 

= b(A)     (((#B)∙ A)     b(C∙((#B)∙ A))) = b(A)     ((#B)∙ A) + b(C∙((#B)∙ A)) = 

= b(A∙B)  + (A∙ )     b(A∙B∙C)). 

And 

b( (A∙B)+(A∙C)) = b(#((#(A∙B))∙(#(A∙ )))) = 1    b((#(A∙B))∙(#(A∙C))) = 

= 1    (1   b(A∙B)) + (b(A∙ )     b(A∙B∙A∙C)) = b(A∙B)) + b(A∙ )     b(A∙B∙A∙C) = 

= b(A∙B)) + b(A∙ )     b(A∙B∙C) 

because A∙A = A in accordance with Def.13. 

Therefore: 

b(A∙(B+C)) = b(A∙B)  + (A∙ )     b(A∙B∙C))                                    (p5) 

and 

b( (A∙B)+(A∙C)) = b(A∙B)) + b(A∙ )     b(A∙B∙C).                                  (p6) 

Hence (distributivity): 

b(A∙(B+C)) = b( (A∙B)+(A∙C)).                                          (p7) 

 If A = T then from (p5) and (p6) (the addition formula of probabilities): 

b(B+C) = b(B) + b( )     b(B∙C).                                        (p8) 

Def. 19: Events B and C are antithetical events if (B∙ C) = F. 

 From (p8) and (p4) for antithetical events B and C: 
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b(B+C) = b(B) + b(C).                                                  (p9) 

Def. 20: Events B and C are independent for B-function b events if b(B∙C)= 

b(B)∙b(B). 

 If events B and C are independent for B-function b events then: 

b(B∙(#C)) = b( )     b(B∙C) = b( )     b(B)∙b(C) = b(B)∙(1     b(C)) = b(B)∙b(#C). 

 Hence, if events B and C are independent for B-function b events then: 

b(B∙(#C)) = b(B)∙b(#C).                                                       (p10) 

 Let calculate: 

b(A∙(#A)∙C) = b(A∙ )     b(A∙A∙C) = b(A∙ )     b(A∙C) = 0.                       (p11) 

 

3.4. Independent Tests 
 

Let N be the natural numbers set. 
 
Def. 21:  Let st(n) be a function such that st(n) has domain on N and has a range 
of values in the set of events.  
 In this case an event C is a [st]-series of range r with V-number k if C, r and k 
is subject to one of the following conditions: 
 
1) r =1 and k = 1, C := st(1), or k = 0, C := (#st(1)); 
2) B is a [st]-series of range r    1 with V-number k     1 and  
 

C:= (B∙ st(r)) , 
 

or B is a [st]-series of range r    1 with V-number k and 
 

C:= (B∙(#st(r))). 
 

 Let us denote a set of [st]-series of range r with V-number k as [st](r; k). 
 
For example, if st(n)  is event Bn then the following events: 
 

(B1∙B2∙(#B3)), (B1∙(#B2)∙B3), ((#B1)∙B2∙B3) 
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are elements of [st](3;2), and 
 

(B1∙B2∙(#B3) ∙B4∙(#B5)) [st](5;3). 
 
Def. 22: Def. 4.2.2: Function st(n) is independent for B-function b if:   
 

b(st(1)∙ st(2)∙… ∙st(k)) = b(st(1))∙b(st(2))∙… ∙b(st(k)) 
for any k. 
 
Def. 23: Let st(n) has domain on the set of natural numbers and has range of 
values in the set of events. 
 In this case event C is called a [st]-sum of range r with V-number k (denote:  
C:= ŧ[st](r, k)) if C is a sum of all elements of [st](r, k). 
 
For example, if st(n) is the sentence Cn then: 
 
((#C1)∙ (#C2)∙ (#C3)) = ŧ[st] (3;0), 
 
ŧ[st] (3;2) = (((#C1)∙C2∙C3) + (C1∙(#C2)∙C3) + (C1∙C2∙(#C3)), 
 
ŧ[st] (3;1) = ((C1∙(#C2)∙ (#C3))+ ((#C1)∙C2∙(#C3))+ ((#C1)∙(#C2)∙C3)), 
 
 (C1∙C2∙C3)  = ŧ[st] (3;3). 
 
Def. 24: Let a function sA(n) be defined on N, has range of values in the set of 
events, and be independent for a B-function b.  
 And let sA(n) satisfies the following condition: b(sA(n)) = b(A) for any n. 
 In that case the [sA]-series of rank r with V-number k is called series of r 
independent for B-function b [sA]-tests of event A with result k. 
 
Def. 25: Function r[sA] is called a frequency of event A in [sA]-series if r[sA] = k/r  
if and only if event ŧ[sA](r, k) occurs. 
  
Hence,  

« r(sA) = k/r» = ŧ[sA](r, k).                                                     (p12) 
 
Th. 5: (the Bernoulli15 Formula) [13] If s(n) is independent for B-function b and 
there exists a real number p such that for all n: b(s(n)) = p then 

 

                                                           
15

 Jacob Bernoulli[a]  James or Jacques; 6 January 1655 27 December 1654] – 16 August 1705) was one of the many prominent mathematicians in the Bernoulli family. 

https://en.wikipedia.org/wiki/Jacob_Bernoulli#cite_note-3
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b ŧ s         
  

        
            

 
 
Def. 26: Let a function s(n) be defined 
on N and has a range of values in the set 
of events. 
 In that case an event Ŧ[s](r,k,l) 
with natural r, k, l is defined in the 
following way: 
1) Ŧ[s](r,k,k) := ŧ[s](r,k), 

2) Ŧ[s](r,k,l + 1) := (Ŧ[s](r,k,l) + ŧ[s](r,l + 1)). 

 If a and b are real numbers, and k    1 < a  k and l  b < l + 1 then  
Ŧ[s](r,a,b) := Ŧ[s](r,k,l). 
 

Th. 6: Ŧ[sA](r,a,b) occurs if and only if a/r  r[sA]  b/r. 
 
Th.7: If s(n) is independent for a B-function b and there exists a real number p 
such that  
b(s(n)) = p for all n then 
 

b Ŧ sA           
  

        
           

   

 

 
Th. 8: If s(n) is independent for a B-function b and there exists a real number p 
such that  
b(s (r)) = p for all r then 

 

b  Ŧ sA                                
       

    
 

 
for every positive real number  . 
 
 Hence, in accordance with Th.6: 
 

b           sA             
       

    
                                             

 
 The right part of this inequality doesn't depend on sequence s. Hence it can 
be rewritted as the following: 
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b           A             
       

    
                                          p    

 
 
 

3.5. Function of Probability 
 

Nonstandard Numbers 
 
Further some variant of the Robinson non-standard analysis (for instant [6]) is 
required: 
 
Def. 27: A n-part-set S of N is defined 
recursively as follows: 
 1) S1 = {1}; 

 2) S(n+1) = Sn  {n + 1}. 

Def. 28: If Sn is a n-part-set of N and A 

 N then ║A∩Sn║ is quantity of 
elements of set A∩Sn, and if  
              n then       is 
called a frequency of set A on the n-
part-set Sn. 
 

 Because       =        n = n/n then 
 

                                                                               (s1) 
 
 Becaus                                 n + 
+                n then 
 

                                                                                 (s2) 
 

Hence,  
 
                          and because for any             
then 
  

                                                                              (s3) 
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Therefore,                  That is              . 
 
Hence, 

       .                                                                       (s4) 
 

Def.29: If ”lim” is the  auchy-Weierstrass ”limit” then: 
 

           lim
   

          

 
 Hence, in accordance with (s1) 
 

       and                                                                   (s5)             
 

         If        then  lim              In accordance with (s2):  
 

                      Therefore, lim                . Hence,  
 
lim           lim           
 

Therefore, if       and       then           .                                    (s6) 
 

 Moreover,  
 

if       and    then      .                                                     (s7) 
 

 Therefore, in accordance with (s5), (s6), (s7),     is a filter (for instance, 
[6], p.45), but  
     is not an ultrafilter because there exist subsets   of   such that         
and 
           . 
 

Def. 30: A series of real numbers rn and sn are Q-equivalent (denote: rn  sn) 
if 
 

                    
 

 Hence, if r, s,u are series of real numbers then r  r; if r  s then s  r; and if 

r  s, and  

s u then r u. Therefore, «» is an equivalence relation. 
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Def. 31: A Q-number is a set of Q-equivalent series of real numbers. 
 

 That is if a is a Q-number and r a and s  a then r  s; and if r a, and  

r  s then s  a. 
 
Def. 32: A Q-number b is a standard Q-number b if b is some real number and 

there exists a series rn  such that rn b, and 
 

                   
 
In this case b := b. 
 
Def. 33: Q-numbers a and b equal (denote: a = b) if a  b and b  a. 
 
Def. 34: Q-number c is sum of Q-number a and Q-number b (denote: c = a + b) if 

there exist series of real numbers rn, sn, un such that rn a, sn b, un c, 
and  
 

                       
 
 If a is a real number then a + b = a + b where a is standard Q-number a. 
 
Def. 35: Q-number c is product of Q-number a and Q-number b (denote: c = a ∙ b) 

if there exist series of real numbers rn, sn, un such that rn a, sn b, un 
c, and  
 

                       
 

 Hence, a  b = a + (1)   b =  a + (-1)   b. And  
 

   =
 

 
  :=     =        

 
 
Def. 36: A Q-number   is called an infinitesimal Q-number if there exists a series 

of real numbers xn such that xn , and for all natural numbers m: 
 

            
 

 
       

 
Denote by I the set of all infinitesimal Q-numbers. 
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Def. 37: Q-numbers   and   are infinitely near (denote:     ) if either (    ) = 0 
or  

(    )   . 
 
Def. 38: A Q-number   is called an infinitely large Q-number if there exists a series 

rn of real numbers such that rn  , and for every natural number m: 
 

                   
 
 Let   be the Q-number which contains the following series  
 

n := 1,2,3,4,…,n,… . 
 

 Let m be some natural number. 
 In that case: 
 

lim
   

                 lim
   

   

 
    

Hence, for any natural m: 

                  

 Therefore,   is an infinitely large Q-number. Denote n the natural infinity. 

 Let a be a positive real number. In this case a/  contains the series a/n. 

Let m be some natural number and let k be some natural number which is more 

than a. In that case if n>mk then (a/n) < 1/m. That is for any natural number m: 

lim
   

          
 

 
 

 

 
    lim

   

    

 
                                              s   

 
 Therefore, a/  is an infinitesimal Q-number in accordance with Def.36. 
 

Def. 39: Let A(x) be a sentence which contains a real number x. And let   be a Q-

number. In that case event A( ) occurs if and only if here a series rn of real 

number exists for which the following conditions are fulfilled: rn    and 

       A     occurs       

P-functions 
Def. 40: A B-function   is called P-function if for every event A the following 

condition is fulfilled:  
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 If  (A)  1 then A occurs. 

 In accordance with (p13): for any natural number n and for positive real ε: 

            A             
       

    
                                                    

 

 Hence,  

            A             
       

    
                                                    

 
 Because in accordance with (s8)            (     ))    then in 
accordanse with  
Def.37: 

            A                                                                        
 

 Hence, event           A        occurs. 

 Since      A  then for all arbitrarily small real positive  : 

  A      A       

 Consequently, this function has a statistical meaning. Therefore, in all over 

the world there exists the only single such function because values of this function 

can be defined by repetition of independent tests experimentally. Therefore, I call 

this function the probability function (proof of of the consistency see in [7]). 

3.6. Probability and Logic 
 

Let   be the probability function and let B be the set of events A such that either 
A occurs or (#A) occurs. 
 In this case if   A    then A occurs, and (A   ) =   in accordance with 
Def.13. Consequently, if        then   A      . Hence, in this case 
 A        A       . 
 If   A    then    A        A       because   A        A  in 
accordance with (p1). 
 Moreover in accordance with (p3):     A      A  since the function 
  is a  B-function. 
 If event A occurs then  A     =   and  A        =       Hence,  
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  A       A           A  =               

 
 Consequently, if an element A of B occurs then   A  = 1. If A does not 
occurs then (#A) occurs. Hence,    A  = 1 and because   A     A    then 
  A  = 0.  
 Therefore, on B the range of values of   is the two-element set {0; 1} 
similar the Boolean function  range of values. 
 
 Hence, on set B the probability function obeys definition of a Boolean 
function (Def.7).  
 
 Therefore, the probability is logic of the events which have not occurred yet.
  

Appendix 
 

Lm. 1: If g is a Boolean function then every natural propositional deduction of 
sequence Γ Ⱶ A satisfy the following condition: if g(A) = 0 then there exists a 

sentence C such that C  Γ and  
g(C) = 0. 
 
Proof of Lm. 1: is realized by a recursion on number of sequences in the 
deduction of Γ Ⱶ A: 
 1. Basis of recursion: Let the deduction of Γ Ⱶ A contains 1 sequence. 
 In that case a form of this sequence is A Ⱶ A in accordance with the 
propositional natural deduction definition (Def. 6). Hence in this case the lemma 
holds true. 
 2. Step of recursion: The recursion assumption: Let the lemma holds true 
for every deduction containing no more than n sequences. 
 Let the deduction of Γ Ⱶ A contains n + 1 sequences. 
 In that case either this sequence is a NPC-axiom or Γ Ⱶ A is obtained from 
previous sequences by one of deduction rules. 
If Γ Ⱶ A is a NPC-axiom then the proof is the same as for the recursion basis. 
a) Let Γ Ⱶ A be obtained from a previous sequence by R&.  
 In that case a form of this previous sequence is either the following Γ Ⱶ 
(A&B) or is the following Γ Ⱶ (B&A) in accordance with the definition of deduction. 
The deduction of this sequence contains no more than n elements. Hence the 
lemma holds true for this deduction in accordance with the recursion assumption. 
If g (A) = 0 then g (A&B) = 0 and g (B&A) = 0 in accordance with the Boolean 
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function definition (Def. 2.10). Hence there exists a sentence C such that C Γ and 
g(C) = 0 in accordance with the lemma. 
 Hence in that case the lemma holds true for the deduction of sequence Γ Ⱶ 
A. 
b) Let Γ Ⱶ A be obtained from previous sequences by I&. 

 In that case forms of these previous sequences are Γ1 Ⱶ B and Γ2 Ⱶ G with Γ = 
Γ1,Γ2 and  

A = (B&G) in accordance with the definition of deduction. The lemma holds true 
for deductions of sequences Γ1 Ⱶ B and Γ2 Ⱶ G in accordance with the recursion 
assumption because these deductions contain no more than n elements. In that 
case if g(A) = 0 then g(B) = 0 or g(G) = 0 in accordance with the Boolean function 

definition. Hence there exist a sentence C such that g(C) = 0 and C  Γ1 or C  Γ2. 
 Hence in that case the lemma holds true for the deduction of sequence Γ Ⱶ 
A. 
c) Let Γ Ⱶ A be obtained from a previous sequence by R¬. 
 In that case a form of this previous sequence is the following: Γ Ⱶ (¬ (¬A)) in 
accordance with the definition of deduction. The lemma holds true for the 
deduction of this sequence in accordance with the recursion assumption because 
this deduction contains no more than n elements. If g(A) = 0 then g(¬ (¬A)) = 0 in 
accordance with the Boolean function definition. Hence there exists a sentence C 

such that C  Γ and g(C) = 0.  
 Hence the lemma holds true for the deduction of sequence Γ Ⱶ A. 
d) Let Γ Ⱶ A be obtained from previous sequences by I¬. 
 In that case forms of these previous sequences are Γ1,G Ⱶ B and Γ2,G Ⱶ (¬B) 
with Γ = Γ1, Γ2, and A = (¬G) in accordance with the definition of deduction. The 
lemma holds true for the deductions of sequences Γ1,G Ⱶ B and Γ2,G Ⱶ (¬B) in 
accordance with the recursion assumption because these deductions contain no 
more than n elements. 
 If g (A) = 0 then g (G) = 1 in accordance with the Boolean function 
definition. 
 Either g (B) = 0 or g (¬B) = 0 by the same definition. Hence there exists a 

sentence C such that either C  Γ1,G or C  Γ2,G and g(C) = 0 in accordance with 
the recursion assumption. 
 Hence in that case the lemma holds true for the deduction of sequence Γ Ⱶ 
A. 
 The recursion step conclusion: Therefore, in each possible case, if the 
lemma holds true for a deduction contained no more than n elements then the 
lemma holds true for a deduction contained n + 1 elements. 
 The recursion conclusion: Therefore the lemma holds true for a deduction 
of any length■ 
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Proof of Th. 1: If a sentence A is naturally propositionally proven then there exists 
a natural propositional deduction of form Ⱶ A. Hence, for every Boolean function 
g: g(A) = 1 in accordance with Lm.1. Hence, sentence A is a tautology■ 
 
Designation 1: Let g be a Boolean function. In that case for every sentence A: 
 

     
            

               
  

 
Lm. 2: [4] Let B1;B2,…,Bk be elements of a basic set A0,0 making up a sentence A by 
the logical connectors (¬, &). 
 Let g be any Boolean function. 
 In that case there exist a propositional natural deduction of sequence 
 

B1
g;B2

g,…,Bk
g Ⱶ Ag. 

 
Proof of Lm. 2: is realized by a recursion on the number of the logical connectors 
in sentence A. 
1.Basis of recursion: Let A does not contain the logical connectors.  
 In this case the following string of one sequence: 
1. Ag Ⱶ Ag, NPC-axiom. 
gives the proof of the lemma. 
2. Step of recursion: The recursion assumption: Let the lem-ma holds true for 
every sentence, containing no more than n logical connectors. 
 Let sentence A contains n + 1 connector.  
 Let us consider all possible cases: 

a) Let A = (¬G).  
 In that case the lemma holds true for G in accordance with the recursion 
assumption because G contains no more than n connectors. Hence, there exists a 
deduction of sequence 
 

                                         B1
g;B2

g,…,Bk
g Ⱶ Gg,                                                          (1) 

 
here B1;B2,…,Bk are elements of basic set making up sentence G. 
 Hence, B1;B2,…,Bk make up sentence A. 
 If g (A) = 1 then Ag = A = (¬G) in accordance with Designation 1. 
In that case g(G) = 0 in accordance with the Boolean function definition. Hence, 
Gg = (¬G) = A in accordance with Designation 1. 
 Hence, in that case a form of sequence (1) is the following: 
 

B1
g;B2

g,…,Bk
g Ⱶ Ag. 
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 Hence, in that case the lemma holds true. 
 If g(A) = 0 then Ag = (¬A) = (¬ (¬G)) .in accordance with Designation 1. In 
that case  
g(G) = 1 in accordance with the Boolean function definition. Hence, Gg = G in 
accordance with Designation 1. 
 Hence,  in that case a form of sequence (1) is 
 

B1
g;B2

g,…,Bk
g Ⱶ G. 

 
 Let us continue the deduction of this sequence in the following way: 
 
1. B1

g;B2
g,…,Bk

g Ⱶ G 
2. (¬G) Ⱶ (¬G), NPC-axiom. 
3. B1

g;B2
g,…,Bk

g Ⱶ (¬ (¬G)), I¬ from 1. and 2. 
 
It is a deduction of sequence 
 

B1
g;B2

g,…,Bk
g Ⱶ Ag. 

 
 Hence, in that case the lemma holds true. 
b) Let A = (G&R). 
 In that case the lemma holds true both for G and for R in accordance with 
the recursion assumption because G and R contain no more than n connectors. 
Hence, there exist deductions of sequences 
                                                        B1

g;B2
g,…,Bk

g Ⱶ Gg                                                       (2) 
 

and 
 

B1
g;B2

g,…,Bk
g Ⱶ Rg,                                                      (3) 

 
here B1;B2,…,Bk are elements of basic set  making up sentences G and R. Hence 
B1;B2,…,Bk make up sentence A. 
 If g(A) = 1 then Ag = A = (G&R) in accordance with Designation 1. 
 In that case g(G) = 1 and g(R) = 1 in accordance with the Boolean function 
definition. 
 Hence, Gg = G and Rg = R in accordance with Designation 1. 
 Let us continue deductions of sequences (2) and (3) in the following way: 
 
1. B1

g;B2
g,…,Bk

g Ⱶ G, (2). 
2. B1

g;B2
g,…,Bk

g Ⱶ Rg, (3). 
3. B1

g;B2
g,…,Bk

g Ⱶ (G&R), I& from 1. and 2. 
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It is deduction of sequence  

B1
g;B2

g,…,Bk
g Ⱶ Ag. 

 
 Hence, in that case the lemma holds true. 
 If g (A) = 0 then Ag = (¬A) = (¬ (G&R)) in accordance with Designation 1. 
 In that case g(G) = 0 or g(R) = 0 in accordance with the Boolean function 
definition. 
 Hence, Gg = (¬G) or Rg = (¬R) in accordance with Designation 1. 
 Let Gg = (¬G). 
 In that case let us continue a deduction of sequence (2) in the following 
way: 
 
1. B1

g;B2
g,…,Bk

g Ⱶ (¬G), (2). 
2. (G&R) Ⱶ (G&R), NPC-axiom. 
3. (G&R) Ⱶ G, R& from 2. 
4. B1

g;B2
g,…,Bk

g Ⱶ (¬ (G&R)), I¬ from 1. and 3. 
 
It is a deduction of sequence 
 

B1
g;B2

g,…,Bk
g Ⱶ Ag. 

 
 Hence, in that case the lemma holds true. 
 The same result is received if Rg = (¬R). 
 The recursion step conclusion: If the lemma holds true for sentences 
contained no more than n connectors then the lemma holds true for sentences 
contained n + 1 connectors. 
 The recursion conclusion: The lemma holds true for sentences, containing 
any number connectors ■ 
 
Proof of Th. 2: Let sentence A be a tautology. That is for every Boolean function g: 
g(A) = 1. 
 Hence there exists a deduction for sequence 
 

B1
g;B2

g,…,Bk
g Ⱶ A                                                    (4) 

 
for every Boolean function g in accordance with Lm. 2. 
 There exist Boolean functions g1 and g2 such that 
 

g1(B1) = 0, g2(B1) = 1, 

g1 (Bs) = g2(Bs) for s{2,…, k}. 
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in accordance with Def. 8 because all Bs (s  {1; 2,…, k}) are elements of the basic 
set. 
 Forms of sequences (4) for these Boolean functions are the following: 
 

        
       

  Ⱶ  ,                                                     (5) 
 

     
       

  Ⱶ  .                                                        (6) 
 
 Let us continue deductions of these sequences in the following way: 
 
1.         

       
  Ⱶ    (5), 

2.      
       

  Ⱶ  , (6), 
3. ( A) Ⱶ ( A), NPC-axiom. 
4. ( A),   

       
   Ⱶ (  ( B1)), I  from 1. and 3. 

5. ( A),   
       

   Ⱶ ( B1), I  from 2. and 3. 
6.   

       
   Ⱶ (  ( A)), I  from 4. and 5. 

7.   
       

   Ⱶ A, R  from 6. 
 
It is deduction of sequence  

  
       

   Ⱶ A. 
 

 This sequence is obtained from sequence (4) by deletion of first sentence 
from the hypothesizes list. 
 All rest hypothesizes are deleted from this list in the similar way. 
 Final sentence is the following: 

Ⱶ A. 
■ 
 
Lm. 3: Every natural propositional deduction of a sequence Γ Ⱶ A satisfy the 

following condition: if A is not true then there exists a sentence C such that C  Γ 
and C is not true. 
 
Proof of Lm. 3: is realized by a recursion on number of sequences in the 
deduction of Γ Ⱶ A: 
 1. Basis of recursion: Let the deduction of  Γ Ⱶ A contains 1 sequence. 
 In that case a form of this sequence is A Ⱶ A in accordance with the 
propositional natural deduction definition. Hence in this case the lemma holds 
true. 
 2. Step of recursion: The recursion assumption: Let the lemma holds true 
for every deduction containing no more than n sequences. 
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 Let the deduction of Γ Ⱶ A contains n + 1 sequences. 
 In that case either this sequence is a NPC-axiom or Γ Ⱶ A is obtained from 
previous sequences by one of deduction rules. 
If Γ Ⱶ A is a NPC-axiom then the proof is the same as for the recursion basis. 
e) Let Γ Ⱶ A be obtained from a previous sequence by R&.  
 In that case a form of this previous sequence is either the following Γ Ⱶ 
(A&B) or is the following Γ Ⱶ (B&A) in accordance with the definition of deduction. 
The deduction of this sequence contains no more than n elements. Hence the 
lemma holds true for this deduction in accordance with the recursion assumption. 
If A is not true then (A&B) is not true and (B&A) is not true. Hence there exists a 

sentence C such that C Γ and C is not true in accordance with the lemma. 
 Hence in that case the lemma holds true for the deduction of sequence Γ Ⱶ 
A. 
f) Let Γ Ⱶ A be obtained from previous sequences by I&. 

 In that case forms of these previous sequences are Γ1 Ⱶ B and Γ2 Ⱶ G with Γ = 
Γ1,Γ2 and  

A = (B&G) in accordance with the definition of deduction. The lemma holds true 
for deductions of sequences Γ1 Ⱶ B and Γ2 Ⱶ G in accordance with the recursion 
assumption because these deductions contain no more than n elements. In that 
case if A is not true then B is not true or G is not true. Hence there exist a 

sentence C such that C is not true and C  Γ1 or C  Γ2. 
 Hence in that case the lemma holds true for the deduction of sequence Γ Ⱶ 
A. 
g) Let Γ Ⱶ A be obtained from a previous sequence by R¬. 
 In that case a form of this previous sequence is the following: Γ Ⱶ (¬ (¬A)) in 
accordance with the definition of deduction. The lemma holds true for the 
deduction of this sequence in accordance with the recursion assumption because 
this deduction contains no more than n elements. If A is not true then (¬ (¬A)) is 

not true. Hence there exists a sentence C such that C  Γ and C is not true.  
 Hence the lemma holds true for the deduction of sequence Γ Ⱶ A. 
h) Let Γ Ⱶ A be obtained from previous sequences by I¬. 
 In that case forms of these previous sequences are Γ1,G Ⱶ B and Γ2,G Ⱶ (¬B) 
with Γ = Γ1, Γ2, and A = (¬G) in accordance with the definition of deduction. The 
lemma holds true for the deductions of sequences Γ1,G Ⱶ B and Γ2,G Ⱶ (¬B) in 
accordance with the recursion assumption because these deductions contain no 
more than n elements. 
 If A is not true then G is true. 
 Either B is not true or (¬B) is not true. Hence there exists a sentence C such 

that either C  Γ1,G or C  Γ2,G and C is not true in accordance with the recursion 
assumption. 
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 Hence in that case the lemma holds true for the deduction of sequence Γ Ⱶ 
A. 
 The recursion step conclusion: Therefore, in each possible case, if the 
lemma holds true for a deduction contained no more than n elements then the 
lemma holds true for a deduction contained n + 1 elements. 
 The recursion conclusion: Therefore the lemma holds true for a deduction 
of any length■ 
 
Proof of Th. 3: If a sentence A is naturally propositionally proven then there exists 
a natural propositional deduction of form  Ⱶ A (deduction from the empty list of 
hypothesizes). Hence, A is true in accordance with Lm.3. ■ 
 
Proof of Th. 4: Each tautology is naturally propositionally proven sentence by Th. 
2. Each naturally propositionally proven sentence is a true sentence by Th.3. 
Therefore, every tautology is the true sentence ■ 

Proof of Th. 5: If B[s](r,k) then b(B) = pk         in accordance with Def. 22 
and with (p10). 
 Since [s](r,k) contains r!/ (k!(r   k)!) elements then this theorem hold true 
according with (p9), (p10), and (p11) ■ 
 
Proof of Th. 6: In accordance with Def. 26: there exist natural numbers n and k 
such that  

k    1 < a  k and k + n  b < k + n + 1, and Ŧ[sA](r,a,b) := Ŧ[sA](r,k,k + n). 
The recursion on n: 
Basis of recursion: Let n = 0. 
In that case according Def. 25 and Def. 24:  
  

Ŧ[sA](r,k,k) = ŧ[sA](r,k) = « r(sA) = k/r». 
 
Step of recursion: 
The recursion assumption: Let 
 

Ŧ[sA](r,k,k + n) = «k/r  r[sA]  (k+n)/r». 
 
According to Def. 26: 
 

Ŧ[sA](r,k,k + n + 1) = Ŧ[sA](r,k,k + n) + ŧ[sA](r,k + n + 1). 
 
According to the recursion assumption and according to Def. 25: 
 

Ŧ[sA](r,k,k + n + 1) = («k/r  r[sA]  (k+n)/r» + « r(sA) = (k+n + 1)/r»). 
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Hence according to Def.15: 
 

Ŧ[sA](r,k,k + n + 1) = («k/r  r[sA]  (k+n+1)/r». 
 
The recursion step conclusion: Therefore, if this theorem holds true for n then 
one holds true for n + 1. 
 
The recursion conclusion: Therefore, this theorem holds true for any n ■ 
 
Proof of Th.7:  It follows from Th.5 and (p9) at once ■ 
 
Proof of Th. 8: Because 
 

         

 

   

  

        
                     

 
then if  
 

                                             
then 

 
  

        
           

       

    
 

  

 

 
Hence this theorem holds true according to (p3) ■  
 

4. Physics 

 

Let  FA(x)  be a Cumulative Distribution Function of event A, i.e.:  

 

Here                                                are  random coordinates of event A.: 

Let: 
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The vector < j0, j1, j2, j3> is a probability current vector. 
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If uk :=  ( jk/j0)c hen vector < u1, u2, u3> is  a velocity of the probability propagation.  
For example: 
 
 

 

 

 A velocity of the probability propagation obey the following condition:                                             

(Traceable events) [1.pp.33—36] . 

 

 For all probability current vector < j0, j1, j2, j3> a 4X1 complex matrix function φ 

exists which obeys to the following conditions [1. Pp.63—66]: 
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Therefore, for every function φ  here exists an operator Qj,k, such that a 

dependence of φ on t is described by the following differential equation (equation 

of the Dirac16 type): 

                                                           
16

 Paul Adrien Maurice Dirac/ 8 August 1902 – 20 October 1984) was an English theoretical physicist who is regarded as one of the most significant physicists of the 20th century. 

c
x

x

F

F

xxx

F

c
xxx

F

c
j

j
u 
















































0

2

123

013

321

3

310

3

0

2
2

22

3

2

2

2

1 cuuu 

 *4†  kk

c

j


0
3

3

2

2

1

1

0





















x

j

x

j

x

j

x



 

ss

s

xx
Q









 



3

10

:ˆ 

  0ˆˆ   QQ

QQ ˆˆ 

 
k

k s

kjs

s

kjjt Qc   
 











4

1

3

1

,,



51 
 

51 
 

And Qj,k* = − Qjk,j. 

 

 

 

 

 

 

If                                                           

 

 then this equation can be transformed to the following form [1. p.86]: 
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with real  

Because                                                             with  k ∈ (1,2,3)  then: 

 

 

 

 

 

 

I call this equation as Basix Quant Equation.  

 












22

225

10

01
:

  3,2,1,0,,,,,,,,, 4,0.4,0,4,0,40  kMMMMMMMM kk

       hkkk  

4,0.4,0,4,0,40 ,,,,,,,  MMMMMMMM



52 
 

52 
 

Here Θk and Ύk are gauge bosons and                                                                                         

are mass members.                

4.1. Quarks and gluons 
The quark model was independently proposed by physicists Murray Gell-

Mann17 and George Zweig18 in 1964. 

If M0 = 0 = M4 then from Basix Quant Equation:  

 

 

 
 
 
 
 
I call this equation as the Quark Equation. 
Here: 
 

 

 

 

are mass elements of red pentad 

 

 

 

 

are mass elements of green pentad. 

 

                                                           
17

 Murray Gell-Mann September 15, 1929 – May 24, 2019)[5][6] was an American physicist 
18

 George Zweig ; born May 30, 1937) is a Russian-American physicist. 

https://en.wikipedia.org/wiki/Murray_Gell-Mann#cite_note-tnyt-5
https://en.wikipedia.org/wiki/Murray_Gell-Mann#cite_note-tnyt-5
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mass elements of blue pentad. 

I call: 

 Mζ,,0, Mζ,,4 red lower and upper mass member, 

 Mη,0, Mη,,4 green lower and upper mass member, 

 Mθ,0, Mθ,4 blue lower and upper mass member, 

 

 

 

 

The mass numbers of this equation form following matrix sum: 

 

 

 

 

 

With  
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     Elements of these matrices can be rotated by the following octad elements/  
 

Ů := {U1,2(ς), U1,3(ϑ), U2,3(α), U0,1(σ), U0,2(ϕ), U0,3(ι), U
~

(χ), Û (κ)} 
 

where ς(t, x ), ϑ(t, x ), α(t, x ), σ(t, x ), ϕ(t, x ), ι(t, x ), χ(t, x ), κ(t, x ) are any real 
functions. 
     For example, if  
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     Therefore, matrix U2,3 makes an oscillation between green and blue colors. And 
this transformation of Quark  Equation  bends time-space as the following: 
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                   (16) 

 
     Therefore, the oscillation between blue and green colors bends the space in 
the x2, x3 directions. 
 

     One more example: if ''M̂  := 
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     Therefore, matrix U0,1 makes an oscillation between green and blue colors with 
an oscillation between upper and lower mass members.. And this transformation 
of Quark Equation  bends time-space as the following: 
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     Therefore, the oscillation between blue and green colors with the oscillation 
between upper and lower mass members bends the space in the t, x1 directions. 
     Such transformation with elements of set Ů add to equation Quark Equation 
gauge fields of the following shape: Uk,l

−1(ξ)∂sUk,l (ξ) where: Uk,l (ξ)Ů. And for 
every element Uk,l (ξ) of Ů exists [1. 0p.155--158] matrix Λk,l such that 
 

Uk,l
−1(ξ)∂ sUk,l (ξ) = Λk,l∂s (ξ) 

 
and for every product U of  Ů’s elements real functions Gr

s(t, x1, x2; x3) exist such 
that [1. pp.158] 
 

U−1(ξ)∂ sU (ξ) = 



8

1

3

2 r

s
r

rG
g

 

 
with some real constant g3 (similar to 8 gluons). 
Therefore,  gluons are result of work of the Poinkare transformations – 8 gluons 
from 8 matrcies. 
_________________________ 
 
     From (17): the oscillation between upper and lower mass members bends the 
space in the t, x1 directions with 
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Hence, if v is the velocity of a coordinate system <t’,x1’> in the coordinate system 
<t,x1> then 
Hence, if v is the velocity of a coordinate system <t’,x1’> in the coordinate system 

<t,x1> then 
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     Therefore,  v = c 2tanh . 

    Let  

2σ = ω(x1)
1x

t
  with  ω(x1) := 

1x


.                                         (18) 

where λ is a real constant with positive numerical value.     

In this case: 

 

  

     If g is an acceleration of system <t’,x1’>  as respects to system <t,x1> then 

g(t,x1) := 
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     Fig. 5 shows a dependency of this acceleration on x1. 
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Fig. 5 

 Hence, to the right from point C′ and to the left from poin C the Newtonian 
gravitation 

law19 is carried out. (g(x1) ≈ 2

1x


.) 

 AA′ is the Asymptotic Freedom20 Zone. 

    and  ′ ′ is the Confinement21 Zone.  
 
 
 
 
 

 
 
 
 
 
 
 
 

                                                           
19

 Sir Isaac Newton  (25 December 1642 – 20 March  was an English mathematician, physicist, astronomer, theologian, and author (described in his own day as a "natural philosopher") who 

is widely recognized as one of the most influential scientists of all time and as a key figure in the scientific revolution.  
20

 Asymptotic freedom in QCD was discovered in 1973 by David Gross and Frank Wilczek, [1] and independently by David Politzer in the same year 
21 “Today, we know that there are many phenomena, especially confinement in QCD, that cannot be understood “David J. Gross, Proc Natl Acad Sci U S A. 2005 Jun 28; 102(26): 

9099–9108. Published online 2005 Jun 20. doi: 10.1073/pnas.0503831102 

 

https://en.wikipedia.org/wiki/Asymptotic_freedom#cite_note-GrossWilczek-1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1166630/
https://dx.doi.org/10.1073%2Fpnas.0503831102
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4.2. Dark Energy. Dark Matter 
 

In 1998 observations of Type Ia supernovae suggested that the expansion of the 

universe is accelerating. From [14]. In the past few years, these observations have 

been corroborated by several independent sources [15] 

V(r) = Hr 

where V (r) is the velocity of expansion on the distance r, H is the Hubble’s 

constant (H  2.310-18c1 confirms the Hubble22 constant. Retrieved on 2007-03-
07.[16] This expansion is defined by the Hubble rule [17] 
 
From (18): 

         tanh
 

  
                                                                                                  

Fig. 6 shows the dependency of the system <t’,x1’> velocity v(t; x1) on x1  in system  

 

 

 

                                                           
22

 Edwin Hubble, in full Edwin Powell Hubble, (born November 20, 1889, Marshfield, Missoui, U.S.—died September 28, 1953, San Marino, 

California), American astronomer who played a crucial role in establishing the field of extragalactic astronomy and is generally regarded as the leading 
observational cosmologist of the 20th century. 

 

 

https://www.britannica.com/science/astronomy
https://www.britannica.com/science/galaxy/Hubbles-discovery-of-extragalactic-objects#ref965633
https://www.britannica.com/science/galaxy/Hubbles-discovery-of-extragalactic-objects#ref965633
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Fig. 6 

Let a black hole be placed in a point O (Fig. 1). Then a tremendous number of 
quarks states oscillate in this point. These oscillations bend time-space and if t has 

some fixed volume, x1 > 0, and Λ := λt then: 

       tanh


  
                                                                                                    

 
 
 
 

 

 

 

 

 
Fig. 7 
A dependency of v(x1) (light years/c.) on x1 (light years) with Λ = 741:907 is shown 
in Fig. 7.    
 
Let a placed in a point A observer be stationary in the coordinate system <t,x1>. 
Hence, in the coordinate system <t’,x1’> this observer is flying to the left to the 
point O with velocity −v(xA). And point X is flying to the left to the point O with 
velocity −v(x1). 
 
Consequently, the observer A sees that the point X flies away from him to the 
right with velocity  
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         tanh 


  
  



  
   

 
in accordance with the relativistic rule of addition of velocities. 
 
Let r := x1 − xA (i.e. r is a distance from A to X), and 
 

        tanh 


  
  



   
    

   

 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 
 
In that case Fig. 8 demonstrates the dependence of VA(r) on r with xA = 25103 l.y. 
This picture shows that X runs from A with almost constant acceleration H. 
 
Therefore, the phenomenon of the accelerated expansion of Universe is the result 
of the curvature of space-time that arises because the chromatic states oscillate. 
 

In 1933, the astronomer Fritz Zwicky23 was studying the motions of distant 
galaxies. Zwicky estimated the total mass of a group of galaxies by measuring 

their brightness. When he used a different method 
to compute the mass of the same cluster of galaxies, 
he came up with a number that was 400 times his 
original estimate This discrepancy in the observed 
and computed masses is now known as "the missing 
mass problem." Nobody did much with Zwicky's 
finding until the 1970's, when scientists began to 
realize that only large amounts of hidden mass could 

                                                           
23

 Fritz Zwicky February 14, 1898 – February 8, 1974) was a Swiss astronomer. He worked most of his life at the California Institute of Technology in the United States of America, where he 

made many important contributions in theoretical and observational astronomy. [2] In 1933, Zwicky was the first to use the virial theorem to infer the existence of unseen dark matter, describing it 
as "dunkle (kalt) Materie".[3][4] 

https://en.wikipedia.org/wiki/Fritz_Zwicky#cite_note-2
https://en.wikipedia.org/wiki/Fritz_Zwicky#cite_note-Zwicky_1933_110%E2%80%93127-3
https://en.wikipedia.org/wiki/Fritz_Zwicky#cite_note-Zwicky_1933_110%E2%80%93127-3
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explain many of their observations. Scientists also realize that the existence of 
some unseen mass would also support theories regarding the structure of the 
universe. Today, scientists are searching for the mysterious dark matter not only 
to explain the gravitational motions of galaxies, but also to validate current 
theories about the origin and the fate of the universe» [18] (Fig. 4 [19]).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9 . A rotation curve for a typical spiral galaxy. The solid line shows actual 

measurements(Hawley and Holcomb., 1998, p. 390)  

 
 
 
 
 

 

 

 

 

 

 

Fig.10   
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Rotation curve of NGC 6503. The dash-dotted lines are the 

contributions of dark matter [20] 

[1. p.148]: 

 

  

 

Let                      i.e                           .                    

Because linear velocity of the curved coordinate system ⟨ x′;y′⟩  into the 

initial system ⟨ x;y⟩   is the following : 

 

   Then                    . 

Let function z′ be a holomorphic function. Hence, in accordance with the 

Cauchy-Riemann conditions the following equations are fulfilled: 

                                                             

Therefore,                                     where 2α is an holomorphic function, too.  
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For large t:  

 

 

Hence, 
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For θ:=0.98π,  t=10E4:  

 

Compate with Fig.10. 

For θ = 13π/14. t = 10E4:  

 

Compare with Fig.9. 

Hence, Dark Matter and Dark Energy can be mirages in the space-time, which is 

curved by oscillations of chromatic states. 
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The idea of curved time-space belongs to Albert Einstein24 (the General Relatively 

Theory. 1913). 

 

 

4.3. Leptons 
 

 In 1963 American physicist Sheldon Glashow25 proposed that the weak nuclear 

force and electricity and magnetism could arise from a partially unified 

electroweak theory.  ut “… there is major problem: all the fermions and gauge 

bosons are massless, while experiment shows otherwise”. 

Why not just add in mass terms explicitly? That will not work, since the associated 

terms break SU(2) or gauge invariances. For fermions, the mass term should be m

 ψ 

m ψ = m (PL+ PR)ψ = m PL PL ψ + m  PR PR ψ = m ( R ψL +  L ψR). 

                                                           
24

Albert Einstein 14 March 1879 – 18 April 1955) was a German-born theoretical physicist[ 
25

 Sheldon Lee Glashow  born December 5, 1932) is a Nobel Prize winning American theoretical physicit.  

http://en.wikipedia.org/wiki/Sheldon_Glashow
http://en.wikipedia.org/wiki/Weak_nuclear_force
http://en.wikipedia.org/wiki/Weak_nuclear_force
http://en.wikipedia.org/wiki/Electroweak_theory
https://en.wikipedia.org/wiki/Albert_Einstein#cite_note-Bio-6
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However, the left-handed fermion are put into SU(2) doublets and the right-

handed ones into SU(2) singlets, so  R ψL and  L ψR  are not SU(2) singlets and 

would not give an SU(2) invariant Lagrangian. 

Similarly, the expected mass terms for the gauge bosons, 


BBmB

2

2

1
 

plus similar terms for other, are clearly not invariant under gauge transformations 

Bμ→ Bμ’ = Bμ−∂μχ /g, The only direct way to preserve the gauge invariance and 

SU(2) invariance of Lagrangian is to set m = 0 for all quarks, leptons and gauge 

bosons…. There is a way to solve this problem, called the Higgs mechanism” [21]. 

No. The Dirac Lagrangian for a free fermion can have of the following form: 

Lf :=            0

3

3

2

2

1

1

0

0  m  ψ. 

Here matrices β[1], β[2], β[3],  and γ[0 anticommute among themselves. 

     Indeed, this Lagrangian is not invariant under the SU(2)  transformation. But it 

is beautiful and truncating its mass term is not good idea.  

But The boson's existence was confirmed in 2012 by 

the ATLAS and CMS collaborations based oncollisions in the LHC at CERN. Three 

particles with mass 124.5 - 126 GeV were found in CERN [18.  

The ATLAS and CMS Collaborations, Combined Measurement of the Higgs Boson 

Mass in pp Collisions at s = 7 and 8 TeV with the ATLAS and CMS experiments. 

http://arxiv.org/pdf/1503.07589 ] . And Rolf-Dieter Heuer and Fabiola Gianotti – 

supervisors of LHC – announce these particles as the higgs boson. 

 

But no connection was found between the 124.5 - 126 GeV particle and the Higgs 

mechanism. There is no explanation of the stability of the universe in the Higgs 

field. Nothing in Standard Model gives a precisevalue for the Higgs’s own mass, 

and calculations from first principles, based on quantum theory, suggest it should 

be enormous—roughly a hundred million billion times higher than its measured 

value. Physicists have therefore introduced an ugly fudge factor into their 

equations (a process called “fine-tuning”) to sidestep the problem. 

http://arxiv.org/pdf/1503.07589
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Besides, all the known elementary bosons are gauge - it is photons, W- and Z-

bosons and gluons. 

It is likely that the 125-126 particle is of some hadrons multiplet. 

 

 

Let the Basix Quant Equation das not contain                                                         : 

And the following equation:               

Is called the Lepton Equation of Moving. 

   If like (4*}: 

 And 

.

0

4:
4

;

0

5:
5 j

j
u

j

j
u   

 
                 From [1. p.87]:    u1

2 + u1
2 + u1

2 + u1
2 + u1

2  = c2. 

4,0.4,0,4,0, ,,,,,  MMMMMM

.
c

j
;γ

j
 [4]†4[0]† 

c
5
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Thus, of only all five elements of a Clifford pentad lends an entire kit of velocity 

components and, for completeness, yet two ”space” coordinates x5 and x4 should 

be added to our three x1,x2, x3. 

Let 

  

 

 

In this case the Lepton Equation of moving shape is the following: 

 

This equation is the differential form of Lepton Equation. 

 

B boson 

Let g1 be the positive real number and for μ ∈ {0,1,2,3}: Fμ and Bμ be the 

solutions of the following system of the equations: 

 

 

 

Let charge matrix be denoted as the following: 

 

 

In this case: 

 

Therefore,  the differential form of Lepton Equation is: 



69 
 

69 
 

  

The following sum is the Lepton Hamiltonian26: 

Let χ(t,x1,x2,x3) be the real function and:  

 

 

 

Because for μ ∈ {0,1,2,3} [1. pp.89—90] 

 

 

and 

 

 

 

 

 

 

Then the Lpton Equation of moving is invariant under the following 

transformations [1. pp.90—93]: 

                                                           
26

 Sir William Rowan Hamilton  1805 – 2 September 1865) was an Irish mathematician, Andrews Professor of Astronomy at Trinity College Dublin, and Royal Astronomer of Ireland.  
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Therefore, Bμ is like to the B-boson field of Standard Model27 field 

Electroweak Theory 

 

if  A is a 22 -matrix then: 

2. A 41  := 








A

A

2

2

0

0
 and 41 A := 









A

A

2

2

0

0
; 

3. and if B is 44 -matrix then: 

4. A+B := A 41 +B, AB := A 41 B; 

Let U(−) be a  ×  matrix such that 

for s ∈ {0.1,2,3} 

 

 

                                                           
27

 Standard model, the combination of two theories of particle physics into a single framework to describe all interactions of subatomic particles, 

except those due to gravity. The two components of the standard model are electroweak theory, which describes interactions via the electromagnetic 
and weak forces, and quantum chromodynamics, the theory of the strong nuclear force. Both these theories are gauge field theories, which describe 
the interactions between particles in terms of the exchange of intermediary “messenger” particles that have one unit of intrinsic angular momentum, 
or spin (Encyclopedia Britanica) 
 

 
 
 
 
 

https://www.merriam-webster.com/dictionary/intrinsic
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Here β[s] = β[s]18. 

Such transformation has a matrix of the following shape [1. pp.110—113]: 

 

With real a,b,c,g such that a2 + b2 + c2 + g2 = 1. 

Let 

 

These operators are fulfilled to the following conditions: 
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The Lepton Equation is invariant for the following global transformation [1. 

pp.113—114]: 

 

 
 

7.2. W and Z 

bosons 

Let g2 be some 

positive real number. If design (here: a,b,c,q form U(−)): 

 

And 
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then 

 

 

and [1. pp.136—137]: 

 

 

Hence [1. pp.137—138], 

 

 

 

 

This system of differential equations has the following result [1. pp.137—141]: 

This is the Klein-Gordon28 equation of field W0,μ with mass and with additional 

terms of the W0,μ interactions with others components of W . You can receive 

similar equations for W1,μ and for W2,μ 

                                                           
28

 The equation was named after the physicists Oskar Klein and Walter Gordon, who in 1926 proposed that it describes relativistic electrons
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Here: 

 

 

 

 

 

 

 

 

 

such ”mass”) is invariant for the Lorentz transformations and invariant for the 

transformations of turns, too [1. pp.141—142].  

Let29 

 

                                                           
29

 here α is the Weinberg Angle. The experimental value of sin2 α = 0.23124±0.00024 [19]. 
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Like Standard Model [1. pp.142—143]: 

 

 

The Lepton Equation of moving under has the following form: 

 

 

 

That is 

Here: 
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Let (e is the elementary charge30: e = 1.60217733×10−19 C). 

 

 

 

And let 

 

 

 

 

 

 

 

 

 

 

 

 

 

In that case 

 

Let 

                                                           
30

 Sir Joseph John ”J. J.” Thomson, (1  December 1 56 - 30 August 1940) was a British physicist. He is credited for 
the discovery of the electron and of isotopes, and the invention of the mass spectrometer. 
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In that case 

 

Here the vector field Aμ is the electromagnetic potential (James Clerk Maxwell  

(13 June 1831 – 5 November 1879) was a Scottish scientist in the field 

of mathematical physics. His most notable achievement was to formulate 

the classical theory of electromagnetic radiation, bringing together for the first 

time electricity, magnetism, and ligh as different manifestations of the same 

phenomenon. Maxwell's equations for electromagnetism have been called the 

"second great unification in physics after the first one realised by Isaac Newton.). 

And   μ +  μ  is the weak interaction potential (In 1933, Enrico Fermi31 proposed 

the first theory of the weak interaction, known as Fermi's interaction. He 

                                                           
31

 Enrico Fermi 29 September 1901 – 28 November 1954) was an Italian–American physicist and the creator of the world's first nuclear reactor 
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suggested that beta decay could be explained by a four-fermion interaction, 

involving a contact force with no range.[3). Evidently neutrinos do not involve in 

the electromagnetic interactions. Richard Phillips Feynman, May 11, 1918 – 

February 15, 1988) was an American theoretical physicist, known for his work in 

the path integral formulation of quantum mechanics, the theory of quantum 

electrodynamics.

, 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Weak_interaction#cite_note-Fermi's_theory-3
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5. Planck 

In 1900 Max Planck32 discovered that our world is 

discrete. This is a recognition of the limitations of our 

space: : |x| ≤ πc/h (h = 6.62607004 × 10-34). 

Therefore, functions describing the processes of our 

world are represented by Fourier33 series by basis:, 

Here nx = n1x1 + n2x2 + n3x3;  n1, n2, n3 are integer numbers. 

 

 

 

 

 

 

5.1.  Neutrino 
 

Wolfgang Pauli postulated the neutrino in 1930 to explain the energy spectrum of 
beta decays, the decay of a neutron into a proton and an electron. Clyde Cowan, 
Frederick Reines found the neutrino experimentally in 1955. Enrico Fermi 
developed the first theory describing neutrino interactions and denoted this 
particles as neutrino in 1933. In 1962 Leon M. Lederman, Melvin Schwartz and 
Jack Steinberger showed that more than one type of neutrino exists. Bruno 
Pontecorvo suggested a practical method for investigating neutrino masses in 
1957, over the subsequent 10 years he developed the mathematical formalism 
and the modern formulation of vacuum oscillations... 
 

                                                           
32

 Max Karl Ernst Ludwig Planck 23 April 1858 – 4 October 1947) was a German theoretical physicist whose discovery of energy quanta 
33

 Jean-Baptiste Joseph Fourier (21 March 1768 – 16 May 1830) was a French mathematician and physicist born in Auxerre and best known for initiating the investigation of Fourier series, 
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Let 

 

And Hamiltonian: 

 

Let 

eigenvectors of this Hamiltonian: 

 

 

 

 

and 
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With eigenvalue:  

 

And eigenvectors 

 

 

 

 

And 

 

 

 

 

 

With eigenvalue  

Let 
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Tat is 
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Here u₁′(k) and u₂′(k) correspond to eigenvectors of  ′ 0,4 with eigenvalue ω(k), 

and u₃′(k) and u₄′(k) correspond to eigenvectors of  ′ 0,4 with eigenvalue -ω(k). 

Let 
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    u(α)′(k) are denoted as bi-n-leptonn and v(α)(k) is are denoted as bi-anti-n-

leptonn basic vectors with momentum k and spin index α. 

    Hence bi-anti-n-leptonn basic vectors are a result of acting of U⁽⁺⁾ [1. P113]. 

    Vectors 

 

are denoted as leptonn components of anti-bi-n-leptonn basic vectors, and 

vectors 

 

are denoted as neutrinno components of anti-bi-n-leptonn basic vectors. 

 

 



85 
 

85 
 

 

5.2.  Chrome of Barions 
 

Let here be entered new coordinates y β , z β , y ζ , z ζ , y η , z η , y θ , z θ: 

L 

 

 

 

 

 

 

In this case the Basix Quanr Equation has the following differencial form: 

 

 

 

 

 

 

 

 

 

 

Hence, 
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Let a Fourier transformation of 

 

 

be the following: 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let  Θν = 0 and Υν = 0. 
Let us design: 
 
 
 
 
 
 
 
 



88 
 

88 
 

 
That is: 

 
 

Here 
 
 



89 
 

89 
 

 
Is eigenvector of 

 
 
 

 
And 
 
 
 
 
 
 
 
Here 

{c0, c1, c2, c3} 
 

is an orthonormalized basis of the complex4-vectors space. 
Functions 

 
 
are eigenvectors of operator G0. 

 
is a red lower chrome function, 
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is a red upper chrome function, 
 
 

is a green lower chrome function, 

is a green upper chrome function, 

is a blue lower chrome function, 

is a blue upper chrome function. 
 
Operator −∂y

ζ∂y
ζ  is called a red lower chrome operator, 

−∂z
ζ∂z

ζ  is a red upper chrome operator,  
−∂y

ῃ∂y
ῃ  is called a green lower chrome operator, 

 −∂z
ῃ∂z

ῃ  is a green upper chrome operator, 
−∂y

θ∂y
θ  is called a blue lower chrome operator,  

−∂z
θ∂z

θ  is  a blue upper chrome operator. 
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For example, if φz
ζ is a red upper chrome function then 

 
 
 
 
 
 

 
But 

 
 
 
 
 

Because 

then 
 
 

If                                                      
 
 
then         

 
 
 
 

and [ϕ] → U1,2(α)[ϕ]. 
 
In this case: 
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Therefore, 

 
 
 
 
 
 
 
 

 
If 

Then 
 

 
 
 
 
 
 
 

That is under such rotation the red state becomes the green state. 
 
If U = U3,2 (α) then G0 → U3,2 (α) G0 U3,2 

-1(α) and [ϕ] → U3,2(α)[ϕ].  
. 
In this cas 
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Therefore, if φy
ῃ is a green lower chrome function then 

 
If 

 
 
 

 
 

 
 
 
 
 
 
 

If U = U3,1 (α) then G0 → U3,1 (α) G0 U3,1 
-1(α) and [ϕ] → U3,1(α)[ϕ].  

. 
In this case:   
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, 
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If α = π/2 then 
 
 
 
 
 
 
 
 
That is under such rotation the red state becomes the blue state. Thus at the 
Cartesian turns chrome of a state is changed. 
 
One of ways of elimination of this noninvariancy consists in the following.  
 
Let in the potential hole AA′ (Fig.5) there are three quarks ϕg

ζ, ϕg
ῃ, ϕg

θ. Their 
general state function is determinant with elements of the following type:  
 

ϕg
ζῃθ := ϕg

ζ ϕg
ῃ ϕg

θ.  
 

In this case: 
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And under rotation U1,2(α) 

That is at such turns the quantity of red chrome remains 
 
As and for all other Cartesian turns and for all other chromes. 
 
Baryons Δ− = ddd, ΔΩ = uuu, Ω− = sss belong to such structures. 
 
If U = U1,0 (α) then G0 → U1,0 (α)G0U1,0

-1 (α) and [ϕ] → U1,0(α)[ϕ]. 
 
In this case: 
 
 
 
 
       
 
 
 
 
 
 
 
 
Therefore, 
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Similarly chromes and grades change for other states and under other Lorentz 
transformation. 
 
One of ways of elimination of this noninvariancy is the following: 
 

Let 
    
 
 

Under transformation U1,0 (α) 
 
 
 
 

That is a magnitude of red chrome of this state doesn’t depend on angle α. 
This condition is satisfied for all chromes and under all Lorentz’s transformations. 
 
 
Pairs of baryons 

 
 
 
 
 
 
 

belong to such structures 
 
Therefore, Baryons represent one of ways of elimination of the chrome 
Noninvariancy under Cartesian and under Lorentz transformation 
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5.3. Creating and Annihilation Operators 

 

Let Ḁ be some unitary space. Let    be the zero element of Ḁ. That is any element 

   of Ḁ obeys to the following conditions: 

 
 

Let    be the zero operator on Ḁ. That is any element    of Ḁ obeys to the following 
condition: 

      = 0  , and if    is any operator on Ḁ then 
 
 
 

Let    be the identy operator on Ḁ. That is any element     of Ḁ obeys to the 
following condition: 
 

       = 1     =       and if      is any operator on Ḁ then      =      =    
 
Let linear operators bs,k (s ϵ {1,2, 3,4}) act on all elements of this space. And let 
these operators fulfill the following conditions: 
 

Hence, 

 
There exists element    0 of Ḁ such that   0

†   0 = 1 and for any bs,k : bs,k   0  =   . 

Hence,   0
†bs,k

† = 0. 
 
Let 
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Because 
 
 
 
 
 

And 
 
 
 
 
 

Then 

And these operators obey the following conditions  

Hence, 
 
 
 

Let 
 
 
 
 
 
 

These function obey the following condition: 

Hence, 
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Here  ρ := j0/c. 
 
Let a Fourier series of ϕs(t,x) has the following form: 

 
 
 
 
 

 
In this case 
 
 
 
 
 
 
 
 
 

then   ׂH0(x) is called a Hamiltonian   0 density. 
Because 
 
 
Then 
 

 
 
 
 
 

Therefote, if 
 
 
 
 
then                   acts similar to the Hamiltonian on space Ḁ. 

And if 
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then EΨ(  0) is an energy of Ψ on vacuum   0. 
Let us consider operator 
 
 
 
Let us calculate 
an average 
value of this 

operator: 
 
 
 
 
Hence, 

 
 
Since 
 
 
 
then 

 
Since 

then 
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Since  0
†∙  =    0

† and   0
†ψa

†(x0) = 0 then 

 
 
According with properties of δ-function and δ: 

Since 

then 
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Thus: 
 
 
 

That is operator <  a(x0)> brings the a-component of the event probability 
density. 
Let Ψa (t,x) := ψa(x0)Ψ(t,x). 
In that case 

Since 
 
 
 
Then 
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Therefore ψa(x0) ”annihilates” the a of the event-probability density. 
 

5.4. Particles and Antiparticles 
 

Operator               obeys the following condition: 

This operator is not positive defined and in this case 

This problem is usually solved in the following way [250. For instance, Peskin M. 
E., Schroeder D. V. An Introduction to Quantum Field Theory, 
Perseus Books Publishing, L.L.C., 1995.p.54]: 

Let 

 

 
 
 
 
 
 
 
 

Ln that case: 
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Therefore The first term on the right side of this equality is positive defined. This 
term is taken as the desired Hamiltonian. The second term of this equality is 
infinity constant. And this infinity is deleted (?!) [22. p.58].  

But in this case dr,k   0 ≠    . In order to satisfy such condition, the vacuum element   0 must be replaced 
by the following: 

 
 
 
 
 
 

But in this case 
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In order to satisfy such condition, operators ψs(x) must be replaced by the 
following 

 
Hence, 

 
And again we get negative energy. 
 
Let’s consider the meaning of such energy: An event with positive energy 
transfers this energy photons which carries it on recorders observers. Observers 
know that this event occurs, not before it happens. But event with negative 
energy should absorb this energy from observers. Consequently, observers know 
that this event happens before it happens. This contradicts Theorem 1.5.2. 
Therefore, events with negative energy do not occur. 
 
Hence, over vacuum   0 single fermions can exist, but there is no single 
antifermions. 
A two-particle state is defined the following field operator [23]: 

 
 
 
 

 
And condition isn’t carried out 
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In that case: 

 
 
 
 
 

Where 

 
 

And 
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If velosities are small then the following formula is fair. 
 
 
 
 
 

Where 

And 
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Therefore, in any case events with pairs of fermions and events with fermion 
antifermion pairs can occur, but events with pairs of antiftrmions can not happen. 
Therefore, an antifermion can exists only with a fermion. 
 

Conclusion 

Physics is a game of probabilities in space-time. Irreversible unidirectional time 
and metric space is an essential attribute of any information system, and 
probability is the logic of events that have not yet occurred. 
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