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                                                                Riassunto 

 
In questo articolo la Parte 1 descrive, in termini matematici: (i) l’azione di stringa bosonica, (ii) 
l’azione di superstringa, (iii) il gravitone quale particolare modo di oscillazione di una stringa 
bosonica, (iv) l’energia e la materia oscura derivanti dalle correlazioni sopra riportate, rappresentate 
da alcune equazioni che mostrano le configurazioni dipendenti dal tempo inerenti universi in 
accelerazione.  
Ulteriori correlazioni tra il modello di Palumbo e la Teoria delle Stringhe sono riportate nella Parte 
2, dove vengono anche descritte, in termini matematici, le correlazioni ottenute tra alcune equazioni 
inerenti gli insiemi aperti ed alcune soluzioni di equazioni delle teoria delle stringhe, che descrivono 
singolarità “nude”. (È utile ricordare che un buco nero è una singolarità limitata da un orizzonte 
degli eventi, mentre la singolarità iniziale, cioè il Big Bang, era una singolarità senza bordi, non 
limitata, quindi una singolarità nuda). 
Evidenziamo, inoltre, che l’articolo è una nuova versione , contenente alcune aggiunte, degli articoli 
“New mathematical connections concerning string theory I-II”, a cui il lettore interessato può fare 
riferimento.   
 
                                                                 
  
 
 
 
 
                                                       PART 1 (Nardelli, 2005) 
 
MATHEMATIC VERSION OF THE PARALLELISM BETWEEN THE PALUMBO’S MODEL 
AND THE THEORY OF STRINGS. 
                                                 
1 Tale lavoro è collegato alla nota “The Theory of String: a candidate for a generalized unification model”, presentata 
nell’archivio SOLAR-CNR dal Prof. A. Palumbo. In essa le parti matematiche trattate nel presente articolo, sono 
soltanto menzionate come Appendix 1 ed Appendix 2. 
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A) Some properties of bosonic string and superstrings. 
 
1.Bosonic String. 
 
 A one-dimensional object will sweep out a two dimensional world-sheet, which can be described in 
terms of the tensor , ),( στµX where the two parameters σ and τ are the coordinates of world sheet. 
The simplest invariant action, the Nambu-Goto action, is proportional to the area of the world-sheet 
(Polchinski, 1998). 
 We define the induced metric abh  where the indices ,...,ba  run over values ),( στ : 

                                                            .µ
µ

XXh baab ∂∂=        (a) 

 Then the Nambu-Goto action is 

                                                            ∫=
M

NGNG LddS ,στ        (b) 

and 

                                                    ,)det(
'2

1 2/1
abNG hL −−=

πα
(c) 

 where M  denotes the world-sheet. The constant 'α , which has units of spacetime-length-squared, 

is the  Regge slope. The tension T of the string is related to the Regge slope by 
'2

1

πα
=T . We can 

simplify the Nambu-Goto action by introducing an independent world-sheet metric ),( στγ ab . We 

will take abγ to have Lorentzian signature ( )+−, . The action is 

                                 ( )∫ ∂∂−−=
M

ba

ab

p XXddXS ,
'4

1
],[ 2/1

µ
µγγστ

πα
γ  (d) 

 where .det abγγ = This is the Brink-Di Vecchia-Howe-Deser-Zumino action, or Polyakov action 

(1981), found in the course of deriving a generalization with local world-sheet supersymmetry. To 
find the equivalence to NGS , one may use the equation of motion obtained by varying the metric, 

                         ( )∫ 







−−−=

M

cd

cd

abab

ab

p hhddXS ,
2

1

'4

1
],[ 2/1 γγδγγστ

πα
γδ γ  (e) 

  where abh  is again the induced metric (a). We have used the general relation for the variation of a 

determinant,  .ab

abab

ab δγγγδγγγδ γ −==  Then 0=pSγδ  implies  .
2

1
cd

cd

abab hh γγ=  Dividing this 

equation by the square root of minus its determinant, one obtains:  ( ) ( ) ,2/12/1 −−
−=− γγ abab hh  so 

that abγ  is proportional to the induced metric. This, in turn, can be used to eliminate abγ  from the 

action, 

                                    ( )∫ =−−→ ].[
'2

1
],[ 2/1

XShddXS NGp στ
πα

γ  (f) 

The condition that the world-sheet theory be Weyl-invariant  (Weyl, 1918, 1921)               is: 
                                                     0=== Φβββ µνµν

BG   (1.1) ,  

where: 

                               ),(
4

'
'2' 2'α

α
ααβ λω

νµλωνµµνµν OHHR
G +−∇∇+=  

                               ),('
2

' 2'αα
α

β ωµν
ω

ωµν
ω

µν OHH
B +Φ∇+∇−=  
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                               ).(
24

'
'

2

'

6

26 2'2 α
α

α
α

β µνλ
µνλ

ω
ω OHH

D
+−Φ∇Φ∇+Φ∇−

−
=Φ  

The equation 0=G

µνβ  resembles Einstein’s equation with source terms from the antisymmetric 

tensor field and the dilaton2.The equation 0=B

µνβ  is the antisymmetric tensor generalization of 

Maxwell’s equation, determining the divergence of the field strength. 
The field equations (1.1) can be derived from the spacetime action: 

S  = ∫ xd
D

2
02

1

κ
(-G) +

−
−Φ−

'3

)26(2
[22/1

α

D
e )]'(4

12

1
αµ

µ
µνλ

µνλ OHHR +Φ∂Φ∂+−   (1.2) 

The normalization constant 0κ  is not determined by the field equations and has no physical 

significance since it can be changed by a redefinition of Φ . One can verify that: 

∫
ΦΦ− −−Φ++−−= )]4)(

2

1
2([)(

'2

1 22/1
2
0

ββδδβδβδ
ακ

δ ω
ωµν

µνµν
µν

µν
µν

GBGD
GGBGeGxdS   (1.3) 

This is the effective action governing the low energy spacetime fields. It is often useful to make a 
field redefinition of the form: 

                                               ),()](2exp[)(
~

xGxxG µνµν ω=   (1.4), 

 which is a spacetime Weyl transformation.  

The Ricci scalar constructed from µνG
~

 is: 

                       ])1)(2()1(2)[2exp(
~ 2 ωωωω µ

µ ∂∂−−−∇−−−= DDDRR   (1.5) 

For the special case 2=D , this is the Weyl transformation  ).2( 22/1'2/1' ω∇−= RgRg  
Let 

                           )2/()(2 0 −Φ−Φ= Dω  and let define 0

~
Φ−Φ=Φ  (1.6) 

 which has vanishing expectation value. The action becomes: 

S = ∫ ∂
−

−−+
−

−− −Φ−−Φ
µ

µνλ
µνλ

ακ 2

4~

12

1~

'3

)26(2
[)

~
(

2

1 )2/(
~

8)2/(
~

42/1
2 D

HHeRe
D

GXd
DDD

)],'(
~~~

αµ O+Φ∂Φ  (1.7). 

 In terms of µν
G
~

, the gravitational Lagrangian density takes the standard Hilbert form 
22/1 2/

~
)

~
( κRG− . The constant 0

0
Φ= eκκ is the observed gravitational coupling constant, which in 

nature has the value  ) 118
2/1

2/1 )1043,2(
)8(

)8( −=== GeVx
M

G
p

N

π
πκ  (Polchinski,1998). Commonly, 

µνG  is called the “sigma model metric” or “string metric”, and µνG
~

 the “Einstein metric”. It follows 

that the (1.7) becomes : 

∫ +Φ∂Φ∂
−

−−+
−

−−= −Φ−−Φ )]'(
~~~

2

4~

12

1~

'3

)26(2
[)

~
(

82

1 )2/(
~

8)2/(
~

42/1 α
απ

µ
µ

µνλ
µνλ O

D
HHeRe

D
GXd

G
S DDD

N

 (1.8) 
The amplitudes of string, that correspond to the classical terms in the effective action, would be 
obtained in field theory from the spacetime action TSS + , where S  is the action (1.2) for the 
massless fields, and where  

                                ∫ −∂∂−−= Φ− 222/126

'

4
()(

2

1
TTTGeGxdST

α
νµ

µν )  (1.9), 

                                                 
2  The dilaton is the massless scalar with gravitational-strength couplings, found in all perturbative string 
theories. 
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 is the action for the closed string tachyon T . (Note that, in string theory, the tachyon is a particle 
with a negative mass-squared, signifying an instability of the vacuum). We take the more general 
case of 1+= dD  spacetime dimensions with d

x  periodic. Since we are in field theory we leave D  
arbitrary. Parameterize the metric as 
                        22 )( µ

µ
νµ

µν dxAdxGdxdxGdxdxGds
d

dd

NMD

MN ++==  (1.10). 

We designate the full D -dimensional metric by D

MNG ; the Ricci scalar for the metric (1.10) 

becomes:  

                                             µν
µν

σσσ
FFeeeRR d

22

4

1
2 −∇−= −  (1.11), 

 where R  is constructed from MNG  and dR  from µνG . The graviton-dilaton action (1.2) becomes 

thus: 

                                 ∫ =Φ∇Φ∇+−= Φ− )4()(
2

1 22/1
2
0

1
µ

µ
κ

ReGxdS
D     

∫ −Φ∂Φ∂+∂Φ∂−− +Φ− )
4

1
44()( 222/1

2
0

µν
µν

σµ
µ

µ
µ

σ σ
κ

π
FFeReGxd

R
dd

d and thence: 

             ∫ −Φ∂Φ∂+∂∂−−= Φ− )
4

1
4()( 222/1

2
0

1
µν

µν
σµ

µ
µ

µ σσ
κ

π
FFeReGxd

R
S dddd

d d  (1.12) 

 Which provides the kinetic terms for all the massless fields. Here dG denotes the determinant of Rd, 

and d  denotes the dimensional dilaton, 2/σ−Φ=Φ d . 

The antisymmetric tensor also gives rise to a gauge symmetry by a generalization of the Kaluza-
Klein mechanism (Klein 1926, 1926a, 1964), (Kaluza 1921). 
 Separating MNB  into µνB  and µµ dBA =' , the gauge parameter Mζ  separates into a d-dimensional 

antisymmetric tensor transformation µζ  and an ordinary gauge invariance dζ 3. 

.The gauge field is µdB  and the field strength µνdH . The antisymmetric tensor action becomes: 

∫ ∫
−Φ−Φ− +−−=−−= )3

~~
()(

12
)(

24

1 222/1
2
0

22/1
2
0

2
µν

µν
σµνλ

µνλ
κ

π

κ
ddd

dMNL

MNLD

D
HHeHHeGxd

R
HHeGxdS d

 (1.13). 

 Here, we have defined +−∂= )(
~

νλµνλµµνλ dHABH cyclic permutations. The term proportional to 

the vector potential arises from the inverse metric MN
G . It is known as a “Chern-Simons term” 

(1974), this signifying the antisymmetrized combination of one gauge potential and any number of 
field strengths. 
The rilevant terms from the spacetime action (1.7) concerning an D-brane are:   

∫ Φ∇Φ∇−−= )
~~~

6

1~
(

~

2

1 26
2

µ
µ

κ
RGXdS  (1.14)4 

                                                 

3Note that the action ∫ Φ+∂∂+=
M

ba

abab
XRXXXBiXGggdS )]('))()([(

'4

1 2 αεσ
πα

νµ
µνµνσ , 

where the field )(XBµν  is the antisymmetric tensor, and the dilaton involves both Φ  and the diagonal part 

of µνG , is invariant under )()()( XXXB µννµµν ζζδ ∂−∂=  which adds a total derivative to the 

Lagrangian density. This is a generalization of the electromagnetic gauge transformation to a potential with 

two antisymmetric indices. The gauge parameter Mζ , above mentioned, is defined in this relation.  
4 The tilde denotes the Einstein metric.(Note that an D-brane is a dynamical object on which strings can end. 
The term is a contraction of “Dirichlet brane”. The coordinates of the attached strings satisfy Dirichlet 
boundary conditions in the directions normal to the brane and Neumann conditions in the directions tangent 
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 Expanding the action to second order and adding a gauge-fixing term 2ˆ 4/ κν
ν FF− , the spacetime 

action becomes: 

                      ∫ Φ∂Φ∂+∂∂−∂∂−= )
~~

3

2

2

1
(

8

1 ˆˆˆˆˆˆˆ26
2

µ
µ

λ
λ

µν
νµ

λνµ
νλµ

κ
hhhhXdS  (1.15). 

 
2.The oscillation modes of string corresponding to the graviton. 
 
Scherk and Schwarz  (1974) have shown the possibility of describing particles other than adrons 
(leptons, photons, gauge bosons, gravitons, etc.) by a dual model They have also studied the 
Virasoro-Shapiro model, interpreting thus the massless spin-two state of the model as a graviton. 
Both the 26-dimensional Veneziano model VM (1974, 1974a) and the 10-dimensional meson-
fermion model MFM ave a massless “photon”. The nonplanar Virasoro-Shapiro model (VSM) 
(1970) has a massless “graviton”, while the MFM has a massless “lepton”. The VM and the MFM 
have both been studied and found to yield the Yang-Mills (1954) theory of massless self-interacting 
vector mesons needed to describe electromagnetism and weak interactions. 
 
2.1.Virasoro-Shapiro (1969) Model. 
 
The most general action for massless gravitons and scalars with general coordinate invariance, 
involving no more than two derivatives, is: 

                            ( ) ( ) ( )∫








∂∂−−= φφφφ
π

φ νµ
µν

321
4

2

1

16

1
fgRf

G
fgxdS , (2.1) 

where the 1f  are functions, analytic at the origin, subject to the normalization constraints 

1)0()0( 32 == ff . In this equation, g  is the determinant of the metric tensor and R  is the scalar 

curvature. The first term in the equation (2.1) contains no derivatives, while the second and third 
each contain two derivatives. The form of the action in the equation (2.1) can be simplified by 

performing a Weyl transformation       ( ) 1
2' −

= φµνµν fgg  (2.2). 

Under this transformation g  and R  become respectively:: 

                                                   ( ) 2
2' −

= φfgg  (2.3)  and 

                     ( ) ( )
( )

( ) ( )
( ) ( )φφ

φφ

φ
φφ α

α

α

α 22
22

2
22 2

2
'3' ff

ff

f
DffRR ∂∂+







 ∂
−= , (2.4) 

where αD  represents a covariant derivative. 

Then, the action becomes: 

          
( )
( )[ ]

( )
( )

( )
( )∫





















+∂∂−−=

2

2

2

2

3
2

2

14 '

16

3

2

1

16

1

φ

φ

πφ

φ
φφ

πφ

φ
νµ

µν

f

f

Gf

f
gR

Gf

f
gxdS  

where setting ( ) ( )
( )[ ]2

2

1
1

φ

φ
φ

f

f
k =  and ( )

( )
( )

( )
( )

2

2

2

2

3
2

'

16

3








+=

φ

φ

πφ

φ
φ

f

f

Gf

f
k , we have: 

                              ( ) ( )∫








∂∂−−= φφφ
π

φ νµ
µν

21
4

2

1

16

1
kgR

G
kgxdS  (2.5). 

                                                                                                                                                                  
to the brane. The mass or tension of a D-brane is intermediate between that of an ordinary quantum or a 
fundamental string and that of “soliton”. The soliton is a state whose classical limit is a smooth, localized 
and topologically nontrivial classical field configuration; this includes particle states, which are localized in 
all directions, as well as extended objects. The low energy fluctations of D-branes are described by 
supersymmetric gauge theory, which is non-Abelian for coincident branes 



 6 

The action can be simplified furthermore by a transformation of φ  itself, setting ( )[ ]xψφφ = , where 

the function ( )ψφ  satisfies the differential equation ( ) ( ) 1' 2
2

=φφ k . This gives an action of the form 

in the equation (2.5) with ( )φ2k  replaced by one and ( )φ1k  by a new function ( )φd . Therefore the 
first order terms in 'α  are completely determined and it only remains to evaluate the zeroth order 
terms. The absence of constant and linear terms implies that, in tree approximation, the 
multigraviton amplitudes must be precisely those of general relativity, as given by the Hilbert-
Einstein action (the second term in the equation (2.5)). The vanishing of ( )φd  means that there is no 

cosmological term in the multigraviton interactions, whereas the vanishing of ( )0'd , implies that 
multigraviton amplitudes cannot contain scalar poles. To first order in the zero-slope expansion the 
action becomes: 

                                         ∫








∂∂+−= φφ
π

νµ
µν

gR
G

gxdS
2

1

16

14  (2.6). 

There is a TSS (1 tensor and two scalars) interaction in which the graviton couples to the energy 
momentum tensor of the φ  field. Furthermore, all pure scalar self-interactions terms vanish 
identically. The graviton+gauge boson interactions have to be both Yang-Mills invariant and 
generally covariant. Therefore the unique action for these fields to first order in 'α  is: 

                                  [ ]∫ ∫−−= ρσµν
µσµρ

π
GGTrgggxdRgxd

G
S

44

8

1

16

1
 (2.7) 

 where “Tr” denotes the trace of matrix square. 
 
2.2.Interaction of the Scalar Field with Matter. 
 
Let us introduce the scalar field couples in all orders to the trace of the stress tensor of matter, as 
predicted by the Brans-Dicke (1961) theory. The parameter ω  in the Brans-Dicke theory, which 
fixes the relative strength of scalar and tensor couplings with matter, is determined by the dual 
models. The action, for the Brans-Dicke theory is expressed by. 

( ) ( )∫ 





−−−∂∂−∂∂−−= φψφψφφ

π
νµ

µν
νµ

µν
cmcgg

G

R
gxdS 2exp

2

1
exp

2

1

2

1

16
224 , (2.8) 

where .
23

16

ω+
=

G
c  ψ  is a scalar field that has been introduced to represent matter. One can easily 

show that this action provides the equation of motion:                                                                                                    

                                                 µν
ω

π
φ T

G

23

4

+
=               (2.9), 

 where µνT  is the canonical matter stress tensor obtained by varying µνg . In this theory the 

exchange of a graviton and a scalar between two ψ  particles is given by:  

                                 








+
+







− ννµµννµµµνµν

ω

π
π '

23

4
'

2

1
'8

1
2

TT
G

TTTTG
q

 (2.10) 

It follows that, in the dual model, the last two terms of the equation (2.10) cancel exactly, what 

would correspond to 1−=ω  in the Brans-Dicke model. Then, if 
ω

π

23

16

+
=

G
c , for 1−=ω  we have 

Gc π16=  and thence (2.8) become: 
 

( ) ( )∫ 





−−∂∂−∂∂−−= φπψφπψψφφ

π
νµ

µν
νµ

µν
GmGgg

G

R
gxdS 162exp

2

1
16exp

2

1

2

1

16
224  

(2.11). 
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In conclusion, the action representing the VM to the first order in 'α  contains photon, graviton, and 
scalar fields and is described by the equation: 

                   ( ) ( )∫ 





∂∂−−−= φφφ

π
νµ

µν
ρσµν

νσµρ
gfGGTrgg

G

R
gxdS

2

1

8

1

16
26  (2.12), 

 where 

( ) ...,1 ++= φφ kf  and Gk π8
6

5
= . If the scalar couplings are given by the Brans-Dicke theory, 

then ( )φf  should be ( ).exp φk  
 
3.Superstrings. 
 
The superstring action is obtained introducing a supersymmetry on the world-sheet that connects 
the spacetime coordinates ( ),,στµX  that are bosonic fields on the world-sheet, to a fermionic 

partner ( ).,στµ
αΨ  The index µ  denotes that the fermionic coordinate changes as a vector, whose 

components are spinors on the world-sheet. The theory obtained is defined “superstring theory”, 
and the corresponding action is: 

[ ]∫ 







−∂ΓΓ−∇Γ−∂∂−−= ,

4'4

1
µν

ννµνµνµ ηψχψχψψγγτσ
πα

bb

ab

aa

a

ba

ab i
XiiXXddS  (3.1) 

where aχ  is a Majorana gravitino and ,abγγ− is a Lagrange multiplier without dynamic. The 

action can be simplified selecting the equivalent of bosonic conformal gauge, defined 
superconformal gauge given by:  
                                                       ,φηγ eabab =  ,ζχ aa Γ=  (3.2) 

Furthermore, if the bidimensionals gamma matrices ,0=ΓΓΓ ab

a  the action becomes 

                             ( )∫ ∂Γ−∂∂−= ,
'4

1
µν

νµνµ ηψψητσ
πα

a

a

ba

ab
iXXddS  (3.3) 

 which represents the action of D  scalar fields and the D  fermionic fields free. 
The change of metric on the world-sheet will thus provided two current tensors: the energy-
momentum tensor:   

( ) 0
2

1

'2

1

4'

1
=








∂Γ+∂∂+








∂Γ+∂Γ+∂∂−= µ

µ
µ

µ
µ

µ
µ

µ ψψη
α

ψψ
α

XX
i

XXT c

c

ababbabaab , (3.4) 

and the supercurrent tensor, obtained by varying the gravitino 

                                                   .0
'2

1
=∂ΓΓ= µ

µψ
α

XJ b

aba  (3.5) 

The equations (3.4) and (3.5) are constraints of superstring theory. These are called “super-
Virasoro” constraints. 
 
3.1.Superstring interactions. 
 
a)Type IIA superstring. 
 
The action of type IIA superstring is: 
 
                                                         ,CSRNSIIA SSSS ++=  (3.6) 

where 
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                                ( )∫ 







−Φ∂Φ∂+−= Φ− ,

2

1
4

2

1 2

3
22/110

2
10

HReGxdS NS

µ
µ

κ
 (3.7) 

                                         ( )∫ 




 +−−= ,

~

4

1 2

4

2

2
2/110

2
10

FFGxdSR
κ

 (3.8) 

                                                    ∫ ∧∧−= .
4

1
4422

10

FFBSCS
κ

 (3.9) 

We have grouped terms according to whether the fields are in the NS-NS or R-R sector of the string 
theory; the Chern-Simons (1974) action contains both. 
The NS-NS (Neveu-Schwarz) states in type I and type II superstring theories, are the bosonic closed 
string states whose left- and right-moving parts are bosonic. The R-R (Ramond-Ramond) states in 
type I and type II superstring theories, are the bosonic closed string states whose left- and right-
moving parts are fermionic. The Chern-Simons term, is a term in the action which involves p-form 
potentials as well as field strengths. Such a term is gauge-invariant as a consequence of the Bianchi 
identity and/or the modification of the p-form gauge transformation]. 
 
b)Type IIB superstring. 
 
The action of type IIB superstring is: 
 
                                                            ,CSRNSIIB SSSS ++=  (3.10) 

where 

                               ( )∫ 







−Φ∂Φ∂+−= Φ− ,

2

1
4

2

1 2

3
22/110

2
10

HReGxd
k

S NS

µ
µ  (3.11) 

                                    ( )∫ 







++−−= ,

~

2

1~

4

1 2

5

2

3

2

1
2/110

2
10

FFFGxdSR
κ

 (3.12) 

                                                      ∫ ∧∧−= ,
4

1
3342

10

FHCSCS
κ

 (3.13) 

where 

                                                           ,
~

333 HCFF O ∧−=  (3.14) 

and 

                                              .
2

1

2

1~
323255 FBHCFF ∧+∧−=  (3.15) 

 
c)Type I superstring. 
 
The action of type I superstring is: 
 
                                                                     OCI SSS +=  (3.16) 

where 

                              ( ) ( )∫ −Φ∂Φ∂+−= Φ− ],
~

2

1
4[

2

1 2

3
22/110

2
10

FReGxdSC

µ
µ

κ
 (3.17) 

and 
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                                           ( ) ( )∫
Φ−−−= .

2

1 2

2
2/110

2
10

FTreGxd
g

S vO (3.18) 

The open string potential and field strength are written as matrix-valued forms 1A  and 2F , which 
are, in the vector representation, as indicated by the subscript on the trace. Here 

                                                             ,
~

32
10

2
10

23 ω
κ

g
dCF −=  (3.19) 

and 3ω  is the Chern-Simons 3-form 

                                                .
3

2
111113 







∧∧−∧= AAA

i
dAATrvω  (3.20) 

Under an a ordinary gauge transformation ],,[ 11 λλδ AidA −=  the Chern-Simons form transforms 

as        ( ).13 dAdTrv λδω =  (3.21).         Thus it must be that          ( ).12
10

2
10

2 dATr
g

C v λ
κ

δ =  (3.22) 

Hence the equation (3.17) becomes:  

( ) [ ( ) ]
2

111112
10

2
10

2
22/110

2
10 3

2

2

1
4

2

1
∫ 








∧∧−∧−−Φ∂Φ∂+−= Φ−

AAA
i

dAATr
g

dCReGxdS vC

κ

κ
µ

µ  

(3.23) 
 
d) Heterotic strings. 
 
The heterotic strings have the same supersymmetry as the type I string and so we expect the same 
action. However, in the absence of open strings or R-R fields the dilaton dependence should be 

Φ−2
e  throughout: 

              ( ) [ ( ) ]∫ −−Φ∂Φ∂+−= Φ− .
~

2

1
4

2

1 2

22
10

2
10

2

3
22/110

2
10

FTr
g

HReGxdS vhet

κ

κ
µ

µ  (3.24) 

Here 

                                          ,
~

32
10

2
10

23 ω
κ

g
dBH −=   ( )12

10

2
10

2 dATr
g

B v λ
κ

δ =  (3.25) 

 are the same as in the type I string, with the form renamed to reflect the fact that it comes from the 
NS sector. 
 
4.D-brane actions. 
 
The coupling of a D-brane to NS-NS closed string fields is the same Dirac-Born-Infeld action as in 
the bosonic string, 

                            ( )[ ]{ }∫ ++−−= Φ−+ ,'2det
2/11

ababab

p

pDp FBGeTrdS παξµ  (4.1) 

where abG  and abB  are the components of the spacetime NS-NS fields parallel to the brane and abF  

is the gauge field living on the brane.  
The gravitational coupling is 

                                                           ( ) 4272 '2
2

1
απκ g= . (4.2). 

Expanding the action (4.1) one obtains the coupling of the Yang-Mills theory on the Dp-brane: 

                                               
( )

( ) .'2
'2

1 2/)3(2

2
2 −−

== pp

p

Dp gg απ
τπα

  (4.3) 

The Born-Infeld form for the gauge action applies by T-duality to the type I theory, is: 
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( )

( )[ ] }{∫ +−−= ,'2det
'2

1 2/110

22 µνµν παη
πα

FxTrd
g

S

YM

 (4.4) 

 where for the relations (4.2) and (4.3) we have the type I relation 

                                                       ( ) '22 2/7
2

απ
κ

=YMg
 (type I)               (4.5). 

Another low energy action with many applications is that for a Dp-brane and Dp’-brane. There are 
three kinds of light strings: p-p, p-p’, and p’-p’, with ends on the respective D-branes. We will 
consider explicitly the case p=5 and p’=9. The massless content of the 5-9 spectrum amounts to half 
of a hypermultiplet. The other half comes from strings of opposite orientation, 9-5. The action is 
fully determined by supersymmetry and the charges; we write the bosonic part: 

( )∫ ∫ ∫ ∑ 







+−−−=

=

.
2

''
4

1

4

1 3

1

2
2

566
2

5

10
2

9 A

j

A

iji

DMN

MN

D

MN

MN

D

g
DDxdFxFd

g
FxFd

g
S χσχχχ ιµι

µ  (4.6) 

The integrals run respectively over the 9-brane and the 5-brane, with ,9,...,0=M ,5,...,0=µ  and 

.9,...,6=m  The covariant derivative is µµµµ 'iAiAD −+∂=  with µA  and µ'A  the 9-brane and 5-

brane gauge fields. The field iχ  is a doublet describing the hypermultiplet scalars. The 5-9 strings 

have one endpoint on each D-brane so χ  carries charges +1 and -1 under the respective 

symmetries. The gauge couplings Dpg  were given in equation (4.3). 

 
 
5. The Palumbo’s model states (Palumbo, 2001, 2005): 

                                                              ∫
∞

=
0

ii dFFF        (5.1) 

where F  denotes the initial energy present at the Big Bang explosion (the explosion of initial black 
hole) and iF  all the partial waves belonging to F . 

 In terms of the theory of strings, in (5.1) F  is the mode of a bosonic string having mass equal to 
zero (graviton) and iF  are the oscillation modes of supersymmetric strings. Then, we have from the 

equations (d) and (3.1): 

              ∫
∞

=
0

ii dFFF    ->  ∫ ∫ ∫
∞

−−=∂∂−−
M

ba

ab
ddXXdd

0 '4

1

'4

1
γτσ

πα
γγστ

πα
µ

µ  

                     µν
ννµνµνµ ηψψχψψγ 















−∂ΓΓ−∇Γ−∂∂ bb

ab

aa

a

ba

ab
X

i
XiiXX

4
 (5.2) 

This equation, for (1.15) and (3.24), can be defined also by 
 

       ( )∫ ∫ ∫
∞

Φ−−=







Φ∂Φ∂+∂∂−∂∂−

0

22/110
2

10

ˆˆˆˆˆˆˆ26
2 2

1~~
3

2

2

1

8

1
eGxdhhhhXd

κκ
µ

µ
λ
λ

µν
νµ

λνµ
νλµ  

                        ( )







−−Φ∂Φ∂+

2

22
10

2
10

2

3

~

2

1
4 FTr

g
HR v

κµ
µ            (5.3) 

and according to (2.12)  (The Scherck-Schwarz theory), we have: 
 

( ) ( ) ( )∫ ∫ ∫
∞

Φ−−=





∂∂−−−−

0

22/110
2
10

26

2

1

2

1

8

1

16
eGxdgfGGTrgg

G

R
gxd

κ
φφφ

π
νµ

µν
ρσµν

νσµρ  
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                  ( )







−−Φ∂Φ∂+

2

22
10

2
10

2

3

~

2

1
4 FTr

g

k
HR ν

µ
µ                 (5.4) 

 where the sign minus indicates the expansion force: i.e. the Einstein cosmological constant. 
With regard the D-branes, the equation that is related to iF , and thence to the supersymmetric 

action, according to (4.4) becomes: 

                          
( )

( )[ ] }{∫ +−−=
2/110

22
'2det

'2

1
µνµν παη

πα
FxTrd

g
S

YM

                    (5.5) 

while the equation related to F , and thence to the bosonic action, according to (4.1), becomes: 

                         ( )[ ]{ }∫ ++−−= Φ− 2/126
2525 '2det abababD FBGeTrdS παξµ .                 (5.6). 

Thus, from the parallelism between the Palumbo’s model and the string theory, one obtains:: 

( )[ ]{ }
( )

( )[ ]{ }∫ ∫∫ +−−=++−−
∞

Φ− 2/110

22
0

2/126
25 '2det

'2

1
'2det µνµν παη

πα
παξµ FxTrd

g
FBGeTrd

YM

ababab

                                                                                                                           (5.7) 
 
   6.    The Einstein’s field equation and the theory of string. 
 
The Einstein’s field equation which includes the cosmological constant is: 
 
 

                                            
µνµνµνµν πλ GTgRgR 8

2

1
−=−−

  (6.1) 
 

where µνR
 is the Ricci tensor, R  its trace, λ  the cosmological constant, µνg

 the metric tensor of 

the space geometry, G the Newton’s gravitational constant and µνT
 the tensor representing the 

properties of energy, matter and momentum.  
The left hand-side of (6.1) represents the gravitational field and, consequently, the warped space-
time, while the right hand-side represents the matter, i.e. the sources of the gravitational field. 
In string theory the gravity is related to the gravitons which are bosons, whereas the matter is 
related to fermions. It follows that the left and right hand of (6.1) may be respectively related to the 
action of  bosonic and of superstrings.   
 From (5.7) that describes the parallelism between the Palumbo’s model and the theory of string, we 
may thus write: 
 

               
( ) ( )∫ =





∂∂−−−− φφφ

π
νµ

µν
ρσµν

νσµρ
gfGGTrgg

G

R
gxd

2

1

8

1

16
26

 

                             
( )∫ ∫

∞
Φ−









−−Φ∂Φ∂+−=

0

2

22
10

2
10

2

3
210

2
10

~

2

1
4

2

1
FTr

g
HReGxd ν

µ
µ

κ

κ   (6.2) 
 
 
The sign minus in the above equation comes from the inversion of any relationship, like the 
newtonian one, when one examines it outside the range of its validity. 
 Let us analyze p. e.  the orbits of the gravitational equation F = G x m1 x m2/ r

2 , for m1 = m2 = m: i.e. 
F = G m2/r2.   

for  r2  > G m2    F(r) => 0, the orbits are attractewd by zero, 
for   r2 = G  m2    F(r) = 1   are constant and equal to 1, 
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for   r2  <  G  m2    F(r) => the orbits are attracted by infinite. 
The point r2 = k m2 is a critical point since a small variation of r implies that the orbits may tend to zero 
or to infinite.  
 
Moreover, from  F =G x m2/r2, for  ∆F and ∆r extremely small, such as inside a black hole or a proton, 
or, in the case of  (6.2) that represents the perturbation of the quantum dominium of strings,  ∆F/F = 
2∆m/m - 2∆r/r, and  assuming ∆m = 0 one obtains: 
∆F/F  = - 2∆r/r    (6.3) 
 where the sign minus indicates that F decreases when r increases, implying that 0 < ∆F/F < 1. Let us 
examine this relationship outside the above range and indicate F1 at the distance r, and F2 at the 
distance r + ∆r .  
- ∆F/F > 1 =>  ∆F > F =>  (F1 – F2) > F1 => F2 < 0 indicating that F becomes repulsive at the 

distance r + ∆r.   
- ∆F/F < 0, since F > 0, =>  ∆F < 0 => (F1 – F2) < 0 => F1 < F2 indicating that  F decreases when r 

increases, in other words that the attraction increases with the distance between two masses.  
The same holds for ∆r, whose analysis indicates that when  ∆r > r,  F becomes repulsive and increases 
with the distance between the two masses. 
The sign minus that appears in (5.7) is thus consistent with the (i) observed repulsive forces between 
quark inside a proton and the corresponding strings, (ii) repulsive force of strings inside a black hole, 
and (iii) relationship (6.2) which relates the repulsive actions of bosonic and supersymmetric strings in 
their extremely narrow dominium.  
 

 
7 On some equations concerning time-dependent configurations describing accelerating universes. 
 
 
Let us consider the following action in (q+n+2) dimensions, containing the metric, µνg , a dilaton 

field, φ , with a general scalar potential, )(φV , and a (q+2)-form field strength, 12 ++ = qq dAF , 

conformally coupled to the dilaton (Clifford et al, 2003): 

              ( )
( )

( )







−

+
−∂−= +

−++

∫
++

φ
η

φβα σφ
VFe

q
RgxdS q

nq

M nq

2
2

22

!22

  (7.1) 

 
Here R is the Ricci scalar built from the metric. 
The field equations obtained for the action of eq. (7.1) are given by: 
 

                            [ ]
( )

[ ] ( ) µνµν
σφ

µνµν φ
η

φβα gVFTe
q

TG q 2

1

!2 2 −
+

+= +
−  

                            
( )

( )φ
φ

η
σφβ σφ V

d

d
Fe

q
q +

+
−=∇ +

− 2
2

2

!2
2  

                           ( ) 0... =∇ − µσφ
µ Fe   (7.2) 

 

where [ ] ( )2

2

1
φφφφ µννµµν ∇−∇∇= gT   and   [ ] ( ) 2

2...
...

2 2

1
2 ++ −+= qq FgFFqFT µννµµν .  We look for 

solutions having the symmetries of the well-known black q-branes. To this end we consider the 
following metric ansatz: 

                      222
,

22122 )~(~)~(
~~)~()~( qnk dyrgdxrfrdrhdtrhds +++−= − ,  (7.3) 
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where 2
,nkdx  describes the metric of an n-dimensional maximally-symmetric space with constant 

curvature  
k = -1, 0, 1  and 2

qdy  describes the flat spatial q-brane directions. Let us assume the metric 

component g can be written in the form 
                                                                  crg =~   (7.4)  
 
for constant c, and with the new variable r defined by the redefinition 
 

                                                             )~(
~

rfr = .  (7.5)  
 
It is also convenient to think of the dilaton as being a logarithmic function of r, with 
 
                                                              )(ln)( rMSr =φ ,  (7.6) 
 
where M is a constant. Subject to these ansatze the solutions to the previous system of equations are 

given by  
 

                                    y

q

c

nk drdxr
rg

dr
dtrhds

22
,

2
2

22

)(
)( +++−= ,  (7.7) 

                                    qq ytryNMrLrMSytry
rQeF

...)1()(ln)(ln... 1
2

1 εσ −−−−= ,  (7.8) 
 
with 
                                                 )(ln2)1(2)()( rLN errhrg −−−= ,  (7.9) 
 
and the function L(lnr) is given in terms of S(lnr) by 
 

                                                          
2

)()( 







= x

dx

dS
x

dx

dL

α

β
.  (7.10) 

 
The constants M and N are related to the parameters n, q and c by 
 

                                                          cqnM +=2 ,        
2

2

M

qcn
N

+
= .  (7.11) 

 
Now we present two classes of solutions for the Liouville potential  λφφ −Λ= eV )( , with 0≠Λ .  
Class A. This class contains solutions only for k = 0 (that is, for flat maximally-symmetric n-

dimensional submanifolds). To obtain solutions we must also impose the following relations among the 
parameters: 

 
             βρασ 2−=M ,     βραλ 2=M ,     1=c  and 0=Q  if 0≠q    (7.12) 
 
 
With these choices the metric function h of eq. (7.7), becomes 
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[ ] [ ] )1(2222

2

222

2
/1

1/21/
2)(

22

−

+−

+−−
−

+−

Λ
−Μ−=

n

M

rnMM

Q

MM

r
rrh

αβρα

η

αβρα
αβρ .  (7.13) 

 
Class B. This class of solutions allows geometries for any k and for any q, with the constraints 
 

)1(2 −= nMσρ ,     βραλ 2=M ,    
)(

)1(2

σλη

αλ

+

−
=

knn
Q ,    1=c ,   )1( −⋅=⋅ nqq λσ .   (7.14) 

 
The metric function h of eq. (7.7) then becomes 
 

       [ ] [ ]αβρβρ

ση

αβρα

αβρ
αβρ

/121/
2)(

22

/22

222

2
/1

2

22

+−
+

+−

Λ
−Μ−= +−

MM

rQ

MM

r
rrh

M .  (7.15) 

 
7. 1 Massive supergravity in 10 dimensions and Romans’ 6-dimensional gauged supergravity. 
 
Romans has shown how to construct  a ten-dimensional supergravity theory which has an 

exponential scalar potential for the dilaton. The bosonic fields of the theory comprise the metric, a 
scalar, and 2-form, 3-form and 4-form field strengths, 12 dAF = ,  33 dAF =  and 34 dAF = . The 

equations of motion for all of the fields is trivially satisfied if we set all of their field strengths to zero, 
leaving only the dilaton and the metric. The relevant action for these fields is: 

 

                                          ( )∫ 





−∂−= 2/52210

2

1

2

1 φφ emRgxdS   (7.16) 

 

which is a special form of eq. (7.1) obtained by choosing 2

2

1
,

2

1
,1 m=Λ== βα  and 2/5−=λ . To 

obtain a solution we choose q = 0, and from the relation n + q + 2 = 10 we have immediately n = 8. We 

find a solution in Class A, for k = 0, with 82 =M   and 2522 −== λρ . This leads to the following 
solution: 

 

                              2
8,0

22
50

22
10 )(

)( dxrdr
rh

r
dtrhds ++−=        rr ln20)( −=φ   (7.17) 

 

where                       182
2

2
256

)( rr
m

rh Μ−= .  (7.18) 

 
Now we consider Romans’ DN

g 64=  supergravity . Romans’ 6-dimensional g
N 4=  gauged 

supergravity is non-chiral and has N = 4 supersymmetries. The bosonic part of the theory consists of a 
graviton, three SU(2) gauge potentials, I

Aµ , an abelian gauge potential, µA , a 2-form gauge potential, 

µνB , and a scalar field, φ . We consider the following consistently reduced version of this action: 

 

    ∫ 


+−+−∂−= − µνρ

µνρ
φµν

µν
µν

µν
φφ GGeFFffeRgxdS

II 22226

12

1
)(

4

1
)(

2

1

4

1
 

                               ])(
8

1

8
2

2
II

FFffB
g

e
g

τκρστκρσµν
µνρστκφ ε +−+ .  (7.19) 
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Here, g is the coupling constant of the SU(2) group, and µνρστκε  is the Levi-Civita tensor density. 

IF2  denotes the SU(2) gauge field strength, while 12 dAf =  and 23 dBG =  are the abelian field 

strengths for the abelian potential and the antisymmetric field. This action leads to the choices 

8/,2/1,4/1 2g−=Λ== βα  and  2−=λ . 
  
Solutions with excited 3G . 

  
We now consider a charged string wich sources the field 2B , and so for which q = 1, n = 4-q = 3 and 

the dilaton couplings are 2/1=η  and λσ 222 =−= . These couplings allow solution belonging to 

Class B, implying c = 1, 1,42 == NM  and 2/1−=ρ . The curvature of the n = 3 dimensional 

subspace can be k = 1 if 12 =Q , or it is flat if 02 =Q . For the case k = 1 the metric takes the form 
 

                                 222
2

2
3,1

222
6 )(

)( dyrdr
rh

r
dxrdtrhds +++−=   (7.20) 

 
with metric coefficients, scalar and 2-form field given by 
 

           2
2

2
2

2 232

2
)( r

Q
r

g

r
rh ++

Μ
−=  (7.21)   rr ln2)( −=φ  (7.22)   trytry

r

Q
G ε= .  (7.23) 

 
The geometry describes the fields of a charged black string in six dimensions. In the limit where Μ  

and Q vanish, the solution preserves half of the supersymmetries of the action. 
 
Solutions with excited 2F or 2f . 

 
These two cases can be treated together, since these fields appear in the action (7.19) with the same 

conformal couplings: 2/1=η , λσ −== 2 , and q = 0 for which n = 4. These parameters suggest 

solution in Class A, for which the n = 4-dimensional spatial dimensions are flat, k = 0, 42 =M , 1=N  

and 2/1−=ρ . The solution in this case takes the form 
 

     2
2

2
4,0

222
6 )(

)( dr
rh

r
dxrdtrhds ++−= ,  (7.24)    rr ln2)( −=φ , (7.25)   trtr

r

Q
F ε

7
= ,  (7.26) 

where 

                                                 
6

222

2 832

2
)(

r

Qrg

r
rh ++

Μ
−= .  (7.27) 

 
This geometry describes the fields due to a point source (0-brane) in 6 dimensions, whose casual 

structure resembles that of an AdS-Reissner-Nordstrom black hole. 
 
7.2 Gauged supergravity in 5-dimensions. 
 
Romans has studied a gauged supergravity in 5 dimensions, corresponding to a N = 4  SU(2) X U(1) 

gauged theory. The bosonic spectrum consists of gravity, a scalar, an SU(2) Yang-Mills potential IA  
(with field strength IF2 ), an abelian gauge potential H with field strength 2G , and two 2-form 
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antisymmetric potentials, 2B . We consider the reduced system without the 2-form potentials. The 
action in 5 dimensions is the following: 

 

                   ∫





+−−∂−=

−
µν

µν

φ
µν

µν

φ

φ GGeFFeRgxdS 6

4

6

2

25

4

1

4

1
)(

2

1
 

                                              ]λρσµν
µνρσλ

φ

ε HFF
g

eg
II

4

1
4 6

2

2 −+ .  (7.28) 

 
where dHG =2  is the field strength for the U(1) gauge potential, µH . We have 

24,2/1,1 g−=Λ== βα  and 6/2−=λ .  
 
Solutions with excited IF2 . 

 

In this case we have q = 0, n = 3, 2/1=η  and λσ −== 6/2 . These allow a 0-brane solution in 

Class A, for which k = 0, ,32 =M  N = 1 and 2−=ρ . The resulting field configuration is given by  
 

2
2

2
3,0

222
5 )(

)( dr
rh

r
dxrdtrhds ++−= ,  (7.29)   rr ln6)( −=φ ,  (7.30)   drdt

r

Q
F ∧−=

4
  (7.31) 

 

with   
4

2
22

189

42
)(

r

Q
rg

r
rh ++

Μ
−= ,  (7.32) 

 
and where the gauge field is only nonzero for one of the gauge-group generators. The casual 

structure of this geometry is like that of an AdS-RN black hole of positive mass, and has at most two 
horizons. 

 
Solution with excited 3G . 

 

In this case, we have q = 0, n = 3, 2/1=η  and λσ 26/4 =−= , and so we can obtain solutions of 

Class B. For these k = c = 1, 32 =M , N = 1 and 2−=ρ . The metric becomes 
 

2
2

2
3,1

222
5 )(

)( dr
rh

r
dxrdtrhds ++−=   (7.33)    rr ln6)( −=φ   (7.34)    drdtQrGtr ∧−= 2   (7.35)  

 

with         )4(
9

2
)( 22

2

Qg
r

r
rh ++

Μ
−= .  (7.36) 

 
This solution has a single event horizon at  )4/(18 223

Qgrh +Μ= . It has the same casual structure 

as an AdS-Schwarzschild black hole. 
 
7.3 On the geometrical structure of the two classes of solutions. 
 



 17 

We consider only the cases with non-trivial dilaton, we concentrate, furthermore, on the case q = 0 
(and so nM =2 ). 

 
Class A.  

 

This class of solutions are defined for zero spatial curvature k = 0. We recall the form of the metric, 
which is given by (7.13). The metric in this case becomes 

 

[ ] [ ] )1(2222

2

222

2

1

/

/121/
2)( 2

2

−− +−−
+

+−

Λ
−Μ−=

nM rMnM

Q

MM

r

r

r
rh

αβρα

η

αβρα

αβρ

  (7.37) 

 

and αβρ /2 2

)()( −= rrhrg .  We have the following cases: 
 
a) )1( 22 +> Mαβρ .   
 
1) 0>Μ  and 0<Λ  or 0>Λ . 
 
In this case, we can have a most one Cauchy horizon and the most outer region is time-dependent. It 

is interesting to notice that in this case, the asymptotic infinity is still null-like. Then the Penrose 
diagram looks like that of the S-brane. 

  
2) 0<Μ  and 0>Λ . 
 
In this case, the solution is static everywhere and there are no horizons at all. There is a naked 

singularity at the origin and the asymptotic infinity is null-like. 
 
b)  )1( 22 +≤< Mαβρα . 
 
1) 0>Μ  and 0>Λ . 
 
In this case, we again have a cosmological solution with the same geometry as the S-brane, being 

asymptotically flat at infinity. 
 
2) 0<Μ  and 0>Λ . 
 
In this case, the geometry is like in the positive mass case. 
 
c)  αβρ <2 . 
 
1) 0>Μ  and 0>Λ . 
 
In this case, we have a cosmological solution with a Cauchy horizon, but now the asymptotic 

infinity is not null-like but space-like. The Penrose diagram is like a dS-S-brane solution. 
 
2) 0<Μ  and 0>Λ  or 0<Λ . 
 
This case reduces to the positive mass case above. 
 
Class B. 
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These solutions are defined only for positive spatial curvature k = 1. The metric is given by (7.15), 
 

[ ] [ ]αβρβρ

ση

αβρα

αβραβρ

/12/1
2)(
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222
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M
,  (7.38) 

 
αβρ /2 2

)()( −= rrhrg .  All the solutions have a curvature singularity at r = 0. So we can have the 
following cases: 

 
a)  )1( 22 +> Mαβρ . 
 
1) 0>Μ  and 0>Λ . 
 
In this case, the solution is static and there may be up to two horizons. The singularity is time-like 

and the geometry is like that of a RNadS black hole. 
 
2) 0<Μ  and 0>Λ . 
 
In this case, the solution is static everywhere with a naked singularity at the origin. 
 
b)  )1( 22 +<< Mαβρα . 

 

1)  0>Μ  and 0>Λ  or 0<Λ . 
 
In this case, we can have at most one regular horizon and the solution is static. There is a space-like 

singularity at the origin and the asymptotic infinity is time-like. Then the Penrose diagram looks like 
that of an AdS-Schwarzschild black hole. 

 
2)  0<Μ  and 0>Λ . 
 
In this case, there may be at most two regular horizons and a time-like singularity at the origin. The 

Penrose diagram looks like a Reissner-Nordstrom-AdS black hole. 
 
c)  αβρ <2 . 

 

1) 0>Μ  and 0>Λ . 
 
This is a very interesting solution. It is cosmological and there may be up to two regular horizons, 

one cosmological and one event horizon. The Penrose diagram looks like that of a dS-Schwarzschild 
black hole. It is also interesting to note that this is the only case where this structure comes out, and 
moreover, there are no cases where the asymptotic infinity is null-like. 

 
2)  0<Μ  and 0>Λ . 
 
In this case, there may be at most one regular horizon and a time-like singularity at the origin. The 

Penrose diagram looks like a dS-S-brane. 
 
d) αβρ =2 . 
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  1)  0>Μ  and 0>Λ . 
 
  In this case, there are two possibilities. Either there are no horizons and the solution is everywhere 
cosmological with a space-like asymptotic infinity. Or it may have an event horizon and then it looks 
like a AdS-Schwarzschild black hole. 
 
  2)  0<Μ  and 0>Λ . 
 
  Also in this case, there are two possibilities. The solutions may be static everywhere with a naked 
time-like singularity or there may be one regular horizon and the structure is then like a dS-S-brane. 
   
Hence, in these cases, when the singularity has negative tension or the cosmological constant is 
positive, we have time-dependent configurations describing accelerating universes (eqs. 7.16-7.19 
and 7.28). 
Furthermore, for the parallelism obtained between Palumbo’s model and string theory, we have 
from eq. (5.4) the following connections with the eqs. (7.16), (7.19) and (7.28). 
In conclusion, we have: 
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Thence, we have the following connections: Palumbo’s model � bosonic string action=dark energy 
� superstring action=dark matter � time-dependent configurations describing accelerating 
universes.   
 

                                                     PART 2 (Nardelli, 2006) 
   
 
 1.Mathematical connections between Palumbo’s model and some equations concerning D-term 
strings.[1]-[2]. 
 
It is known that string theories admit various BPS-saturated string-like objects in the effective 4d 
theory. These are qD +1 -branes wrapped on some q-cycle. We shall refer to these objects as effective 
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1D -strings, or D-strings for short. Thus, we conjecture that the string theory D-strings (that is, 

wrapped qD +1 -branes) are seen as D-terms strings in 4d supergravity. Since according to the 

conjecture qD +1  branes are D-term strings, it immediately follows that the energy of the 

qq DD ++ − 33 -system must be seen from the point of view of the 4d supergravity as D-term energy. 

The supergravity model is defined by one scalar field φ , ��charged under U(1), with K= φφ ∗  and 
superpotential W=0, so that we reproduce the supergravity version of the cosmic string in the 
critical Einstein-Higgs-Abelian gauge field model. This model can be also viewed as a D-term 
inflation model. In such case, the bosonic part of the supergravity action is reduced to 

D

Pbos VFFRMLe −−∂∂−−= ∗− µν
µν

µ
µ φφ

4

1ˆˆ
2

1 21 , (1.1) where D-term potential is defined by 

2

2

1
DV

D =           φφξ ∗−= ggD . (1.2)  Here µW  is an abelian gauge field, 

µννµµν WWF ∂−∂≡  ,          ( )φφ µµµ igW−∂≡∂̂ . (1.3) 

The energy of the string is: 
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              ( )0
2 detdet =∞= ∫∫ −+ rrP KhdKhdM θθ ,  (1.4)   

where K is the Gaussian curvature at the boundaries (on which the metric is h). These boundaries 
are at ∞=r  and 0=r . Further, for the metric ( ) 222222 θdrCdrdzdtds +++−= ,  (1.5)  we have 

( )rCg =det ,   ''2det CRg = ,   'det CKh −=  (1.6) 

Eq.(1.4) can be rewritten by using the Bogomol’nyi method as follows 
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Where we have used the explicit form of the metric (1.5). 
The energy of the string, can be also defined as: 

ξπθµ nTgdrdstring 2det 0
0 == ∫ , (1.8)  where  
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The definition of the energy of the string that we are using in (1.4), which is valid for time 
independent configurations, is 
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Now we see that the term 







− matter

P LR
M

2
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 produced in addition to two BPS bounds in (1.9) also a 

term  

( )[ ]B

r

B

r AAC θθ ∂±∂ m' . (Note that the BPS state is a state that is invariant under a nontrivial 

subalgebra of the full supersymmetry algebra. Such states always carry conserved charges, and the 
supersymmetry algebra determines the mass of the state exactly in terms of its charges). Due to the 
gravitino BPS bound 

( ) B
ArC θ±=− '1 , the surface term B

r Aθ∂  in 0
0T  is cancelled by the Einstein term Rg . This is not 

surprising since the Einstein equation of motion must be satisfied due to vanishing gravitino 
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transformations. The remaining term in the energy, the Gibbons-Hawking K surface term, give the 
non-vanishing contribution to the energy of the string which is directly related to the deficit angle 
∆ , where stringPM µ=∆2  .  

The “SuperSwirl” is a static, supersymmetric, codimension-two configuration for a nonlinear sigma 
model, in the context of six dimensional gauged supergravity. 
The energy per unit four dimensional volume of the superswirl turns out to diverge, due to the 
contributions from the boundaries. This energy can be computed from 
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 , (1.11)  where K is the extrinsic curvature of the surfaces 

r=constant, whose metric is h. In this case these surfaces are the “boundaries” at ±r . This energy 
can be expressed in a Bogomol’nyi type form as follows: 
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From this expression is clear that the supersymmetry constraints ( )2
12

' 0

φ
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−
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−
eg

f  and  0=φzD ,  

0=∗φzD  in terms of the ( )θ,r  coordinates, imply the vanishing of the first two terms of the 
energy. Thus the energy is given entirely by the last two terms. These are given by 
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Hence, we have that the energy (per unit volume) is infinite, since it is proportional to the boundary 
terms computed at the singular points. This system should have boundary source terms that cover 
the singularities. These should regularise the latter, rendering the total energy finite. This new 
solution constitutes a new class of supersymmetric vacua for 6D chiral gauged supergravity, with 
possible implications for a deeper understanding of the theory itself, in particular its origin from 
higher dimensional supergravities or string theories. 
We note that the equations (1.11) and (1.12) are related at the equations (1.4) and (1.7), above 
mentioned. 
Further, these equations can be related to Palumbo’s model, precisely at the D-brane actions, thus 
with iF . We take the equation of coupling of a D-brane to NS-NS closed string fields and the 

equation of the Born-Infeld form for the gauge action applies by T-duality to the type I theory. For 
parallelism Palumbo’s model � string theory, we have: 
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Here, we see that also the energy of the D-strings can be related at the Palumbo’s model. 
 
2.Mathematical connections between Palumbo’s model and some equations concerning 
gauge/gravity correspondence and open/closed string duality.[3] 
 
With regard to gauge/gravity relations for the gauge theory living on fractional D3 and wrapped D5 
branes using supergravity calculations, we have that since also the fractional D3 branes are D5 
branes wrapped on a vanishing 2-cycle located at the orbifold fixed point, we can start from the 
world-volume action of a D5 brane, that is given by: 

WZWBI SSS +=  , (2.1)  where the Born-Infeld action BIS  reads as: 
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have: 
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We divide the six-dimensional world-volume into four flat directions in which the gauge theory 
lives and two directions on which the brane is wrapped. Let us denote them with the indices 
I,J=( βα , ;A,B) where α �and β �denote the flat four-dimensional ones and A e B the wrapped ones. 
We assume the supergravity fields to be independent from the coordinates βα ,  We also assume 
that the determinant in eq.(2.2) factorizes into a product of two determinants, one corresponding to 
the four-dimensional flat directions where the gauge theory lives and the other one corresponding to 
the wrapped ones where we have only the metric and the NS-NS two-form field. By expanding the 
first determinant and keeping only the quadratic term in the gauge field we obtain: 
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where we have included a factor 1/2 coming from the normalization of the gauge group generators  
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Now we compute the one-loop vacuum amplitude of an open string stretching between a fractional 
D3 brane of the orbifold 2

2 / ZC  dressed with a background SU(N) gauge field on its world-volume 
and a stack of N ordinary fractional D3 branes. The free energy of an open string stretched between 
a dressed D3 brane and a stack of N D3 branes located at a distance y in the plane ( )54 , xx  that is 
orthogonal to both the world-volume of the D3 branes and the four-dimensional space on which the 
orbifolds acts, is given by: 
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where sF  is the space-time fermion number, bcG  is the ghost number and the GSO projector is 

given by: 
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, (2.7)  with βγG  being the superghost number: 
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in Eq.(2.6) stands for “open” because we are computing the annulus diagram in the open string 
channel. We have: 
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The three terms in Eq.(2.11) come respectively from the NS, NS ( )F1−  and R sectors, while the 

contribution from the R ( )F1−  sector vanishes. In Eq.(2.12) the three terms come respectively from 

the NS, NS ( )F1−  and  R ( )F1−  sectors, while the R contribution vanishes because the projector h 
annihilates the Ramond vacuum. 
The above computation can also be performed in the closed string channel where c

eZ  and c

hZ  are 

now given by the tree level closed string amplitude between two untwisted and two twisted 
boundary states respectively: 
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where >FD ;3  is the boundary state dressed with the gauge field F. Hence, we have: 
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The three terms in Eq.(2.15) respectively come from the NS-NS, R-R and NS-NS ( )F1−  sectors, 

while those in Eq.(2.16) from the NS-NS, R-R and R-R ( )F1−  sectors. In particular, the twisted odd 

R-R ( )F1−  spin structure gets a nonvanishing contribution only from the zero modes. 
It is useful to write Eq.(2.12) in a more convenient way. Using the notation for the Θ -functions  
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By expanding the previous equation up to the second order in F and using the following relations 
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In the closed string channel we get instead: 
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Now we study the one-loop vacuum amplitude of an open string stretching between a stack of 
( )4,...,1=IN I  branes of type I and a D3 fractional brane, with a background SU(N) gauge field 

turned-on on its world-volume. Due to the structure of the orbifold )/( 22
3 ZZC × , this amplitude is 
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the sum of four terms:  ∑
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channel by multiplying Eq.s (2.11) and (2.12) [Eq.s (2.15) and (2.16)] by an extra 1/2 factor due to 
the orbifold projection. In the open string channel, o
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The functions )(Nf i  introduced in Eq. (2.24) depend on the number of the different kinds of 

fractional branes IN  and their explicit expressions are: 
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Let us now extract in both channels the quadratic terms in the gauge field F. In the open sector, we 
get: 
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while in the closed string channel we obtain: 
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, (2.27)  where the divergent contribution is 

due to the massless states in both channels. 
Now we consider the validity of the gauge/gravity correspondence in the 26-dimensional bosonic 
string and we consider it in the orbifold 2

2/ / ZC δ  with 22<δ . We consider the one-loop vacuum 
amplitude of an open string stretching between a D3 brane dressed with a background gauge field 
and a system on N undressed D3 branes. It is given by: 
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,  (2.28)  where 0L  includes the ghost and the matter 

contribution. By performing the explicit calculation of the one-loop vacuum amplitude one gets: 
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22 ,  (2.30)  where the power 18 is obtained from d-8 for the value of the 
critical dimension d=26. The previous expressions can also be rewritten in the closed string channel 
and one gets: 
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Also these equations can be related with the Palumbo’s model. For example, we take the equation 
of Scherck-Schwarz theory, the equation of heterotic string action and the equation of the one-loop 
vacuum amplitude of an open string stretching between a D3 brane dressed with a background 
gauge field and a system of N undressed D3 branes, in bosonic string theory (2.29-2.30), we have: 
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3. Mathematical connections between linear subcanonical spinor theory in third order formalism, 
Dirac-Born-Infeld action, Duality 3// 4

KIIATHet −  and Palumbo’s Model.[4] 

 
Linear subcanonical spinor theory in third order formalism. 
 
We concentrate our attention on the investigation of the simplest possible nonlinear spinor theory, 
namely a theory for a self-coupled 2-component Weyl spinor field )(xψ  which obeys the nonlinear 
field equation 
 
                                 ( ) ( ) 0)(::' =+∂⋅ ∗

xgxi ψσψψσψσ µ
µ  (3.1). 

  
This is essentially the Heisenberg nonlinear spinor equation in the form as given by Durr. An 
invariance of this spinor equation under dilatations requires to assume the spinor field to have the 
subcanonical dimension 
 
                                                                  2/1dim =ψ   (3.2) 
 
The linear theory corresponding to this subcanonical spinor theory is the third order Weyl equation 
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                                                         0)()( 2 =∂∂⋅− xi ψσ   (3.3) 
 
or the set of first order equations 
 
                                                               ψψσ ˆ=∂⋅i                                 

                                                               ψψσ ˆ̂ˆ =∂⋅i  

                                                               0ˆ̂ =∂⋅ ψσi     (3.4) 
 
This linear theory could be shown to be invariant under the full 15-parameter conformal group. The 
transition back to the nonlinear theory will be essentially performed by the requirement of phase-
gauge invariance of the theory, which demands the replacement 
 
                                                    µµµµ igR+∂=∇→∂   (3.5) 

 
in the Lagrangian, where µR  is identified with the bilinear form 

 
                                                  )(::)( xxR ψσψ µµ

∗−=   (3.6) 

 
Now we shortly review the linear subcanonical spinor theory in the third order derivative formalism 
and explicitly consider its solutions. These solutions span a quantum mechanical state space with 
indefinite metric. 
We consider the free massless third order derivative theory for a 2-component Weyl spinor field 
with the field equation 
                                                              0)()( 2 =∂∂⋅− xi ψσ   (3.7) 
 
which can be formally derived from the Lagrangian density 
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This theory is invariant under the full 15-parameter conformal group if we require the Weyl spinor 
field to transform according to an irreducible representation with mass dimension 
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1
dim =ψ   (3.9) 

 
Quantization of the spinor field is achieved by the requirement that the anticommutator of pseudo-
hermitian conjugate fields is connected with an invariant solution of (3.7) which vanishes for space-
like distances, and a normalization which is fixed by the normalization of the Lagrangian density 
(3.8). One obtains 
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where )()(
2

1 20
xx δε

π
 is the invariant function of a massless field. The integrand in the momentum 

integral (3.10) has the form  
 

                             
)()(

1

))()((

1

)( 02022
pppppppp

p
rrrr

⋅+⋅−
=

⋅⋅⋅
=

⋅

σσσσσ

σ
  (3.11) 

 
which indicates that there exists a double pole for positive chirality states (positive-energy positive-
helicity or negative-energy negative-helicity states) 
 
                                                       hppp

rrr
=⋅= σ0   (3.12) 

 
( helicitypph =⋅=

rrr
/σ ), and a single pole for negative chirality states (positive-energy negative-

helicity or negative-energy positive-helicity states) 
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rrr
−=⋅−= σ0   (3.13) 

 
both with zero mass. The field operator ψ (x) will contain annihilation operators for a massless 

right-handed good and bad ghost, ga  and ba , and an annihilation operator na  for an ordinary 

massless left-handed state similar to the neutrino, and also the creation operators nbg bbb ,,  for the 

corresponding “antiparticles”. It is convenient to use the pseudo-hermitian operators 
 
                                                                         1−∗ = ηη xbb   (3.14) 
 
constructed with the metric tensor η  in the quantum mechanical state space, because in a theory 
with indefinite metric the pseudo-hermitian conjugation takes over the role of the hermitian 
conjugation in a theory with positive definite metric. In the 1-particle sector of the quantum 
mechanical state space the metric tensor η  has the form 
 

                                                        
















== −

100

001

010
1ηη   (3.15) 

 
where the diagonal element refers to the ordinary state, the n-state. Relation (3.14) then states 
 
                                                     x

gb bb =∗  ;  x

bg bb =∗ ;  x

nn bb =∗   (3.16) 

 
For the creation and annihilation operators we have the anticommutation rules 
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and similar anticommutation rules for the b-operators. All other anticommutators are zero. The 
superscript (i) refers to the spin degree of freedom. The Weyl spinor field ψ (x) can be expanded in 
terms of these operators 
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with the helicity projection operators 
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The expansion for ( )x

∗
αψ  is given by the pseudo-hermitian expression of (3.18). With (3.18) we 

deduce for the anticommutator (3.10) on the basis of the anticommutator rules (3.17) 
 

                
( ) ( )

( ) ] ( )[{∫ ++−=
















−







 ⋅−−

+−
∗ xptpi

ehtpih
p

pd
xx rrrr

r 21
2

1

2

1

2
,

2 2
3

3π
ψψ  

                                                 ( )[ ] ( )xptpi
ehtpih

rrrr ⋅−+

+− −−+ 21  

                
( )

( ) ( ) ( ) ( )∫




+−+++−=
−

−

−

+

1

0
0

0

1

0
0

0
4

32

1
pp

dp

d
pphpp

dp

d
pphpd

rrrr
δδ

π
 

                                       ( ) ( ) ( )[ ] } xip
epphpphp

⋅−
+−

−
++−+

rrr
00

2
2 δδ  

               
( ) ( ) ( ) ( ) ( )∫

⋅−−+













−+
+

+−
= xip

e
pppp

h

pppp

h
pd

i
rrrr

0

2

00

2

0

4
42π

  (3.20) 

 
i.e. the correct expression (3.10). 
The situation in the state space is less pathological if we generalize the third order spinor theory 
(3.7) to include a mass, i.e. 
                                    ( )( ) ( ) 022 =+∂∂⋅− xmi ψσ   (3.21) 
 
In this case, of course, the symmetry under dilatation and special conformal transformation will be 
broken. The anticommutator then has the form 
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From this we deduce that ( )xψ  now annihilates positive norm states of mass m, containing positive 
and negative chirality components, and negative norm zero states with zero mass and positive 
chirality. The Weyl spinor field has the expansion 
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with           2/122 )( mpE p +=

r
  (3.24) 

 
The annihilation and creation operators obey the anticommutation rules 
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and similar anticommutators for the )(i

b  . All other anticommutators vanish. The negative sign in 
the second anticommutator of (3.25) indicates that ∗

−a  creates a negative norm state. It is possible 
verify easily that the expansion (3.23) leads back to (3.22): 
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3.1 Born-Infeld action and D-brane actions.[5] 
 
Born and Infeld realized the final version of their non-linear electrodynamics through a manifestly 
covariant action. In modern language this can be expressed by saying that the world-volume theory 
of the brane is described by the action 
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where F is the world-volume electromagnetic field strength, measured in units in which 1'2 =πα  . G 
is the induced metric on the brane  
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Thence, we have from (3.27): 
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The action is invariant under arbitrary diffeomorphysms of the world-volume. One way of fixing 
this freedom is to adopt the so-called “static gauge” for which the world-volume coordinates are 
equated with the first p+1 space-time coordinates: 
 
                                                             pX ,...,1,0, =≡ µσ µµ .  (3.30) 
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This “static gauge” description is most convenient if the brane is indeed positioned along those 
directions. The rest of the coordinates become world-volume fields  
 
                                                           9,...,1, +=≡ pmX mm φ .  (3.31) 
 
The Born-Infeld action becomes 
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Note that this is in some sense a modification of pure Born-Infeld: it has extra scalar fields φ  and 
that the action  (3.27) can be also write as: 
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The action for a Dp-brane comes in two parts, the Dirac-Born-Infeld part, and the Wess-Zumino 
part. These are 
 

                                          ( )∫ +−−= −+
αβαβ

φζµ fgedS p

pDBI det1 ,  (3.34) 

 
where BFf −= '2πα  is a U(1) field strength (the world volume gauge field therefore transforms 

as '2/ παλδ BA =  under a SUGRA gauge transformation BdB λδ =2 ), and  
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where the integral projects onto p+1 forms. The D-brane charge is 2/)1(')2/(1 += pp

p απµ . The 

coordinates αζ  are the embedding coordinates of the D-brane. Note that the spacetime fields are 
pulled back to the world volume. Hence, we have 
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With regard to string corrections, the most important corrections are those to the D7-brane action 
because they give an induced D3-brane charge and tension. There are also corrections to the DBI 
action that are responsible for modifying the tension of wrapped D7-branes.  Considering the 
bosonic part only, the DBI action becomes 
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up to 2)'(αΟ .  There is an additional contribution at this order with an undetermined coefficient, 

but it vanishes on-shell, so it does not affect S-matrix elements or dispersion relations. Here, ba ˆ,ˆ  

are normal bundle indices in an orthonormal basis with vielbein âξ . 
  
3.2 Duality type I-SO(32)[6] 
 
In these theories, the action is fixed from the supersymmetry. The heterotic action contain the fields 

φµνµν ,, BG  and a
Aµ ; the type I µνG  and φ  from the closed sector 2)(NS , µνB  from the closed 

sector 2)(R  and a
Aµ  from the open sector. In the Einstein frame for the two actions, we have 
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where 

       [ ]νµµννµµν AAAAF ,2+∂−∂= ,              [ ] .,
3

2

2

1
ciclAAAFATrBH +










−−∂= ρνµνρµνρµµνρ  

 
These two actions are obtained each other identifying among them the fields corresponding of the 
two different theories and putting IH φφ −= ; the change of sign in dilaton connected the 
perturbative aspect of Type I with that non-perturbative of heterotic and vice versa.  
 
3.3 Duality 3// 4

KIIATHet − [6] 

 
With regard to duality 3// 4

KIIATHet − , the heterotic relation contain, metric, antisymmetric 
tensor, dilaton, 10+6+64=80 scalars and 8+16=24 vectors; with ),20,4(OM ∈  tMM =  we can 
write 
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where  
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.  

 
The duality group is, in this case, );20,4( ZO . 
When we compactific the IIA on K3, we have 58 scalars describing the fluctuations in the complex 
and kahlerian structure of manifold; 22 scalars that we obtain decomposing mnB , with respect to the 
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22 harmonics 2-forms p

mnω  of K3: ∑
=

≈
22

1

)()(),(
p

p

mnpmn yxyxB ωφ  with x coordinates on 6R  and y 

coordinates on K3. Altogether we have 80 scalars that parametrize a coset )20()4(/)20,4( OOO ×  
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24 gauge fields. The effective action is 
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where               ciclBH +∂= νρµµνρ .   

 
We note that the eqs. (3.10)-(3.22) and (3.26) are connected with eqs. (3.29)-(3.32) and (3.37) with 
regard to the DBI action, and with (3.38)-(3.39)-(3.40) and (3.41) with regard to the duality type I – 
SO(32) and duality 3// 4

KIIATHet − , respectively. Furthermore, we have obtained also the 
connection with Palumbo’s model. We find that, for example, 
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4. On some correlations obtained between some solutions in string theory, Riemann zeta function 
and    Palumbo’s model. 
 
In the paper: “Brane Inflation, Solitons and Cosmological Solutions:I”, that dealt various 
cosmological solutions for a D3/D7 system directly from M-theory with fluxes and M2-branes, and 
in the paper: “General brane geometries from scalar potentials: gauged supergravities and 
accelerating universes”, that dealt time-dependent configurations describing accelerating universes, 
we have obtained interesting connection between some equations concerning cosmological 
solutions, some equations concerning the Riemann zeta function and the relationship of Palumbo’s 
model. 
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4.1 Cosmological solutions from the D3/D7 system.[7] 
 
The full action in M-theory will consist of three pieces: a bulk term, bulkS , a quantum correction 

term, quantumS , and a membrane source term, 2MS . The action is then given as the sum of these three 

pieces: 
 
                                                           2Mquantumbulk SSSS ++= .  (4.1) 

The individual pieces are: 
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where we have defined G = dC, with C being the usual three form of M-theory, and )11(2 8 NGπκ ≡ . 

This is the bosonic part of the classical eleven-dimensional supergravity action. The leading 
quantum correction to the action can be written as: 
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The coefficient 2T  is the membrane tension. For our case, 
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where MX  are the embedding coordinates of the membrane. The world-volume metric 

2,1,0,, =νµγ µν  is simply the pull-back of MNg , the space-time metric. The motion of this M2 

brane is obviously influenced by the background G-fluxes.  
 
4.2 Classification and stability of cosmological solutions. 
 
The metric that we get in type IIB is of the following generic form: 
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where )(yff ii =  are some functions of the fourfold coordinates and βα ,  and γ  could be positive 

or negative number. For arbitrary )(yf i and arbitrary powers of t , the type IIB metric can in 

general come from an M-theory metric of the form  
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with three different warp factors A, B and C , given by: 
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To see what the possible choices are for such a background, we need to find the difference B – C . 
This is given by: 
 

                                          
τ

τ
βγ

232 loglog
2

1
+=−

+
t

ff
CB . (4.8) 

 
Since the space and time dependent parts of (4.8) can be isolated, (4.8) can only vanish if 
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with α  and )(1 yf  remaining completely arbitrary.  

We now study the following interesting case, where 2== βα , 0=γ   21 ff = . The internal six 
manifold is time independent. This example would correspond to an exact de-Sitter background, 
and therefore this would be an accelerating universe with the three warp factors given by: 
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We see that the internal fourfold has time dependent warp factors although the type IIB six 
dimensional space is completely time independent. Such a background has the advantage that the 
four dimensional dynamics that would depend on the internal space will now become time 
independent.  
This case, assumes that the time-dependence has a peculiar form, namely the 6D internal manifold 
of the IIB theory is assumed constant, and the non-compact directions correspond to a 4D de-Sitter 
space. Using (4.10), the corresponding 11D metric in the M-theory picture, can then, in principle, 
be inserted in the equations of motion that follow from (4.1). Hence, for the Palumbo’s model, we 
have the following connection: 
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where the third term is the bosonic part of the classical eleven-dimensional super-gravity action. 
 
4.3 Solution applied to ten dimensional IIB supergravity (uplifted 10-dimensional solution).[8] 
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This solution can be oxidized on a three sphere 3
S  to give a solution to ten dimensional IIB 

supergravity. This 10D theory contains a graviton, a scalar field, and the NSNS 3-form among other 
fields, and has a ten dimensional action given by 
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We have a ten dimensional configuration given by 
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This uplifted 10-dimensional solution describes NS-5 branes intersecting with fundamental strings 
in the time direction.  
Now we make the manipulation of the angular variables of the three sphere simpler by introducing 
the following left-invariant 1-forms of SU(2): 
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Next, we perform the following change of variables 
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It is straightforward to check that the 10-dimensional solution (4.13) becomes, after these changes 
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where we define  
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and, after re-scaling M, 
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We now transform the solution from the Einstein to the string frame. This leads to 
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We have a solution to 10-dimensional IIB supergravity with a nontrivial NSNS field. If we perform 
an S-duality transformation to this solution we again obtain a solution to type-IIB theory but with a 
nontrivial RR 3-form, 3F . The S-duality transformation acts only on the metric and on the dilaton, 

leaving invariant the three form. In this way we are led to the following configuration, which is S-
dual to the one derived above 
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With regard the T-duality, in the string frame we have 
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This gives a solution to IIA supergravity with excited RR 4-form, 4C . We proceed by performing a 

T-duality transformation, leading to a solution of IIB theory with nontrivial RR 3-form, 3C . The 

complete solution then becomes 
 

                     [ ] 22

2

43
2
2

2
12

2
2
6

2
10

1

242

1
dZrdt

r

gQ

g

r
dssd +




















−+++= σσσ  , 

 
                         rln2=φ  
 



 38 

                       3532123

1

2

1
hdrdt

rg

Q
h

g
C ∧∧−∧∧−= σσ .  (4.23) 

 
We are led in this way to precisely the same 10D solution as we found earlier [see formula (4.21)]. 
With regard the Palumbo’s model, we have the following connection: 
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4.4 Connections with some equations concerning the Riemann zeta function[9] 
 
We have obtained interesting connections between some cosmological solutions of a D3/D7 system, 
some solutions concerning ten dimensional IIB supergravity and some equations concerning the 
Riemann zeta function, specifying the Goldston-Montgomery theorem.  
In the chapter “Goldbach’s numbers in short intervals” of Languasco’s paper “The Goldbach’s 
conjecture”, is described the Goldston-Montgomery theorem. 
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hence the connection between the cosmological solution and the equation related to Riemann zeta 
function. 
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hence the connection between the 10-dimensional solutions and the equation related to Riemann 
zeta function.  
 
4.5 Further connections between some equations of string theory and lemma 3 of Goldston-
Montgomery theorem.[10] 
 
We now show that, in a large class of string constructions with NS-NS tadpoles, including brane-
antibrane pairs and brane supersymmetry breaking models, the one-loop threshold corrections are 
UV finite, despite the presence of tadpoles.  
In order to obtain a field-theory interpretation, one can turn windings into momenta via a pair of T-
dualities that also convert D9 and D5 branes into D7 and D3. The one-loop threshold corrections for 
the D3 gauge couplings are found to be 
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(4.30) 
where Q is a gauge generator for the D3 gauge group, 321 ,, vvv  are the volumes of the three internal 

tori, )2(P  and )4(P  are Kaluza-Klein momentum sums along the torus where the T-duality was 
performed and along the other two tori, respectively, )2(

eP  is a corresponding even momentum sum, 
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η  and  iϑ  are Jacobi functions. The non-supersymmetric contribution in the second line of (4.30) is 

IR and UV finite, where IR and UV refer to the open (loop) channel. The UV finiteness can be 
explained from the supergravity point of view, while the IR finiteness is guaranteed by the 
separation between the D3 (branes) and the 3D (antibranes) in the internal space. In the field theory 
(large volume) limit the non-supersymmetric contribution is negligible, while the explicit evaluation 
of the first term in (4.30) gives 
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where for a rectangular torus of radii ,, 21 RR  21RRG =  and 21 /Im RRU = . In (4.31), )2( =N
b  

denote beta function coefficients for Kaluza-Klein excitations in the compact torus where the T-
dualities were performed, that fill N = 2 multiplets. The first, BPS-like contribution in (4.30), is 
similar to the standard N = 2 one in orientifold models, and is finite. The non-supersymmetric one 
originates from the cylinder and reflects the 33 DD −  interactions between branes and antibranes 
located at different orbifold fixed points. This explains, in particular, the origin of the alternating 

factor ( )m1− . The remarkable property of (4.30) is that the threshold corrections are UV finite, 
despite the presence of the NS-NS tadpole. This can be understood noting that in the ∞→l  limit 
the string amplitudes acquire a field-theory interpretation in terms of dilaton and graviton 
exchanges between Dp-branes and Op-planes. For parallel localized sources, the relevant terms in 
the effective Lagrangian are 
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where ξ  are brane world-volume coordinates, 1±=q  distinguishes between branes or O-planes and 

antibranes or O -planes, G is the 10-dimensional metric, γ  is the induced metric and )1( +p
C  denotes 

a R-R form that couples to the branes.  
We note that the eq. (4.32) is related to the Palumbo’s model. Indeed, we have the following 
connection: 
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From (4.31), we have ( )( )21
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Riemann zeta function and precisely to the lemma 3 of Goldston-Montgomery theorem, with the 
change of sign. Then: 
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5. On the solutions of some differential equations describing configurations with naked singularities 
and mathematical connections between naked singularities and some differential elliptic equations 
concerning open sets. 
 
In this chapter, we have related some differential equations describing configurations with naked 
singularities, with some theorems applied to differential equations concerning open sets of 
Stampacchia’s papers. 
 
5.1 On some equations whose cosmological solutions leads to the naked singularities.[8] 
 
Now we consider the following action in (q+n+2) dimensions, containing the metric, µνg , a dilaton 

field, φ , with a general scalar potential, )(φV , and a (q+2)-form field strength, 12 ++ = qq dAF , 

conformally coupled to the dilaton: 
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Here R is the Ricci scalar built from the metric. The Ricci scalar is given by the simple expression 
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The field equations obtained for the action of eq. (5.1) are given by: 
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We look for solutions having the symmetries of the well-known black q-branes. To this end we 
consider the following metric ansatz: 
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where 2

,nkdx  describes the metric of an n-dimensional maximally-symmetric space with constant 

curvature k = -1 , 0 , 1 and 2
qdy  describes the flat spatial q-brane directions. Let us assume the metric 

component g can be written in the form  crg =~  for constant c, and with the new variable r defined by 

the redefinition  )~(
~

rfr = . It is also convenient to think of the dilaton as being a logarithmic function 
of r, with )(ln)( rMSr =φ , where M is a constant. Subject to these ansatz the solutions to the 
previous system of equations are given by 
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with )(ln2)1(2)()( rLN errhrg −−−= , (5.2e)  and the function L(lnr) is given in terms of S(lnr) by 
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To proceed further, we must choose a particular form for ( )φV . We take the following Liouville 
potential 
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Now, we present three classes of solutions for the Liouville potential (5.3), with 0≠Λ . 
Let us start by rewriting the general form of the solutions in this case, substituting in (5.2d) and (5.2e) 
the form of S given by formula rrS ln)(ln ρ= . We find in this way: 
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with      )1/(2 2

)()( −+−= αβρN
rrhrg . With these expressions the (tt) and (rr) components of Einstein’s 

equations imply the following condition for h: 
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(5.3b) 
where Μ  is an integration constant. On the other hand the dilaton equation implies h(r) must also 
satisfy: 
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The ( )

rq yy  components of the Einstein’s equations impose the further conditions 
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In order to obtain solutions we must require that eqs. (5.3b) and (5.3c) imply consistent conditions for 
h(r), and we must also impose eq. (5.3d). We find these conditions can be satisfied by making 
appropriate choices for the parameters in the solutions. We identify three classes of possibilities 
which now enumerate, giving interesting solutions for extended objects.  
 
Class I. This class of solutions are defined for zero spatial curvature k = 0. The form of the metric in 
this case is given by 
 

  [ ] [ ] )1(2222

2

222

2

1

/

/121/
2)( 2

2

−− +−−
+

+−

Λ
−Μ−=

nM rMnM

Q

MM

r

r

r
rh

αβρα

η

αβρα

αβρ

,  (5.4) 

 

and αβρ /2 2

)()( −= rrhrg . The dilaton and gauge fields are given by 
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with the relevant values of the parameters. Let )1( 22 +> Mαβρ  and  0<Μ . For 0>Λ , the 
solution is static everywhere and there are no horizons at all. There is a naked singularity at the origin 
and the asymptotic infinity is null-like.  
 
Class II. These solutions are defined for non zero spatial curvature k = -1 , 1. The form of the metric 
is given by  
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and αβρ /2 2

)()( −= rrhrg . Let αβρ ≥2  and 0<Μ . For 0<Λ , and k = -1 the solutions are static 
everywhere with a naked time-like singularity at the origin. 
 
Class III. These solutions are defined only for positive spatial curvature k = 1. The metric is given by 
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and αβρ /2 2

)()( −= rrhrg . Let )1( 22 +> Mαβρ  and 0<Μ . For 0>Λ , the solution is static 
everywhere with a naked singularity at the origin. 
 
5.2 On further equations having naked singularities solutions.[2] 
 
We start from the differential equation 
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Configurations with naked singularities can be solutions of this equation. An exact solution of this 
equation can be obtained by asking that ψ  depends on some real combination of ( )zz, , for example 
by zzx +≡ . In this case, it is simple to show that (5.9) can be reduced to a first order differential 
equation 
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where 2α  is a positive real constant. Eq. (5.10) can be reassembled in the following way 
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At this point, it is easy to show that the general solution for the equation (5.11) is given by  
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where the real numbers M, N, P are integration constants that satisfy the condition  
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Since ψ  is real and positive, this implies that 0, ≥PM .   
The general supersymmetric solution above, eq. (5.12), can be seen to constitute the most general 
axially symmetry solution that preserves supersymmetry, and maximal space-time symmetry in 4D. 
The general solution depending on the variable x with the coordinates 
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depends only on the radial coordinate r, and, consequently, it is axially symmetric. In terms of these 
coordinates, the solution is: 
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with the definitions and constraints: 
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The limit 0→ψ , is obtained by properly sending M, c and P to zero. The function B

e
2  can be 

rewritten as 
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The singularity structure can be read from the metric function B

e
2  given in formula (5.17). When the 

hyperscalars are turned on, the solution has unavoidable, timelike singularities at the points at which 
this function vanishes, or diverges. This occurs at the positive zeros of the function 01 =−ψ , where 

the conformal factor B
e

2  vanishes. These are located at 
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We have the presence of these singularities because the 6D potential and target-space metric, blow up 
at these positions. The physical space-time lies in the coordinate range +− ≤≤ rrr . We now consider 

the limit −→ rr . The relevant part of the metric is 
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with B

e
2  given in eq. (5.17). Performing the coordinate transformation  
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brings the metric (5.19), for 0→ρ  (that is, −→ rr ), to the form 
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2 θγρρ ddds +≈ ,  (5.21) 
 
with ( )ααααγ +−− −= rrrc~4 . This implies that near −r  the metric does not have a conical singularity, 
but a more serious one: a naked time-like singularity. 
 
5.3 On some mathematical theorems concerning open sets applied to the naked singularities.[11] 
 
If an open set is a set formed only from the internal points, without the points belonging to the 
boundary, hence without consider the boundary, and a naked singularity is a singularity formed only 
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from the internal parts, without events horizon and no bounded from a black hole, hence without the 
boundary, then open sets and naked singularities can be related and the mathematical theorems 
concerning the open sets (differential equations and boundary conditions) can be applied to the naked 
singularities, obtaining new interesting mathematical considerations. 
 
Let mR  an euclidean space of m dimensions (m > 2) of generic point ( )mxxxx ,...,, 21≡  , 

( )myyyy ,...,, 21≡ ,… . We denote with ( )ρ,yI  the sphere of mR  with centre in y and radius ρ  and 

with ( )ρ,yΓ  the spherical hyper-surface boundary of ( )ρ,yI . Furthermore, we denote with ( )xΣ  an 

measurable set of  ( )1,xΓ  and with ( )xΣ  the measure m-1 dimensional of it. In relation to ( )xΣ  we 

denote with ( )ρ,xS  the set of points of ( )ρ,xI  that are projected from x in ( )xΣ . If we have a 

bounded and open set Ω  of mR , we’ll tell that Ω  is of type (S) if there are two positive numbers: ω  
and ρ  ( )1−≤ mωω  so that for each Ω∈x  can be determined a set ( )xΣ  with ( ) ω≥Σ x  hence  

( ) Ω⊂ρ,xS .  
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One function Vxu ∈)(  that, for each Vv ∈ , satisfy the relation  vfvua ,),( = , is denoted shortly 

with ),()( Vxu ΩΕ≡ . Hence, we have the following relation: 
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We denote with ][, −+ HH  the values of 1

Rk ∈  hence ]))(([,))(( VxutVxut kk ∈∈ −+  for each Vu ∈ . 

If Vxu ∈)( , we denote with )]([),( kAkA −+  the set of points Ω∈x  where ])([,)( kxukxu ≤≥ . We 

now denote with A(k) the sets )(kA+  and )(kA− , and with H the sets ( )+∞∩+ ,0H  and 

( )0,∞−∩−H .  
LEMMA 1. 
If ( )Vxu ,)( ΩΕ≡ , it is possible to determine two constants ),,(),,(:, ΩΛ≡Λ=Λ MM µµγγγ  so 
that, for each Hk ∈ , we have: 
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LEMMA 2. 
We suppose that Ω  is the type (S), fixed q with 21 ≤≤ q , it is possible to determine two positive 

constants, deriving from Ω  and η:q , and β  so that for each function )()( 1 Ω∈ Hxu , and for each 
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PROPOSITION 1. 
 
Let Ω  an open set of type (S), )(),(],[),( xcxbaaxa ijiijij =  are measurable and limited functions in 
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for any )(1
0 Ω∈ Hv , then we have the following increase: ∑ Ω
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only from Ω  and from the constants µ  and M of the (5.23). 
 
PROPOSITION 2. 
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Dirichlet’s Problem (with boundary conditions not homogeneous). In the similar hypotheses of 
proposition 1 and if ψ  is the trace of a function u  having first derivatives in Ω (in )(ΩpL ) with p > 

m, we argue, for each function )()( 1 Ω∈ Hxu  having trace ψ  on Ω∂  and that satisfy the relation 
(5.29), the following increase: 
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PROPOSITION 3. 
 
Neumann’s Problem (with boundary conditions homogeneous). In the similar hypotheses on 

)(],[),(, xcaaxa jiijij =Ω  formulated in the proposition 1, let pLg ∈  with p > m and  c(x) > v > 0. If 
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for any )(1 Ω∈ Hv , we have the increase:  
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PROPOSITION 4. 
 
Dirichlet – Neumann’s mixed Problem. Let Ω∂∪Ω∂=Ω∂ 21 , and )(1 Ω∈ Hu  satisfy the relation: 
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for each Vv ∈ , where V is the sub-space of the v of )(1 ΩH  and the trace on vγ:1Ω∂ is vanish. 

Because )0,(),,0( −∞≡+∞≡ −+ HH , we have, as for proposition 1, the limitation 
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LEMMA 3. 
 
If )()( 1 Ω∈ Hxu  with Ω  of type (S), it is possible to determine two constants )(),( 2211 Ω=Ω= δδδδ  
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for almost all Ω∈x .  
 
LEMMA 4. 
 
If )()( 1 Ω∈ Hxu  with Ω  of type (S), for each q with 21 ≤≤ q  there is a constant ),(11 Ω= qββ  so 
that we have: 
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From this lemma, we obtain: 
 
LEMMA 5. 
 
In the similar hypotheses of lemma 4, and preserving the similar notations, there is the following 
inequality: 
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where 0Ω  denote the set of the points of Ω  where 0≠u   [ ]( )00 >∩Ω=Ω uE . 

Let Ω  be a bounded connected open set in the n-dimensional real Euclidean space nR , Ω  its closure 
and Ω∂  its boundary. We shall denote by V the subspace of )(1 ΩH  consisting of all distributions 

)(1 Ω∈ Hu  such that u = 0 on Ω∂1 . The space V provided with the norm induced from that of 

)(1 ΩH , being a closed subspace, becomes a Hilbert space. We shall assume that Ω  and Ω∂1  are 
such that the following Poincarè type inequality holds for all Vu ∈ : There exists a constant 

0),( 1 >Ω∂Ω= CC  such that 
ΩΩ

≤
,2,2 xuCu .  

 
Assumption A. We require that there exist a constant 00 >µ  such that ( )[ ] 0µ>∑ x  for all Ω∈x . 

Assumption A’. Ω  and Ω∂1  are the images under a bi-Lipschitz mapping of some 'Ω  and '1Ω∂  
which satisfy the assumption A.  
Let A be a bounded open set in nR  and 0>β  be a constant. ),( AF β  denotes the family of all 

subsets B of A  such that the following inequality holds for all ( )ACu 1∈  vanishing on B 

AqxAq
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β≤∗  where nqq /1/1/1 −=∗  for all nq ≤<1 . We shall require that Ω  satisfies a mild 

assumption of admissibility described below. 
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belongs to the family )).,(,( ρβ yF Ω  

We consider on Ω  a linear uniformly elliptic second order differential operator of the form  
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22

)( ξξξξ Mxam kijk ≤≤ , for all nR∈ξ  and a.e. in Ω , with some constant of 

ellipticity 
  

 m > 0. We shall write  ∫Ω= dxxvxuxavua xkxjjk )()()(),(   (5.36). 

 
Then it is clear that there exists a constant C > 0 such that  

VV
vuCvua ≤),( , for all Vvu ∈, , and 

hence A maps V continuously into its dual space V’. 
 
Let us set  { ψ≥∈= uVuK ;  in }Ω = { 0; ≥−∈ ψuVu  in }Ω .  It is clear that K is a closed convex 
subset of V. 
Let 'VT ∈  be given. We shall be concerned with the variational inequality 

uvTuvuaKu −≥−∈ ,),(;  , for all Kv ∈   (5.37), where ,  denotes the pairing between V and V’.  

When Ω∂ 2  is Lipschitz, the functionals of the form  

                                     ∫ ∫Ω Ω∂
++=

2

)(, 0 σgvddxvfvfvT xjj   (5.38) , for all Vv ∈ , 

 
belong to V’ provided that 
 
                      2),();2/(2),(0 ≥Ω∈+≥Ω∈ pLfnnrLf

p

j

r , for j = 1,…,n; 

                       nnqLg q /)1(2),( 2 −≥Ω∂∈  
 
where σd  denotes the (n-1)-dimensional volume element on Ω∂ 2 .  

Let u be the solution of the variational inequality (5.37) and 2≥p . Let )0,max(max0 ψ
Ω

=k . For 

any real number 0kk ≥  let ),min( kuv =  which is clearly in the convex set K. If  A(k) denotes the set 

{ }kxux >Ω∈ )(;  then, since  v-u  vanishes in )(kA−Ω , we obtain on substituting this v in the 
variational inequality (5.37): 
 

                   ( )∫ ∫ ∫ Ω∂∩
−++−≤

)( )( )(0
2

)()(
kA kA kA

xjjxlxjjl dkugdxufkufdxuua σ   (5.39). 

 
Assumption C. In the sense of distributions, ψA  is a measure on Ω  and v∂∂ /ψ  is a measure on 

Ω∂ 2  such that:  

               1),()0,)/max((;2/),()0,max( 2 −>Ω∂∈−∂∂>Ω∈− nqLgvnpLfA qp ψψ . 
 
If the Assumption A (or A’), B and C are satisfied, then u is a solution of the variational inequality 
 

            ∫ ∫Ω Ω∂
−+−≥−∈

2

)()(),(; σduvgdxuvfuvuaKu   for all Kv ∈ .   (5.40) 
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We have that Ku ∈ . If Kv ∈ , then  Vuv m ∈− '  for each m. Since the quasi-linear form ),('
vubm , 

corresponding to the function '
mθ , is monotone and (hemi-) continuous it follows that 

 
 

            ∫Ω −−−−=−≥− dxuvufPuvuauvubuvvb mmmmmmmmmm ))((),(),(),(),( '''''''''' ψθψ  

                          ∫ ∫ ∫Ω∂ Ω Ω∂
−+−=−−−

2 2

)()())((),( ''''' σσψθψ duvgdxuvfduvugQ mmmmm .  (5.41) 

 
Since Kv ∈  implies that 0≥−ψv  so that 0)(' =−ψθ vm , we have 0)(),( ' =−ψθψ vfP m  in Ω , 

0)(),( ' =−ψθψ vgQ m  on  Ω∂ 2 , and hence  ),(),( '''
mmm uvvbuvva −=−  for Kv ∈ . 

We thus obtain the inequality 
 

                                     ∫ ∫Ω Ω∂
−+−≥−

2

)()(),( ''' σduvgdxuvfuvva mmm .  (5.42) 

 
Here since uum →'  weakly in V, we can pass to the limits on both sides and we find that 

 

                     ∫ ∫Ω Ω∂
−+−≥−

2

)()(),( σduvgdxuvfuvva ,  for all Kv ∈ .  (5.43) 

 
Now we give an interpretation of the boundary conditions formally imposed by the variational 
inequality (5.43). We have show that the solutions '

mu   (a subsequence of '
mu ) of the non-linear mixed 

boundary value problems converge in )(,0 Ω∩ λCV  to the solution of the variational inequality 
(5.43). Thus the variational inequality (5.43) can be formally described as follows: 
 

                                 )(
~

)0,max( ψθψ −−∈− ufAfAu  in Ω  , 

                                  0=u  on Ω∂1 , )(
~

)0,)/max((/ ψθψ −−∂∂∈−∂∂ ugvgvu  on Ω∂ 2 .  (5.44) 
 

We observe that if ω  is an open subset of Ω  where ψ>u , then 0)(
~

=−ψθ u  and so u is a solution 
of the linear mixed boundary value problem 
 
                                      fAu =  in Ω∩ω  (in the sense of distribution), 

                                       0=u  on gvu =∂∂Ω∂∩ /,1ω  on Ω∂∩ 2ω .  (5.45) 
 
If Ω∂ 2  is of class 1

C , then it admits a continuously varying tangent space at each of its points and a 

continuous normal vector field 0v  oriented towards the interior of Ω . Then, for any 

)()(1 ADCu ∩Ω∈ , we obtain by applying Green’s formula 
 

                                                          ∫ ∫Ω Ω∂ ∂

∂
−=

2

),()( σvd
v

u
vuavdxAu   (5.46) 

 

where    xjkjk uxvxa
v

u
)()(=

∂

∂
.   Thus we see that if )()(1 ADCu ∩Ω∈ , then  

 

                                          ∫ ∫Ω Ω∂
∂∂+=

2

)/(),( σvdvufvdxvua , for all Vv ∈ .  (5.47) 



 52 

 
Let   02 /)( VVV =Ω∂     ( 0V  being the space of all functions v in V having its trace on Ω∂ 2  zero)  be 

provided with the quotient norm. There exists a unique element )]'([)( 2Ω∂∈ VuG , the dual space of 

)( 2Ω∂V , such that  ),(,),( vuavAuvuG −= . By definition we set )()/( uGvu =∂∂  on Ω∂ 2 . We 

know that )()( 22 Ω∂⊂Ω∂ sLV  and the inclusion mapping is continuous so that every )( 2
' Ω∂∈ sLg  

defines a continuous linear functional on )( 2Ω∂V . Moreover, we can then write  
 

         ∫ Ω∂
=

2

),( σgvdvuG  ,  (5.48)   that is gvu =∂∂ )/(  on Ω∂ 2  in a “generalized sense”. 

 
These considerations lead us to the following formal interpretation of the boundary conditions.  

1) If there exists an open subset 1E  of Ω∂ 2  where ψ>u , then gvu =∂∂ /  on 1E . 

2) If ψ=u  and vg ∂∂− /ψ  is a positive measure on a subset 2E  of Ω∂ 2 , then again 

gvu =∂∂ /  on 2E . 

3) If ψ=u  and gv −∂∂ /ψ  is a positive measure on a subset 3E  of Ω∂ 2  then, since 

1)(
~

0 ≤≤ tθ , we have  vvug ∂∂≤∂∂≤ // ψ  on 3E . 

 
The solution u of the variational inequality (5.43) can also be obtained by another approximation 
procedure of potential theoretic nature.  
Suppose Ku ∈  is the solution of the variational inequality (5.43). Let uK  denote the cone of all 

w V∈  which can be written in the form  w = t (u-v)  for some Kv ∈  and  t > 0, and uK  be its 

closure in V. Then it is clear that 
 

                        ∫ ∫Ω Ω∂
+≥

2

),( σgwdfwdxwua ,  for all uKw∈ .  (5.49) 

 
We next observe that the positive cone { }Ω≥∈ inwVw 0;  is contained in uK  and in particular, 

(5.49) is satisfied. These considerations lead us to introduce the following definition: 
A distribution )(1 Ω∈ Hw  is said to be a super solution with respect to V, A, f and g if 
 

∫ ∫Ω Ω∂
+≥

2

),( σφφφ dgdxfwa ,  for all )(1 Ω∈ Cφ  with 0=φ  on Ω∂1  and 0≥φ  in Ω .  (5.50) 

 
We have the following Theorem: If Ku ∈  is the solution of the variational inequality (5.43) and 
W denotes the set of all super-solutions with respect to V, A, f and g such that  0≥w  on Ω∂1  and 

ψ≥w  in Ω   (5.51)  then { }Wwwu ∈= ;min .  
Let Ww∈  be arbitrary and let  v = min(u, w). Then Kv ∈  because of (5.51) and we shall show 
that v = u. Substituting v in the variational inequality we get 
 

                                   ∫ ∫Ω Ω∂
−+−≥−

2

)()(),( σduvgdxuvfuvua .  (5.52) 

 
Since w is a super solution and Vuv ∈−  with 0≤− uv  in Ω , we have  
 

                                  ∫ ∫Ω Ω∂
−+−≤−

2

)()(),( σduvgdxuvfuvwa .  (5.53) 
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We can write the left hand side as 
 

dxuvwauvwa xjxkjk
wu wu

)(),(
)( )(

−




 +=− ∫ ∫= >

  where we have 0=− uv  and xx uv =  on the set 

{ })()(; xwxux =Ω∈  and  v = w  and  xx wv =  on the set { })()(; xwxux >Ω∈ . Hence the first 

integral vanishes and we have 
 

                   ∫ ∫Ω Ω∂
−+−≤−=−

2

)()(),(),( σduvgdxuvfuvwauvva .  (5.54) 

 
Let 0u  and ψ  be two functions belonging to )(1 ΩH  such that 0≤ψ  on Ω∂1 . Consider the 

closed convex set 0K  in )(1 ΩH  defined by { }Ω≥−∈−Ω∈= inuVandvuvHvK ψ00
1

0 );( . Then 

all our results can be extended to the variational inequality  
 

    ( ) ( )[ ] ( )∫ ∫Ω Ω∂
−+−+−≥−∈

2
00 ),(; σduvgdxuvfuvfuvuaKu xjj ,  for all 0Kv ∈ .  (5.55) 

 
The variational inequality (5.55) formally corresponds to the mixed boundary value problem: 
 
                 xjjffAw )(0 −=  in Ω  (in the sense of distributions) 

                    0uw =  on Ω∂1 , gvw =∂∂ /  on Ω∂ 2 .   (5.56) 

 
Examples of equations concerning open sets applied to equations whose solutions describing 
naked singularities.   
 
Now we take the following equation: 
 

                                 ( )∫ 





−∂−= 2/52210

2

1

2

1 φφ emRgxdS ,  (5.57) 

 

which is a special form of eq. (5.1) obtained by choosing 1=α , 2/1=β , 2

2

1
m=Λ  and in the 

formula λφφ −Λ= eV )( , 2/5−=λ . Furthermore, we take the eq. (5.4). If  )(rh=Ω , where )(rh  is 

equal to eq. (5.4), we know that for )1( 22 +> Mαβρ  and 0<Μ , 0>Λ , there is a naked 
singularity at the origin. Then, from the eqs. (5.30) or (5.31), we obtain the following relation: 
 

( )∫ ∫ ∫ ∫∑
Ω Ω Ω







−∂−==









+ 2/52210
...1

2

1

2

1
)()( φφ emRgxdgvdxdxuvxcvuDDxa

m

ij

jiij .  (5.58) 

 
From the eqs. (5.46), (5.47) and (5.57) we obtain: 
 

∫ ∫Ω Ω∂









∂

∂
−=

2

),()( σvd
v

u
vuavdxAu ,   ∫ ∫Ω Ω∂
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∂
+=

2

),( σvd
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u
fvdxvua ,  hence 
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( )∫ ∫ ∫ ∫Ω Ω Ω 





−∂−== 2/52210

2

1

2

1
)( φφ emRgxdfvdxvdxAu .  (5.59) 

 
We note that also these equations can be related with the Palumbo’s model. Indeed, we have the 
following connections: 
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,  (5.60)  and 
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.  (5.61) 

 
 
                       
                                                            Conclusions. 
 
Our conviction is that the following theorems, as so for open sets, can be applied also to the naked 
singularities. Principally the expressions concerning the boundary conditions for these equations 
describing open sets, must be considered and applied to the equations whose solutions describing 
naked singularities. 
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