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Riassunto

In questo articolo la Parte 1 descrive, in termini matematici: (i) 1’azione di stringa bosonica, (ii)
I’azione di superstringa, (iii) il gravitone quale particolare modo di oscillazione di una stringa
bosonica, (iv) I’energia e la materia oscura derivanti dalle correlazioni sopra riportate, rappresentate
da alcune equazioni che mostrano le configurazioni dipendenti dal tempo inerenti universi in
accelerazione.

Ulteriori correlazioni tra il modello di Palumbo e la Teoria delle Stringhe sono riportate nella Parte
2, dove vengono anche descritte, in termini matematici, le correlazioni ottenute tra alcune equazioni
inerenti gli insiemi aperti ed alcune soluzioni di equazioni delle teoria delle stringhe, che descrivono
singolarita “nude”. (E utile ricordare che un buco nero & una singolarita limitata da un orizzonte
degli eventi, mentre la singolarita iniziale, cioe il Big Bang, era una singolarita senza bordi, non
limitata, quindi una singolarita nuda).

Evidenziamo, inoltre, che I’articolo ¢ una nuova versione , contenente alcune aggiunte, degli articoli
“New mathematical connections concerning string theory I-II”, a cui il lettore interessato puo fare
riferimento.

PART 1 (Nardelli, 2005)

MATHEMATIC VERSION OF THE PARALLELISM BETWEEN THE PALUMBO’S MODEL
AND THE THEORY OF STRINGS.

" Tale lavoro & collegato alla nota “The Theory of String: a candidate for a generalized unification model”, presentata
nell’archivio SOLAR-CNR dal Prof. A. Palumbo. In essa le parti matematiche trattate nel presente articolo, sono
soltanto menzionate come Appendix 1 ed Appendix 2.




A) Some properties of bosonic string and superstrings.

1.Bosonic String.

A one-dimensional object will sweep out a two dimensional world-sheet, which can be described in
terms of the tensor , X *(7,0) where the two parameters ¢ and 1 are the coordinates of world sheet.

The simplest invariant action, the Nambu-Goto action, is proportional to the area of the world-sheet
(Polchinski, 1998).
We define the induced metric &, where the indices a,b,... run over values (7,0):

h, =0,X%d,X ,. (a)
Then the Nambu-Goto action is

Sy = [ddoLy,  (b)

M
and
1
L. =—(=deth )"?, (c
NG 27m‘( w) > (©)

where M denotes the world-sheet. The constant &', which has units of spacetime-length-squared,

1
is the Regge slope. The tension T of the string is related to the Regge slope by T = pysel We can
/104

simplify the Nambu-Goto action by introducing an independent world-sheet metric ¥, (7,0). We

will take ¥, to have Lorentzian signature (—+). The action is
_ 1 1/2 _ ab u
SP[X,V]——w;[deU(—V) y©o,X%9,X,. (d)

where y=dety,,.This is the Brink-Di Vecchia-Howe-Deser-Zumino action, or Polyakov action

(1981), found in the course of deriving a generalization with local world-sheet supersymmetry. To
find the equivalence to S, , one may use the equation of motion obtained by varying the metric,

_ 1 1/2 ab 1 cd
3,8 ,[X,71= _wﬁ'[deG(_ y)"* &y (hab 5 wY P | (©
where h, is again the induced metric (a). We have used the general relation for the variation of a
determinant, &, =y’ dy,, =—y7,,07". Then 8,5, =0 implies h, :% 7 h,,. Dividing this

equation by the square root of minus its determinant, one obtains: h,, (—n)"? = ” (-9, so
that y,, is proportional to the induced metric. This, in turn, can be used to eliminate y,, from the
action,

1 1/2
$,1X. 1= = [daio(=h)"" = 5, 1X].

The condition that the world-sheet theory be Weyl-invariant (Weyl, 1918, 1921) is:
B =Bu, =B =0 (L1,

where:
w =

BS =a'R, +2a'V,V, —%HW,HVM’ +Oo(a?),

uv

p° = _%V”HW +a'VODH,,, +0(?),



pr =L 29, 0v ovee Ly
6 2 24

The equation ,Bgv =0 resembles Einstein’s equation with source terms from the antisymmetric

H" +0(a™).

uva

tensor field and the dilaton®.The equation B2 =0 is the antisymmetric tensor generalization of

uv
Maxwell’s equation, determining the divergence of the field strength.
The field equations (1.1) can be derived from the spacetime action:

lzjd’)x(-G)“ze—”[—z(D—_%)+ R-LH H** +49 ,@9"®+0(a")] (1.2)
2k, 3o

! 12"
The normalization constant x, is not determined by the field equations and has no physical

S =

significance since it can be changed by a redefinition of ® . One can verify that:
&=- > 12 '.[de(—G)”ze‘zq’[é‘GWﬁG’” +0B,, ™" + (25D —%G‘”(SGW )BoC —4B%)] (1.3)

K, &
This is the effective action governing the low energy spacetime fields. It is often useful to make a
field redefinition of the form:

G, (x) = exp[20()]IG,,, (x), (1.4),
which is a spacetime Weyl transformation.
The Ricci scalar constructed from G v 182
R =exp(-20)[R-2(D-)V’w—(D-2)(D-1)d ,a0"®] (1.5)
For the special case D = 2, this is the Weyl transformation g''*R = g"*(R-2V ).
Let
@=2®d, —P)/(D-2) and let define & =D - D, (1.6)

which has vanishing expectation value. The action becomes:

1 ~ 2AD=26) s =~ 1 sain -
S = dP X (=) PR I B LY L) S 2 )
2x2j 6™ 3 12 HVA D-2 *

$I“®+0(a)], (1.7).
In terms of G, the gravitational Lagrangian density takes the standard Hilbert form
(-G)"*R/2x*. The constant & = Kk,e® is the observed gravitational coupling constant, which in

1/2
nature has the value )x = (SnGN )1/2 = % = (2,43)61018 GeV)_l (Polchinski,1998). Commonly,

p

G, is called the “sigma model metric” or “string metric”, and G v the “Einstein metric”. It follows

that the (1.7) becomes :

S = 1 diX(—é)UZ[— 2(D - 26) €4<T>/(D—2) + E —ie_gél(D_z)Hﬂwlﬁ”M _ 4 a#(’l‘)“a'u(’l‘) + O(G")]
2,/87G,, 3a' 12 D-2
(1.8)

The amplitudes of string, that correspond to the classical terms in the effective action, would be
obtained in field theory from the spacetime action S +S,, where S is the action (1.2) for the

massless fields, and where

S, :—%J'd%x(—G)”ze_zq’(GWayTavT_%T2 ) (1.9),

* The dilaton is the massless scalar with gravitational-strength couplings, found in all perturbative string
theories.



is the action for the closed string tachyon 7 . (Note that, in string theory, the tachyon is a particle
with a negative mass-squared, signifying an instability of the vacuum). We take the more general

case of D =d +1 spacetime dimensions with x? periodic. Since we are in field theory we leave D
arbitrary. Parameterize the metric as

ds®> = Gyydx" dx" =G, dx"dx" + G, (dx’ + A,dx")* (1.10).
We designate the full D -dimensional metric by G, ; the Ricci scalar for the metric (1.10)
becomes:

R=R,-2e°V?e’ —iez"FﬂVF”” (1.11),

where R is constructed from G,, and R, from G, . The graviton-dilaton action (1.2) becomes

thus:
1

2
2k,

S, = j d"x(-G)"*e*® (R+4V ,&V*®) =

z_R;J'ddx(_Gd)uze—zqw(Rd —4aﬂ®a”a+4aﬂ¢3”¢—%ewFﬂvFﬂv) and thence:
0

7R _ 1 o v
S, :Fjddx(—Gd)”ze **(R, —0,00" 0 +40,®,0"®, —Ze2 F, F") (1.12)
0

Which provides the kinetic terms for all the massless fields. Here G, denotes the determinant of Ry,
and d denotes the dimensional dilaton, ® , =d-0c/2.

The antisymmetric tensor also gives rise to a gauge symmetry by a generalization of the Kaluza-
Klein mechanism (Klein 1926, 1926a, 1964), (Kaluza 1921).

Separating B, into B, and A;[ =B,,, the gauge parameter {,, separates into a d-dimensional

du
antisymmetric tensor transformation ¢, and an ordinary gauge invariance ¢, 3,

.The gauge field is B,, and the field strength H . The antisymmetric tensor action becomes:

duv
1

_ D ~ \/2 20 v _ TR
S, = v [d"x(=G,)"? e H p H'"™ = 2
(1.13).

Here, we have defined H = (0

du

J-ddx(_Gd )1/2 €—2<I>d (ﬁﬂvﬂﬁ uva + 36—20'Hd,uvH(,;lV)

B, —AH,,)+cyclic permutations. The term proportional to

the vector potential arises from the inverse metric GV . It is known as a “Chern-Simons term”
(1974), this signifying the antisymmetrized combination of one gauge potential and any number of
field strengths.
The rilevant terms from the spacetime action (1.7) concerning an D-brane are:
1 ~ ~ 1 ~=,~
[a*x V-G (R -V, 8V4P) (114

S =
2k?

1
3 : _ 2 ab . ~ab /i v '
Note that the action S, =i J-Md o\gl(g“G,, (X)+ie”B,, (X))d,X“d, X" +a' R®(X)],

where the field B e (X)) is the antisymmetric tensor, and the dilaton involves both @ and the diagonal part

of G,,, is invariant under B, (X)=9,{,(X)—0,{,(X) which adds a total derivative to the

uv?
Lagrangian density. This is a generalization of the electromagnetic gauge transformation to a potential with
two antisymmetric indices. The gauge parameter ¢, , above mentioned, is defined in this relation.

* The tilde denotes the Einstein metric.(Note that an D-brane is a dynamical object on which strings can end.
The term is a contraction of “Dirichlet brane”. The coordinates of the attached strings satisfy Dirichlet
boundary conditions in the directions normal to the brane and Neumann conditions in the directions tangent

4



Expanding the action to second order and adding a gauge-fixing term — F,F " /4K, the spacetime
action becomes:

1 1% VN A 2 T2
S=—87jd%X(a h,,0"h" — a#hva”hhgaﬂd)a”d)) (1.15).

u'va

2.The oscillation modes of string corresponding to the graviton.

Scherk and Schwarz (1974) have shown the possibility of describing particles other than adrons
(leptons, photons, gauge bosons, gravitons, etc.) by a dual model They have also studied the
Virasoro-Shapiro model, interpreting thus the massless spin-two state of the model as a graviton.
Both the 26-dimensional Veneziano model VM (1974, 1974a) and the 10-dimensional meson-
fermion model MFM ave a massless “photon”. The nonplanar Virasoro-Shapiro model (VSM)
(1970) has a massless “graviton”, while the MFM has a massless “lepton”. The VM and the MFM
have both been studied and found to yield the Yang-Mills (1954) theory of massless self-interacting
vector mesons needed to describe electromagnetism and weak interactions.

2.1.Virasoro-Shapiro (1969) Model.

The most general action for massless gravitons and scalars with general coordinate invariance,
involving no more than two derivatives, iS'

— [ . _ L
s=[d x@{fl( kA0 g 9,00, 4f; (¢ )},<2.1>
where the f, are functions, analytic at the origin, subject to the normalization constraints
f>(0)= f;(0)=1. In this equation, g is the determinant of the metric tensor and R is the scalar

curvature. The first term in the equation (2.1) contains no derivatives, while the second and third
each contain two derivatives. The form of the action in the equation (2.1) can be simplified by

performing a Weyl transformation 8w =8 w o (gb)_1 (2.2).

Under this transformation /g and R become respectively::

Je =g'f,(¢)? (2.3) and

R=r oo, TS 2 o). e

where D, represents a covariant derivative.

Then, the action becomes:

S = ,[d x\/_{ ! R—lg””8ﬂ¢aV¢f3(¢)+ 3 (f'2(¢)j2}

[L@F 162G~ 2 £(9) " 162G\ 1,(0)

. LG N A C) R T A1 )

where setting k, (¢)= [f2 (¢)]2 d k, (9) /. (¢)+ 16%G( 7. (¢)] , we have:
s =[d* xf{ —@R——g‘”a M, ok, (¢ )} 2.5).

to the brane. The mass or tension of a D-brane is intermediate between that of an ordinary quantum or a
fundamental string and that of “soliton”. The soliton is a state whose classical limit is a smooth, localized
and topologically nontrivial classical field configuration; this includes particle states, which are localized in
all directions, as well as extended objects. The low energy fluctations of D-branes are described by
supersymmetric gauge theory, which is non-Abelian for coincident branes

5



The action can be simplified furthermore by a transformation of ¢ itself, setting ¢ = ¢[w(x)], where

the function @(y) satisfies the differential equation (gi)')zk2 (¢)=1. This gives an action of the form
in the equation (2.5) with k, (¢) replaced by one and k, (¢) by a new function d(¢). Therefore the
first order terms in @' are completely determined and it only remains to evaluate the zeroth order
terms. The absence of constant and linear terms implies that, in tree approximation, the
multigraviton amplitudes must be precisely those of general relativity, as given by the Hilbert-
Einstein action (the second term in the equation (2.5)). The vanishing of d(¢) means that there is no
cosmological term in the multigraviton interactions, whereas the vanishing of 4'(0), implies that
multigraviton amplitudes cannot contain scalar poles. To first order in the zero-slope expansion the

action becomes:
s=-|d xf{ —g””a ®, ¢} 2.6).

There is a TSS (1 tensor and two scalars) interaction in which the graviton couples to the energy
momentum tensor of the ¢ field. Furthermore, all pure scalar self-interactions terms vanish

identically. The graviton+gauge boson interactions have to be both Yang-Mills invariant and
generally covariant. Therefore the unique action for these fields to first order in @' is:

S——@jd x\/_R——jd xfgg” " TrlG,.G,, ] 27

where “Tr” denotes the trace of matrix square.

2.2.Interaction of the Scalar Field with Matter.

Let us introduce the scalar field couples in all orders to the trace of the stress tensor of matter, as
predicted by the Brans-Dicke (1961) theory. The parameter @ in the Brans-Dicke theory, which
fixes the relative strength of scalar and tensor couplings with matter, is determined by the dual
models. The action, for the Brans-Dicke theory is expressed by.

R 1 1
S = jd“x g[————g’”’aﬂquﬁ—gg””aﬂl//av exp(—c¢)—5m21/2 exp(— 2c¢)} ,(2.8)

where ¢ = . ¥ is a scalar field that has been introduced to represent matter. One can easily

3+2w

show that this action provides the equation of motion:
AnG

L¢= mTw (2.9),

where T, is the canonical matter stress tensor obtained by varying g,,. In this theory the
exchange of a graviton and a scalar between two ¥ particles is given by:
q—lz{SﬂG[TwT'w—%TWT'Wj+%
It follows that, in the dual model, the last two terms of the equation (2.10) cancel exactly, what
167G
342w

TWT'W} (2.10)

would correspond to @ = —1 in the Brans-Dicke model. Then, if ¢ = , for w =—-1 we have

=4/162G and thence (2.8) become:

S = Id4x g|:_i_lgﬂvaywv¢_%gﬂvaylﬂavvjexp(— v 16%G¢)_%m21//2 exp(2 v 16%G¢):l



In conclusion, the action representing the VM to the first order in &' contains photon, graviton, and
scalar fields and is described by the equation:

2 R 1 Vo | -
§=|d x\/g{‘—“g””g T'”(GwGpo)f(cfﬁ)—Eg” aﬂ¢av¢} (2.12),
where

f(@)=1+kp+..., and k:i

J6

then f(@) should be exp(ke).

872G . If the scalar couplings are given by the Brans-Dicke theory,

3.Superstrings.

The superstring action is obtained introducing a supersymmetry on the world-sheet that connects
the spacetime coordinates X ”(T, 0'), that are bosonic fields on the world-sheet, to a fermionic

partner ¥/ (r,0). The index u denotes that the fermionic coordinate changes as a vector, whose

components are spinors on the world-sheet. The theory obtained is defined “‘superstring theory”,
and the corresponding action is:

S = _ﬁjdadm/— vl 79, X%, X" —iF TV y" —i;?anF“l//”(abX” —i;mﬂj 7., 3.1

where y, is a Majorana gravitino and /—y»*,is a Lagrange multiplier without dynamic. The

action can be simplified selecting the equivalent of bosonic conformal gauge, defined
superconformal gauge given by:

7(1/) :ﬂabe¢’ Za = Fa;’ (32)
Furthermore, if the bidimensionals gamma matrices FaF” I'* =0, the action becomes

1 _
S=— dodz(n™d,X*d,X" —iF Td v W,., (3.3)
oL
which represents the action of D scalar fields and the D fermionic fields free.
The change of metric on the world-sheet will thus provided two current tensors: the energy-
momentum tensor:

T, = _i(aawabxﬂ +iy7“ ([, +T,9, )l//ﬂj+%ﬂab(a")(”acxﬂ +%y7”f’81//ﬂj ~0,(3.4)
a

a
and the supercurrent tensor, obtained by varying the gravitino
1
J¢=—T'T"y"9,X,=0.(3.5)
20
The equations (3.4) and (3.5) are constraints of superstring theory. These are called “super-
Virasoro” constraints.

3.1.Superstring interactions.

a)Type IIA superstring.
The action of type IIA superstring is:

Sy =Sy +Sg +S, (3.6)

where



Sy = 2;2 Idlox(— G)”Ze‘“’(R+48ﬂq>8”<1>—%|H3|2j, (3.7)
10
1 2 |5 ?
Su =g Jas ) 4[] ) 6

1
Ses = _RIBZ AF, AF,. (3.9)

We have grouped terms according to whether the fields are in the NS-NS or R-R sector of the string
theory; the Chern-Simons (1974) action contains both.

The NS-NS (Neveu-Schwarz) states in type I and type II superstring theories, are the bosonic closed
string states whose left- and right-moving parts are bosonic. The R-R (Ramond-Ramond) states in
type I and type II superstring theories, are the bosonic closed string states whose left- and right-
moving parts are fermionic. The Chern-Simons term, is a term in the action which involves p-form
potentials as well as field strengths. Such a term is gauge-invariant as a consequence of the Bianchi
identity and/or the modification of the p-form gauge transformation].

b)Type IIB superstring.

The action of type IIB superstring is:

Sus =Sys + S, + S, (3.10)

where
1 _ 1 2
Sys == d"x(=G)" e 2¢(R+4aﬂ<ba”<b——|H3| j (3.11)
2k} 2
_ 1 10 1/2 2 ~ |2 1 ~ 12
S, = [a"x(-G) UFI| +| | +E‘FS‘ j (3.12)
1
Seg =——|C, AH, AF;, (3.13
o =g | ConH A F G
where
F,=F,-C, AH,, (3.14)
and
F, =F, —%cz AH, +%B2 AF,. (3.15)
c)Type I superstring.

The action of type I superstring is:

S, =8S.+S, (3.16)
where

SC—1

_ 11~2
= " J-dwx(—G)“z[e z@(R+48ﬂCI>8ﬂCI>)—§‘F3‘ 1, (3.17)

and



S, =- 12 jdwx(—G)“ze-q’TerFz|2) (3.18)
285
The open string potential and field strength are written as matrix-valued forms A, and F,, which

are, in the vector representation, as indicated by the subscript on the trace. Here
2

F,=dc, -5, (3.19)

810

and o, is the Chern-Simons 3-form
W, = Trv[Al A dA, —%Al ANA NA j (3.20)

Under an a ordinary gauge transformation A, = dA—i[A,, 4], the Chern-Simons form transforms
2
as o, =dTr,(AdA) (321).  Thusitmustbethat  &C, =277 (AdA,). (3.22)

810

2

]

K 2i
dC, ——Tr,| Ay ndA —— A ~NA AA
810 3

Hence the equation (3.17) becomes:
1

12 [a x(-G)"[ e (R+ 4aﬂc1>a”c1>)—E
10

S =
< 2k

(3.23)

d) Heterotic strings.

The heterotic strings have the same supersymmetry as the type I string and so we expect the same
action. However, in the absence of open strings or R-R fields the dilaton dependence should be

e*® throughout:

1 11~ K2 2
S =—|d"x(-G)"?e [ R+40, ®*D——|H.| ——L2Tr |F 3.24
het 2](_120.[ .X'( ) e [ u 2‘ 3‘ glzo rvq 2| )1( )
Here
~ o e
H,=dB,-—2w, &B,=—2Tr(1dA) (3.25)
10 810

are the same as in the type I string, with the form renamed to reflect the fact that it comes from the
NS sector.

4.D-brane actions.

The coupling of a D-brane to NS-NS closed string fields is the same Dirac-Born-Infeld action as in
the bosonic string,

Sp, ==, [d"ETrle [-det(G,, + B,, + 272 F,,)]”* }, 4.1)
where G, and B, are the components of the spacetime NS-NS fields parallel to the brane and F,

is the gauge field living on the brane.
The gravitational coupling is

K= %(27:)7 glat. (4.2).
Expanding the action (4.1) one obtains the coupling of the Yang-Mills theory on the Dp-brane:
1 _
2 _ _ p-2 W(p=3)/2
gy, =—->—=027)"" g . (43)
Y (2ra),
The Born-Infeld form for the gauge action applies by T-duality to the type I theory, is:

9



1 /2
S=———|d"xTr|-detlp, +272a'F, )" } 4.4
(Z”Q')zgéM I {[ ( ! ! )]
where for the relations (4.2) and (4.3) we have the type I relation

2
8wt _o(27)"% e (type 1) 4.5).
K

Another low energy action with many applications is that for a Dp-brane and Dp’-brane. There are
three kinds of light strings: p-p, p-p’, and p’-p’, with ends on the respective D-branes. We will
consider explicitly the case p=5 and p’=9. The massless content of the 5-9 spectrum amounts to half
of a hypermultiplet. The other half comes from strings of opposite orientation, 9-5. The action is
fully determined by supersymmetry and the charges; we write the bosonic part:

1 10 MN 1 6 \MN 6 Py 812)5 : 1 A 2

) [a"xF, F —487[(1 xF'yy F™ ~[d°X D, 7'D g+T;(x,.an) . (4.6)
The integrals run respectively over the 9-brane and the 5-brane, with M =0,....9, x=0,...,5, and
m==6,....9. The covariant derivative is D,= 0 u +iAﬂ —iA' P with Aﬂ and A' 4 the 9-brane and 5-

S=-

brane gauge fields. The field y, is a doublet describing the hypermultiplet scalars. The 5-9 strings
have one endpoint on each D-brane so ) carries charges +1 and -1 under the respective
symmetries. The gauge couplings g, were given in equation (4.3).

5. The Palumbo’s model states (Palumbo, 2001, 2005):

F= TFidFi (5.1)

where F' denotes the initial energy present at the Big Bang explosion (the explosion of initial black
hole) and F; all the partial waves belonging to F .

In terms of the theory of strings, in (5.1) F is the mode of a bosonic string having mass equal to
zero (graviton) and F, are the oscillation modes of supersymmetric strings. Then, we have from the

1

equations (d) and (3.1):

T 1 I 1
F =£FidF[ > —widrda\/—_y;/””aaXﬂahXﬂ =£—wjd0df\/—_7

a v — a v — a v l v v
{7/haaX”abX —ig TV y' —ig I'T W(abx _ZX"W ﬂnw (5.2)
This equation, for (1.15) and (3.24), can be defined also by

v, PN A 2 ~_ o~ 2 )
26 [aﬂhvga/‘h A _ aﬂhvaﬂhf +—aﬂ¢aﬂ¢j d10 )1/2€ 20
0
{R+4a cpaﬂcp__‘H‘ _AT QF| )} (53)
10
and according to (2.12) (The Scherck-Schwarz theory), we have:
1 oo
d26x —  —— oo TG G - le I/Ze_ch
gl \/_[ 167G 3g 8" THG,.Gp )1 (9)- } B _6)

10



ki 2 )
11, |F,| (5.4)
810
where the sign minus indicates the expansion force: i.e. the Einstein cosmological constant.
With regard the D-branes, the equation that is related to F,, and thence to the supersymmetric

action, according to (4.4) becomes:

S = —; j lexTr{[— det(p,, +272'F,, )] } (5.5)

(2ﬂ'0! ) g ™
while the equation related to F', and thence to the bosonic action, according to (4.1), becomes:

Sas =~y [ A ETre [ det(G,, + B,, + 270 F,,)]" ). (5.6).
Thus, from the parallelism between the Palumbo’s model and the string theory, one obtains::
° 1
— Hs .[d%fTr{e_q’ [_ det(Gab +B, +2n0'F, )]1/2 }: J. -

0 mjdloxﬂ{[— det(?]w +27Z'0,"Fluv )]1/2}

5.7
6. The Einstein’s field equation and the theory of string.
The Einstein’s field equation which includes the cosmological constant is:
R - l R—-Ag  =-872GT
uv 7 g,uv gyv uv (61)
where R/“’ is the Ricci tensor, R its trace, A4 the cosmological constant, 8 uv the metric tensor of

the space geometry, G the Newton’s gravitational constant and T the tensor representing the
properties of energy, matter and momentum.

The left hand-side of (6.1) represents the gravitational field and, consequently, the warped space-
time, while the right hand-side represents the matter, i.e. the sources of the gravitational field.

In string theory the gravity is related to the gravitons which are bosons, whereas the matter is
related to fermions. It follows that the left and right hand of (6.1) may be respectively related to the
action of bosonic and of superstrings.

From (5.7) that describes the parallelism between the Palumbo’s model and the theory of string, we
may thus write:

Jae] gt varr(cwe,x,)f(¢)-§gﬂvaﬂ¢av¢}=

o

= j%jdwx\/— Ge™® {R +49,®
2K,

0

olef)

lO

(6.2)

The sign minus in the above equation comes from the inversion of any relationship, like the

newtonian one, when one examines it outside the range of its validity.

Let us analyze p. e. the orbits of the gravitational equation F = G x m; x my/ r , form; = my = m: i.e.

F =G m’r’.
for ¥ >Gm®
for ¥=G m?

F(r) => 0, the orbits are attractewd by zero,
F(r) =1 are constant and equal to 1,
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for ¥ < G m®> F(r) => the orbits are attracted by infinite.

The point r* = k m” is a critical point since a small variation of r implies that the orbits may tend to zero
or to infinite.

Moreover, from F =G x m*/t?, for AF and Ar extremely small, such as inside a black hole or a proton,

or, in the case of (6.2) that represents the perturbation of the quantum dominium of strings, AF/F =

2Am/m - 2Ar/r, and assuming Am = 0 one obtains:

AF/F =-2Ar/r  (6.3)

where the sign minus indicates that F decreases when r increases, implying that O < AF/F < 1. Let us

examine this relationship outside the above range and indicate F; at the distance r, and F, at the

distance r + Ar .

- AFIF>1=> AF>F = (F, - F,) >F, =>F, <0 indicating that F becomes repulsive at the
distance r + Ar.

- AF/F<0,since F>0,=> AF <0 => (F, - F;) < 0 =>F, < F, indicating that F decreases when r
increases, in other words that the attraction increases with the distance between two masses.

The same holds for Ar, whose analysis indicates that when Ar >r, F becomes repulsive and increases

with the distance between the two masses.

The sign minus that appears in (5.7) is thus consistent with the (i) observed repulsive forces between

quark inside a proton and the corresponding strings, (ii) repulsive force of strings inside a black hole,

and (ii1) relationship (6.2) which relates the repulsive actions of bosonic and supersymmetric strings in

their extremely narrow dominium.

7 On some equations concerning time-dependent configurations describing accelerating universes.

Let us consider the following action in (q+n+2) dimensions, containing the metric, g,,, a dilaton
field, ¢, with a general scalar potential, V(¢), and a (q+2)-form field strength, F,_, =dA
conformally coupled to the dilaton (Clifford et al, 2003):

5[, av ] ar—poo) — e, -vie)|

Here R is the Ricci scalar built from the metric.
The field equations obtained for the action of eq. (7.1) are given by:

q+1°

q+n+2

Gy = Pl e [ ) Ly)s,
q+ 2

d
2V p=—0—1 _ePF2, +- Ly
V. ?Fe)=0 72
where T, [¢] V,oV,¢ 2g”"(v¢) and uv[ q+2] q+2F 'F, —%gWF;Z We look for

solutions having the symmetries of the well-known black g-branes. To this end we consider the
following metric ansatz:

ds® =—h(F)de® + h(F)" dF > + f>(F)dx;, + 87 (F)dy?, (1.3)

12



where dx,f’n describes the metric of an n-dimensional maximally-symmetric space with constant
curvature
k=-1,0,1 and dyj describes the flat spatial g-brane directions. Let us assume the metric

component g can be written in the form
g=r° (14)

for constant c, and with the new variable r defined by the redefinition

r=f(F). (1.5)
It is also convenient to think of the dilaton as being a logarithmic function of r, with
¢(r)=MS(nr), (7.6)

where M is a constant. Subject to these ansatze the solutions to the previous system of equations are
given by

2
ds* =—h(rydi® + 4 ridx;, +r*d), (1.7)
g(r) ’

try;...y — _MZ2*—-(N- try;...y
F Yy QeoMS(lnr) L(lnr)r M?*—(N 1)801 Vg ’ (7.8)

with
g(r) — h(r)r—Z(N—l)e—ZL(ln r) , (7.9)

and the function L(Inr) is given in terms of S(Inr) by

d . p(ds Y
I (x)—a(dx (x)j . (7.10)

The constants M and N are related to the parameters n, q and ¢ by

P
M2=n+cq, Nancq (7.11)

—.
Now we present two classes of solutions for the Liouville potential V(@) = Ae™* , with A 0.
Class A. This class contains solutions only for k = 0 (that is, for flat maximally-symmetric n-

dimensional submanifolds). To obtain solutions we must also impose the following relations among the
parameters:

aoM =-20p, alM =2Bp, c=1land Q=0if g0 (7.12)

With these choices the metric function h of eq. (7.7), becomes

13



Ar? nQ’

h(r) = —2My' M At _
") aM M - o’ la+1] aM?|M?-2n—Bp* la+1>"

. (7.13)

Class B. This class of solutions allows geometries for any k and for any q, with the constraints

opM =2(n-1), alM =2pp, QZ:M, c=1, go=q-An-1. (1.14)
ni+o)

The metric function h of eq. (7.7) then becomes

Ar2 0_77Q2r2,8p2/0/

h — _2M 1—M2+ﬁp2/a _ + )
") ! aM*M? - Bp*la+1| 28oM|M* -1+ Bp* /o

(7.15)

7. 1 Massive supergravity in 10 dimensions and Romans’ 6-dimensional gauged supergravity.

Romans has shown how to construct a ten-dimensional supergravity theory which has an
exponential scalar potential for the dilaton. The bosonic fields of the theory comprise the metric, a
scalar, and 2-form, 3-form and 4-form field strengths, F, =dA,, F,=dA, and F, =dA,. The

equations of motion for all of the fields is trivially satisfied if we set all of their field strengths to zero,
leaving only the dilaton and the metric. The relevant action for these fields is:

S = J-dmx\/E{R —%(8;1?)2 —%mze”’“} (7.16)

which is a special form of eq. (7.1) obtained by choosing a =1, = %,A = %mz and 1=-5/2.To
obtain a solution we choose q = 0, and from the relation n + q + 2 = 10 we have immediately n = 8. We
find a solution in Class A, for k =0, with M* =8 and p= 2\/5/1 = —5\/5 . This leads to the following
solution:

50

ds}y =—h(r)dt® +%er trldxl,  P(r)=—-20Inr (1.17)
r

2

where h(ry =212 ZoMr. (7.18)
256

Now we consider Romans’ N =4%6D supergravity . Romans’ 6-dimensional N =4% gauged
supergravity is non-chiral and has N = 4 supersymmetries. The bosonic part of the theory consists of a

graviton, three SU(2) gauge potentials, A; , an abelian gauge potential, A, a 2-form gauge potential,

B, , and a scalar field, ¢ . We consider the following consistently reduced version of this action:

v

11 1 _ . o1 ,
S:jdéx\/Q[ZR—E(agp)z—Ze V2 (f M FLF" )—EeWGMGM +

2
8 \/E¢ 1 VpoTK 1 1
+?€ _8 |g| e Bﬂv(prfTK+FpUFTK) ] (719)
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Here, g is the coupling constant of the SU(2) group, and €™ is the Levi-Civita tensor density.
F] denotes the SU(2) gauge field strength, while f, =dA, and G, =dB, are the abelian field
strengths for the abelian potential and the antisymmetric field. This action leads to the choices
a=1/4,=1/2,A=-g>/8 and A=-2.

Solutions with excited G, .

We now consider a charged string wich sources the field B,, and so for whichq=1,n=4-q=3 and
the dilaton couplings are 7=1/2 and o = 242 =24. These couplings allow solution belonging to
Class B, implying ¢ = 1,M>=4,N=1 and p=-1/ V2. The curvature of the n = 3 dimensional
subspace can be k = 1 if Q® =1, oritis flatif Q> = 0. For the case k = 1 the metric takes the form

2
ds; =—h(r)dt’ + rzd)cﬁ3 + hr

) dr’ +r’dy* (7.20)
’

with metric coefficients, scalar and 2-form field given by

2 2
h(r)=—¥+%r2+%r2 (721) ¢(r)=—~2Inr (722) G™ =
r

28'”’. (7.23)
r

The geometry describes the fields of a charged black string in six dimensions. In the limit where M
and Q vanish, the solution preserves half of the supersymmetries of the action.

Solutions with excited F,or f,.

These two cases can be treated together, since these fields appear in the action (7.19) with the same
conformal couplings: 7=1/2, o= V2 = —A, and q = 0 for which n = 4. These parameters suggest
solution in Class A, for which the n = 4-dimensional spatial dimensions are flat, k = 0, M =4, N=1
and p=-1/ /2 . The solution in this case takes the form

2
ds, =—h<r)dt2+r2dx§,4+ﬁdr2, @24 9()=—2mr, 125 F"=Ze", (7.26)
r r

7

where
2.2 2
M g 9 727

h(r)=—
) r’ 32 8r

This geometry describes the fields due to a point source (0-brane) in 6 dimensions, whose casual
structure resembles that of an AdS-Reissner-Nordstrom black hole.

7.2 Gauged supergravity in 5-dimensions.

Romans has studied a gauged supergravity in 5 dimensions, corresponding to a N =4 SU(2) X U(1)
gauged theory. The bosonic spectrum consists of gravity, a scalar, an SU(2) Yang-Mills potential A’
(with field strength F,'), an abelian gauge potential H with field strength G,, and two 2-form
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antisymmetric potentials, B,. We consider the reduced system without the 2-form potentials. The
action in 5 dimensions is the following:

2 4
1 | , 1 7= ,
S=[d’x¢| R-—@9)’ ——e ISF, F* _Ze@ G, G" +

2,

tagleVe’ L puwerpr pi H, ]. (7.28)

4\/@ uv = po

where G, =dH is the field strength for the U(l) gauge potential, H,. We have
a=1,8=1/2,A=-4g> and 1=-2/6.

Solutions with excited F,' .

In this case we have q =0, n=3, n=1/2 and o = 2/\/_ =—A. These allow a 0-brane solution in
Class A, for whichk=0, M>=3, N=1and p= —/2 . The resulting field configuration is given by

2

ds? :—h(r)dt2+r2dx§,3+%dr2, (7.29) ¢(r)=—+6Inr, (7.30) F:—%dmdr (7.31)
r r

2
with h(r)z—%+ig2r2+Q—4, (7.32)
r 18r

9

and where the gauge field is only nonzero for one of the gauge-group generators. The casual
structure of this geometry is like that of an AdS-RN black hole of positive mass, and has at most two
horizons.

Solution with excited G, .

In this case, we have q=0,n=3, n=1/2 and 0 = —4/\/8 =24, and so we can obtain solutions of
Class B. Forthesek=c=1, M>=3,N =1 and p =—V2 . The metric becomes

2

)dr2 (7.33) @(r)=—6Inr (7.34) G, =-0r’dt~dr (1.35)
p

tr

ds; =—h(r)dt® + rdx}, + h’;

2
with h(r)=—@+%(4g2 +0?). (1.36)
r

This solution has a single event horizon at r, =18M/(4g> + Q7). It has the same casual structure
as an AdS-Schwarzschild black hole.

7.3 On the geometrical structure of the two classes of solutions.
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We consider only the cases with non-trivial dilaton, we concentrate, furthermore, on the case q =0
(and so M* =n).

Class A.

This class of solutions are defined for zero spatial curvature k = 0. We recall the form of the metric,
which is given by (7.13). The metric in this case becomes

rﬁpzla ~ Ar2 .\ an
P oMM - ot la+l] aMn—-M? -1+ p* laf?

h(r)=-2M (7.37)

and g(r)=h(r)r % /% We have the following cases:

a) Bp’ >a(M*+1).

I)M>0and A<O or A>0.

In this case, we can have a most one Cauchy horizon and the most outer region is time-dependent. It
is interesting to notice that in this case, the asymptotic infinity is still null-like. Then the Penrose
diagram looks like that of the S-brane.

2)y M<0 and A>0.

In this case, the solution is static everywhere and there are no horizons at all. There is a naked
singularity at the origin and the asymptotic infinity is null-like.

b) a<fo’<a(M’+1).
1) M>0 and A>0.

In this case, we again have a cosmological solution with the same geometry as the S-brane, being
asymptotically flat at infinity.

2)y M<0 and A>0.

In this case, the geometry is like in the positive mass case.

¢) fp’<a.
I)M>0and A>0.

In this case, we have a cosmological solution with a Cauchy horizon, but now the asymptotic
infinity is not null-like but space-like. The Penrose diagram is like a dS-S-brane solution.

2)y M<0O and A>0 or A<O.
This case reduces to the positive mass case above.

Class B.
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These solutions are defined only for positive spatial curvature k = 1. The metric is given by (7.15),

rﬁpzla Ar2 GUQZFZﬁpZ/a

h(r)=-2M P oMM +1—,3p2/05]+ 26oMM” -1+ fp’ I o]’

(7.38)

g(r)= h(r)r=2 /@ All the solutions have a curvature singularity at r = 0. So we can have the
following cases:

a) fo’>aM’+1).
IH)M>0and A>0.

In this case, the solution is static and there may be up to two horizons. The singularity is time-like
and the geometry is like that of a RNadS black hole.

2)y M<0O and A>0.

In this case, the solution is static everywhere with a naked singularity at the origin.

b) a< fp’<a(M?®+1).

1) M>0and A>0 or A<O.

In this case, we can have at most one regular horizon and the solution is static. There is a space-like
singularity at the origin and the asymptotic infinity is time-like. Then the Penrose diagram looks like
that of an AdS-Schwarzschild black hole.

2) M<0 and A>0.

In this case, there may be at most two regular horizons and a time-like singularity at the origin. The
Penrose diagram looks like a Reissner-Nordstrom-AdS black hole.

¢) fo’<a.

1) M>0 and A>0.

This is a very interesting solution. It is cosmological and there may be up to two regular horizons,
one cosmological and one event horizon. The Penrose diagram looks like that of a dS-Schwarzschild
black hole. It is also interesting to note that this is the only case where this structure comes out, and
moreover, there are no cases where the asymptotic infinity is null-like.

2) M<0and A>0.

In this case, there may be at most one regular horizon and a time-like singularity at the origin. The
Penrose diagram looks like a dS-S-brane.

d Bp’=a«.
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I) M>0and A>0.

In this case, there are two possibilities. Either there are no horizons and the solution is everywhere
cosmological with a space-like asymptotic infinity. Or it may have an event horizon and then it looks
like a AdS-Schwarzschild black hole.

2) M<0 and A>0.

Also in this case, there are two possibilities. The solutions may be static everywhere with a naked
time-like singularity or there may be one regular horizon and the structure is then like a dS-S-brane.

Hence, in these cases, when the singularity has negative tension or the cosmological constant is
positive, we have time-dependent configurations describing accelerating universes (eqs. 7.16-7.19
and 7.28).

Furthermore, for the parallelism obtained between Palumbo’s model and string theory, we have
from eq. (5.4) the following connections with the eqs. (7.16), (7.19) and (7.28).

In conclusion, we have:

F =]:Fl.dFi =
0
= -[d*x g [—@—gg”pgwme‘w pg>f<¢>——g’”a 9, 4
i )2 -”{R+4a @8”(1)——‘H‘ ——“’T ([ )}:
0 10

:j'd“)x\/r[R——(agb) m? 5¢/2}:>

jjd6x\/|7[iR__(a¢) _\/7¢(f,uvfﬂv +F/1IVFMV)_ !

—ZeWGWGWP + (139

+%eﬁ¢ _;gﬂvparKBﬂv (fpafm + FPGF;() ]
8,4

2

2 4
1 L5 w0 A
= [d’x[|g] R=_@9)7 —— e “F, F" = eV G, G" +4g%" ol el FLH,

Thence, we have the following connections: Palumbo’s model = bosonic string action=dark energy
—> superstring action=dark matter > time-dependent configurations describing accelerating
universes.

PART 2 (Nardelli, 2006)

1.Mathematical connections between Palumbo’s model and some equations concerning D-term

strings.[1]-[2].

It is known that string theories admit various BPS-saturated string-like objects in the effective 4d
theory. These are D, -branes wrapped on some g-cycle. We shall refer to these objects as effective
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D, -strings, or D-strings for short. Thus, we conjecture that the string theory D-strings (that is,

wrapped D,, -branes) are seen as D-terms strings in 4d supergravity. Since according to the

l+g

conjecture D, branes are D-term strings, it immediately follows that the energy of the
D _53+q
The supergravity model is defined by one scalar field ¢, charged under U(1), with K=¢"¢ and

superpotential W=0, so that we reproduce the supergravity version of the cosmic string in the
critical Einstein-Higgs-Abelian gauge field model. This model can be also viewed as a D-term
inflation model. In such case, the bosonic part of the supergravity action is reduced to

1 A oA 1

34q -system must be seen from the point of view of the 4d supergravity as D-term energy.

'L, = _EM;R —d,@0"¢’ —ZFWF”” —V", (1.1) where D-term potential is defined by
VP = %DZ D=gé—gp'¢.(1.2) Here W, is an abelian gauge field,
F,=dW,-aW,,  0,0=0,—-igW, .13

The energy of the string is:
ARV 1 , 1, M;
Hgring =J'1/detgdrd6 (8/,;/? )(a”¢)+ZFWF” +§D +7R +
+m2 .. —[d6Vaetnk],.,). (1.4)

where K is the Gaussian curvature at the boundaries (on which the metric is h). These boundaries
are at r = oo and r = 0. Further, for the metric ds® = —dt* +dz* +dr® + C*(r)d6*, (1.5) we have

Jdetg =C(r), +JdetgR=2C", ~dethK =-C' (1.6)

Eq.(1.4) can be rewritten by using the Bogomol’nyi method as follows
A A 2
Hring IdrdHC ){‘(Bﬁiic-lagkﬁ‘ +%[F12 F D]2}+

+M,§jdrd0[a,(cu_rA,, ) F a(,Af]—Mf,J'dac' M [ d6C

Where we have used the explicit form of the metric (1.5).
The energy of the string, can be also defined as:

Hiring = Idrdt?q/det gT) =

TO = {‘(§,¢iiC‘1§6)¢‘2 +%[F12 T D]z}J_rM;[a,Ag ~3,4%]. (1.9)

deth

r=0 ° (17)

The definition of the energy of the string that we are using in (1.4), which is valid for time
independent configurations, is

M2
E=[ \det g( S R- me,}MﬁjaM\/dethK .(1.10)

M 2
Now we see that the term ( 2P R~ Lma,,e,J produced in addition to two BPS bounds in (1.9) also a

term
lar(C'iA19 )’ iagArBJ. (Note that the BPS state is a state that is invariant under a nontrivial

subalgebra of the full supersymmetry algebra. Such states always carry conserved charges, and the
supersymmetry algebra determines the mass of the state exactly in terms of its charges). Due to the
gravitino BPS bound

1-C'(r)=*A?, the surface term 9,AZ in T is cancelled by the Einstein term ,/gR . This is not
surprising since the Einstein equation of motion must be satisfied due to vanishing gravitino
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transformations. The remaining term in the energy, the Gibbons-Hawking K surface term, give the
non-vanishing contribution to the energy of the string which is directly related to the deficit angle
A, where M ;A = u
The “SuperSwirl” is a static, supersymmetric, codimension-two configuration for a nonlinear sigma
model, in the context of six dimensional gauged supergravity.
The energy per unit four dimensional volume of the superswirl turns out to diverge, due to the
contributions from the boundaries. This energy can be computed from

D" 1 1 g%e™
¢ ¢ _e¢0F an g

off S-wf

r:r_) , (1.11) where K is the extrinsic curvature of the surfaces

string  *

€= .[drde\/_ R+(
o

r=constant, whose metric is h. In this case these surfaces are the “boundaries” at r,. This energy
can be expressed in a Bogomol’nyi type form as follows:

2
:_jdrdg_ |rD ¢+ZD6¢| +e (f-l_ g'e% J

) 2{i-Jof)

—[aerB|, ) (1.12)

( déorB'|,

'

From this expression is clear that the supersymmetry constraints f = -

e—%
and D.¢=0,
2 _| '

D_¢" =0 in terms of the (r,8) coordinates, imply the vanishing of the first two terms of the
energy. Thus the energy is given entirely by the last two terms. These are given by

g:_ﬂ(lﬂj | +ﬂ(i+mj| (13)

-y vy )™ -y v )"

Hence, we have that the energy (per unit volume) is infinite, since it is proportional to the boundary
terms computed at the singular points. This system should have boundary source terms that cover
the singularities. These should regularise the latter, rendering the total energy finite. This new
solution constitutes a new class of supersymmetric vacua for 6D chiral gauged supergravity, with
possible implications for a deeper understanding of the theory itself, in particular its origin from
higher dimensional supergravities or string theories.

We note that the equations (1.11) and (1.12) are related at the equations (1.4) and (1.7), above
mentioned.

Further, these equations can be related to Palumbo’s model, precisely at the D-brane actions, thus

with F,. We take the equation of coupling of a D-brane to NS-NS closed string fields and the

equation of the Born-Infeld form for the gauge action applies by T-duality to the type I theory. For
parallelism Palumbo’s model = string theory, we have:

— My _[d%le”{E“I’ [— det(Gah +B, +27a'F,, )]1/2 }:
&

T o e [a"xrr{-aetly,, + 220 F, )| =
0

lj det gdrd) (0 ,0° )(aﬂ¢)+ F, F””+; M,

.~ [d6Vaetnk| )=

D*+—LR|+
2

w3

deth
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12—

:>j jdrde\/_ R+( D"y’ +l MF F’""+1 L

||) R
+%( r:,_).(1.14)

Here, we see that also the energy of the D-strings can be related at the Palumbo’s model.

2.Mathematical connections between Palumbo’s model and some equations concerning
gauge/gravity correspondence and open/closed string duality.[3]

With regard to gauge/gravity relations for the gauge theory living on fractional D3 and wrapped D5
branes using supergravity calculations, we have that since also the fractional D3 branes are D5
branes wrapped on a vanishing 2-cycle located at the orbifold fixed point, we can start from the
world-volume action of a D5 brane, that is given by:

S=8,+Sumw »(2.1) where the Born-Infeld action S,, reads as:

S °be™\[-det(G, + B, +27a'F,), (22) while the Wess-Zumino-

o 1
o= Aabria) jd

Witten action S,,,, 1s given by: S, =

1 'F+
T M E ] e e e

have:

1 ,
S = —|—[d*&?\-det(G, + B, +27a'F, )+ ( C, A H (2.4)
g.Na' (271'\/ a‘) { j IV6 Zn:

We divide the six-dimensional world-volume into four flat directions in which the gauge theory
lives and two directions on which the brane is wrapped. Let us denote them with the indices
LI=(a, f ;A,B) where ¢ and £ denote the flat four-dimensional ones and A e B the wrapped ones.
We assume the supergravity fields to be independent from the coordinates @,/ We also assume

that the determinant in eq.(2.2) factorizes into a product of two determinants, one corresponding to
the four-dimensional flat directions where the gauge theory lives and the other one corresponding to
the wrapped ones where we have only the metric and the NS-NS two-form field. By expanding the
first determinant and keeping only the quadratic term in the gauge field we obtain:

1 27a)’ _ . ,
(Ss), =- \/_'(2 J_')S( . ) jdﬁcfe ¢ J-detG,GTGPF i F 5 |det(G,, +B,,) . (2.5)
g NaA'2r\a

where we have included a factor 1/2 coming from the normalization of the gauge group generators
5ab

5
Now we compute the one-loop vacuum amplitude of an open string stretching between a fractional
D3 brane of the orbifold C*/Z, dressed with a background SU(N) gauge field on its world-volume
and a stack of N ordinary fractional D3 branes. The free energy of an open string stretched between
a dressed D3 brane and a stack of N D3 branes located at a distance y in the plane (x4,x5 ) that is

orthogonal to both the world-volume of the D3 branes and the four-dimensional space on which the
orbifolds acts, is given by:

Z=N j %Trm RK#)(— )" (=1)% PGSOe—Z”ﬂ =Z'+7;,(2.6)

Trlrer’|=
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where F, is the space-time fermion number, G, is the ghost number and the GSO projector is
given by:

(-1)% +(=1)" . :
P, = 5 , (2.7) with G, being the superghost number:

Gy == 2 (VB +Bo?) Gy =~¥Bo =2 (V0B + B.,7,) (2.8) respectively in the NS

m=1/2 m=1
and in the R sector. F is the world-sheet fermion number defined by

F=>y_, -y, —1(29) inthe NS sector and by

t=1/2

(-7 =r"(=1)™, r"=rr.r’, F,=>w., v, (2.10) in the R sector. The superscript o
n=l1

in Eq.(2.6) stands for “open” because we are computing the annulus diagram in the open string

channel. We have:

- dr >;; sin v, sin v,
a1 e P e )
x| )®3(zvfr|zr)®3(zvgr|zr)—f4 (e )®4(ivfz'|iz')®4(ivgr|ir)

- fHe™ o, v, dic)e, iv,diz) 1. @.11) and

70 =-

e

T

4sinzv , sin v

— @t o f g
a4l P e Sa T e

EH O|zr)®3(zvfr|zr)®3(zvgz'|zz')— 3(0|zr)®4(ivfr|iz')®4(ivgr|ir)]

v i ~
Py F? | 4T o (2.12) where F, =
0 T

Z)=-

8
2 aﬁ&y F

The three terms in Eq.(2.11) come respectively from the NS, NS (— l)F and R sectors, while the
contribution from the R (- l)F sector vanishes. In Eq.(2.12) the three terms come respectively from

the NS, NS(-1)" and R(~1)" sectors, while the R contribution vanishes because the projector h
annihilates the Ramond vacuum.
The above computation can also be performed in the closed string channel where Z: and Z, are

now given by the tree level closed string amplitude between two untwisted and two twisted
boundary states respectively:

7 _—jdt <D3;F‘e_m(zﬂ+%)|1)3>l] (2.13) and Z,jza'TﬂNTdt T<D3;F‘e_m(Lo+Lo)|D3>T
0

(2.14)
where |D3‘ F > is the boundary state dressed with the gauge field F. Hence, we have:

sin zzv . sin v
d*x\—detln+ F 4 g
e CE R R Py ey e

><{f3( Yo, lire, v glzt)— £Hem)o, W fin)e, v, ir)
= ff(e—’”)@ v,i)e, i)} .15) and

Y’ 4sin v . sin &V
d*xy—detlp+ F)[Ze o L
ey £ e e
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X {®§ (O|it)®3 (vf |it)®3 (vg |it)— @2(0fir)e, (vf |it)®2 (vg |it)}

o
Foet j L (2.16)
t
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The three terms in Eq.(2.15) respectively come from the NS-NS, R-R and NS-NS (- l)F sectors,
while those in Eq.(2.16) from the NS-NS, R-R and R-R (- l)F sectors. In particular, the twisted odd

R-R(- l)F spin structure gets a nonvanishing contribution only from the zero modes.
It is useful to write Eq.(2.12) in a more convenient way. Using the notation for the ©® -functions

@th) _ iez”{z('ﬁzj “IEH ,(2.17) and the identity

n=—oco

L& e T [a +h1 4 {1 —h} .

- )“r1le “lv.)=-TTe ")), (2.18) with

2a;0 111 b +gl 11:11 1 R-Y

hy=g=¢8,=0; g;=—g,=1; vi=iv,z; v,=iv,7; v;=v,=0

vV, =-V 2——( g—Vf)T, V'3=V'4=é(vg+vf)z', we can rewrite Eq.(2.12) as follows:

go—__ 2N 2N Id . /j—)—detﬂ+F I_e—m{ 4sinzv, sinzv, }

8n' a §(O|ir)®1 (i sz'|iz')®1 (ivgz'|iz')

v, —v v, —v Vv, +V
x@l(z’ d ff|irJ®1[i L gr|irJ®§(i f2 gr|ifj.(2.19)

By expanding the previous equation up to the second order in F and using the following relations

0,,, (0|it)= file™) i (™) limM= —£2e™) (2.20) together with v, =i and

v=0 25in TV T
__8 .
v, :—;, we get:
_L
z0 = xFg et —iFg Fect j )[LEe 2 | (2.21) which reduces to
327

1 r
ZZ(F)—>[——jd4xF0j’ﬂF““ﬁ} j d—e 2

4 gYM L T

_l‘N|:;j'd4xFa ﬁaﬂlﬁ:| j dt 2y;;a .(2.22)
327 i T
a'N

In the closed string channel we get instead:

aN _ y?
Z (F)_>|:__.[d x a aﬂlﬁ:|{ 21 _ N2 ﬁe 2ﬂ0{'t}

g (A 87 ¢t
—iN[ 12
327

Now we study the one-loop vacuum amplitude of an open string stretching between a stack of
N, (I =1,...,4) branes of type I and a D3 fractional brane, with a background SU(N) gauge field

turned-on on its world-volume. Due to the structure of the orbifold C* /(Z, X Z,), this amplitude is

a'A? )‘2
.[ dt 2mz t (2 23)
t

0

ey
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3
the sum of four terms: Z =2, +ZZ 5 » Where Z, and Z, are obtained in the open [closed]
i=1

channel by multiplying Eq.s (2.11) and (2.12) [Eq.s (2.15) and (2.16)] by an extra 1/2 factor due to
the orbifold projection. In the open string channel, Z, is:

o Ji(N) \/7 dr 2);; 2sinzv, 2sinzv,
% = detr+ £ I ¢ 0|11')® (zvfz'|zz')® (zv r|zr)

2087%a')?
ZZ')— 4(0|12') 3(lVfZ'|lZ')®3(lVgT|lT)}

x{®3 0|ZT)®4(lVfT|lT)®4(lVgZ'

2

XF Y Feb J’ AT omw (2.24)

The functions f;(N) 1ntroduced in Eq. (2.24) depend on the number of the different kinds of
fractional branes N, and their explicit expressions are:

fitN,)=N,+N,-N,-N,, f,(N,)=N,-N,+N,-N,, f;(N,)=N,—-N,—-N,+N, (2.25)
Let us now extract in both channels the quadratic terms in the gauge field F. In the open sector, we
get:

L) (e
gYM(A) = 167° T

(a'A?)

o 1 a aof}
Z0(F) — [—ZjdupaﬁF }
XF gy F “ﬂsz) & 2.26)

ar 2

while in the closed string channel we obtain:

¢ _l 4 a praof f(N) “r dt _2;;,
Z,l(F)—{ 4jd XF F Hgm(/\) ;16” {j t }}

0
{ 1
—1
3272

due to the massless states in both channels.
Now we consider the validity of the gauge/gravity correspondence in the 26-dimensional bosonic

string and we consider it in the orbifold C°/*/Z, with & <22. We consider the one-loop vacuum

amplitude of an open string stretching between a D3 brane dressed with a background gauge field
and a system on N undressed D3 branes. It is given by:

1/(ea?)

N
a'N? y;

~ 3 f(N - . L .
xF* F“ ZM ge 2t (2.27) where the divergent contribution is
@ ~ t
i= 0

td +h ox )
Z= NI—T TrKe 5 j(— 1)% e ﬂ"} =7Z)+Z7Z,;, (2.28) where L, includes the ghost and the matter
T
0
contribution. By performing the explicit calculation of the one-loop vacuum amplitude one gets:

Z; 8 ; ' .[d x\/—deti77+Fj.[ e G

2e”7(vf w )sm v, sinzv,

2.2
o v disle, v die) &2 M

m'(v2+v§)
e a2 | 2

sInzV ; sin v,
0, lirv,lit)o,litv Jit)
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L)
x2?2 [ fi (k)]_(lg_‘s) [ fs (k)]_‘s, (2.30) where the power 18 is obtained from d-8 for the value of the

critical dimension d=26. The previous expressions can also be rewritten in the closed string channel
and one getS'

vz . .
) 2sin 7V, sin v

L — — _ 27rar J 14 2 1 f h .
Z, (8 ; ' .[d Xy det‘77+Fj.[ e llg(e””)®I(Vf|it)®l(vg|it) (2.31) for the untwisted

sector and

- 2s1nm/f sin zv
8 ; ' Id X\/W)I 11— 5/2 |: 1( f|lt)®l( g|lt):|

x2°2[f, (q)] U £ (]° (2.32) for the twisted sector.
Also these equations can be related with the Palumbo’s model. For example, we take the equation
of Scherck-Schwarz theory, the equation of heterotic string action and the equation of the one-loop
vacuum amplitude of an open string stretching between a D3 brane dressed with a background
gauge field and a system of N undressed D3 branes, in bosonic string theory (2.29-2.30), we have:

w-Ge 2¢{R+48 CI)&”CI)——‘H‘ —iT (R )}
810

zr(vi+v?) . .
2™ g)s1n7z1/f51nﬂ'vg

Id x\/—det‘77+F” e G
87: a

+
fl18 (€7)®,(iv,7in)®, (iv,7i7)

m'(v +V, )
e f

sin 7Z'Vf SlIl?Z'V

(8752 N Id x\/mj T B ®(lTVf‘zz')® (itv, |zr)

g
x22 [[ O] "L E] 7. 233)

3. Mathematical connections between linear subcanonical spinor theory in third order formalism,
Dirac-Born-Infeld action, Duality Het/T* —IIA/ K3 and Palumbo’s Model.[4]

Linear subcanonical spinor theory in third order formalism.

We concentrate our attention on the investigation of the simplest possible nonlinear spinor theory,
namely a theory for a self-coupled 2-component Weyl spinor field ¥ (x) which obeys the nonlinear
field equation

ic-dy(x)+ g'o* :yly o, w): (x)=0 G.1).

This is essentially the Heisenberg nonlinear spinor equation in the form as given by Durr. An
invariance of this spinor equation under dilatations requires to assume the spinor field to have the
subcanonical dimension

dimy =1/2 (3.2)

The linear theory corresponding to this subcanonical spinor theory is the third order Weyl equation
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—i(0-9)0°w(x)=0 (3.3)
or the set of first order equations

i0- 0y =

ST

ic-0y =
ic-9y=0 (3.4)

This linear theory could be shown to be invariant under the full 15-parameter conformal group. The
transition back to the nonlinear theory will be essentially performed by the requirement of phase-
gauge invariance of the theory, which demands the replacement

d,—>V,=0d,+igR, (3.5)
in the Lagrangian, where R, is identified with the bilinear form

R, =—:y'op:(x) (3.6

Now we shortly review the linear subcanonical spinor theory in the third order derivative formalism
and explicitly consider its solutions. These solutions span a quantum mechanical state space with
indefinite metric.

We consider the free massless third order derivative theory for a 2-component Weyl spinor field
with the field equation

—i(0-9)0°w(x)=0 (3.7)

which can be formally derived from the Lagrangian density

L=Cl 00y - (o0 ] 69)

This theory is invariant under the full 15-parameter conformal group if we require the Weyl spinor
field to transform according to an irreducible representation with mass dimension

dimy :% (3.9)

Quantization of the spinor field is achieved by the requirement that the anticommutator of pseudo-
hermitian conjugate fields is connected with an invariant solution of (3.7) which vanishes for space-
like distances, and a normalization which is fixed by the normalization of the Lagrangian density
(3.8). One obtains

X X :_l = L 0 2y _ [ 4 O-p —ip-x
{w(z}w( 2]} S (@0 oS0 (2ﬂ)4§d P
1

- _ 4 = 0 { 2N —ip-x 1
= [d*pe-pe(p”)&'(pPe™™ (3.10)
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where %e(xo)é'(xz) is the invariant function of a massless field. The integrand in the momentum
V4
integral (3.10) has the form

G p_ 1 _ 1
(p>)* (o-p)T-pXo-p) (p°=6 p)(p’+6-p)

(3.11)

which indicates that there exists a double pole for positive chirality states (positive-energy positive-
helicity or negative-energy negative-helicity states)

p’=6-p=|ph (3.12)

(h=0- 13/| 13| = helicity ), and a single pole for negative chirality states (positive-energy negative-
helicity or negative-energy positive-helicity states)

p’=-6-p=-ph (3.13)

both with zero mass. The field operator ¥ (x) will contain annihilation operators for a massless
right-handed good and bad ghost, a, and a,, and an annihilation operator a, for an ordinary
massless left-handed state similar to the neutrino, and also the creation operators bg ,b,,b, for the

corresponding “antiparticles”. It is convenient to use the pseudo-hermitian operators
b =nb'n~" (3.14)

constructed with the metric tensor 77 in the quantum mechanical state space, because in a theory
with indefinite metric the pseudo-hermitian conjugation takes over the role of the hermitian
conjugation in a theory with positive definite metric. In the 1-particle sector of the quantum
mechanical state space the metric tensor 77 has the form

-1

(3.15)

=

Il

=

Il
oS = O
S O =
- O O

where the diagonal element refers to the ordinary state, the n-state. Relation (3.14) then states

by =b'; bl =b}; bl =b' (3.16)

g 9

For the creation and annihilation operators we have the anticommutation rules

@ (B),al" (ph}= 805 - 516, ) (5),a"" (ph}= 8(5 - 516,
W5, (pH}= 65— s, (317

and similar anticommutation rules for the b-operators. All other anticommutators are zero. The
superscript (i) refers to the spin degree of freedom. The Weyl spinor field ¥ (x) can be expanded in
terms of these operators
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Wx)_(z i 2] 4 PR {H G”l‘lﬁltja?(ﬁ) o, (5), +
+a" (p)n_(p)),, Je 1P -

) (= 1 .| = i) = — i) (= — +il| p|t—p-X
|7 03 b ) o D - M ) |
with the helicity projection operators

1
n(p)=——(pl+G-p) (3.19)
.(p) 2|p|(hv| p)

The expansion for ¥, (x) is given by the pseudo-hermitian expression of (3.18). With (3.18) we
deduce for the anticommutator (3.10) on the basis of the anticommutator rules (3.17)

Ve (-5l rggp b -2t o

[h —(1 21|p|t) ]e“\l’\tnx)
4 {h+5( |p|) (po +|P|) +h_5(p0 +|ﬁ|)%(p0 _|13)—1 N

+(lp)” [h_5(po—|p|)+ h,8(py +| )] Je 0

_ 1
(2z)’

i h h .
=L _fap S Lt (3.00)
(27) | {(po =18l (py +|8))  (po +|B]) (o —Ipl)}

i.e. the correct expression (3.10).
The situation in the state space is less pathological if we generalize the third order spinor theory
(3.7) to include a mass, i.e.

—i(c-0)@> +m* p(x)=0 (3.21)

In this case, of course, the symmetry under dilatation and special conformal transformation will be
broken. The anticommutator then has the form

P (2] o ol

1

T a)ym?

From this we deduce that y(x) now annihilates positive norm states of mass m, containing positive

and negative chirality components, and negative norm zero states with zero mass and positive
chirality. The Weyl spinor field has the expansion

—ip-x
e[’ —

P (P —m )
[a*pa- pelp’ )[5(p -m?)-(p? . 3.22)

wa(x>=(w+2mz [@*plae, (&, +m)*[E, + 5 p+m],
i=1,2
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x|a?) (p)expl-i(E,1 - p- )|~ (p)expli(E, 1 - p-3)]|+
m[a_ (p)expl-i(plr— p-% )] b (p)expli(pli - p- %) (3.23)

with E,=(p*+m*)"* (3.24)
The annihilation and creation operators obey the anticommutation rules
{0 (Br.a" (50}= 85— ), 0 (p).a" (p)}==8(p- p)3; (3.25)

and similar anticommutators for the b’ . All other anticommutators vanish. The negative sign in
the second anticommutator of (3.25) indicates that a’ creates a negative norm state. It is possible
verify easily that the expansion (3.23) leads back to (3.22):

{w@, w*(— g]} ] dp{% fexpl-ilE, 1 - - )+ explilE, - 5 5))-
—h, [expl-il|ple - - %))|+ expli(plr - 5 %) }=

- (2,,);3,%2]‘141’5 pe(p)s(p> ~m?)-s(p* . (3.26)

3.1 Born-Infeld action and D-brane actions.[5]

Born and Infeld realized the final version of their non-linear electrodynamics through a manifestly
covariant action. In modern language this can be expressed by saying that the world-volume theory
of the brane is described by the action

1 "
S, = _M I Ao \/— det(G,, +F,,) (3.27)

where F is the world-volume electromagnetic field strength, measured in units in which 2za'=1 . G
is the induced metric on the brane

G =1,,0,X"0,X" (3.28)

Thence, we have from (3.27):

1 + m n
S, =—mjd’”d\/—det(nmaﬂX 9,X"+F, ) (3.29).

The action is invariant under arbitrary diffeomorphysms of the world-volume. One way of fixing
this freedom is to adopt the so-called “static gauge” for which the world-volume coordinates are
equated with the first p+1 space-time coordinates:

X* =0 u=01..p. (3.30)
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This “static gauge” description is most convenient if the brane is indeed positioned along those
directions. The rest of the coordinates become world-volume fields

X"=¢",m=p+1,...9. (3.31)

The Born-Infeld action becomes

1 —
S'()= o | d" |- detln,, +9,0'9,0' +F,,). (3.32)

Note that this is in some sense a modification of pure Born-Infeld: it has extra scalar fields ¢ and
that the action (3.27) can be also write as:

S = —ijd“x\/— Det(G,, +F,,) with g, =(27) g, hence:
8»

1
(27)'s,

S=-

[d*x[-DetlG,, +F,). (333

The action for a Dp-brane comes in two parts, the Dirac-Born-Infeld part, and the Wess-Zumino
part. These are

Spw ==, A" Ge ™ = det(g y + £.p), (3.34)

where f =2za'F —B is a U(1) field strength (the world volume gauge field therefore transforms
as 0A = A, / 2z’ under a SUGRA gauge transformation 0B, = dA,), and

Sw, =1, [e! A®,C,, (335)

where the integral projects onto p+1 forms. The D-brane charge is u, =1/(27)"o/"*""?. The

coordinates ¢“ are the embedding coordinates of the D-brane. Note that the spacetime fields are
pulled back to the world volume. Hence, we have

_ 1 +l s —¢
S——Wjdp {e \/—det(gaﬁ +faﬁ)+

f
WIE /\@ch . (336)

With regard to string corrections, the most important corrections are those to the D7-brane action
because they give an induced D3-brane charge and tension. There are also corrections to the DBI
action that are responsible for modifying the tension of wrapped D7-branes. Considering the
bosonic part only, the DBI action becomes

1 e Qra')? o
SDBI :—Wjdf' 1;6 4 I—det(g+f)|:1_ 192 ((RT)UIﬁ75(RT) 79

—2(Ry ) oy (R)™ = (Ry) s ROP™ +2R, R ) | (3.37)
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up to O(er')>. There is an additional contribution at this order with an undetermined coefficient,
but it vanishes on-shell, so it does not affect S-matrix elements or dispersion relations. Here, d,l;

are normal bundle indices in an orthonormal basis with vielbein &*.

3.2 Duality type I-SO(32)[6]

In these theories, the action is fixed from the supersymmetry. The heterotic action contain the fields
G,.B,.¢ and A/ ; the type I G,, and ¢ from the closed sector (NS)?, B, from the closed

v v

sector (R)* and A/‘j from the open sector. In the Einstein frame for the two actions, we have

1 1
st = Xl — R—1 g3 ——g"g"e 4trF F, ——g"g™g%e 2H H_, |,
(271_)7 g|: 8g w¢ g uv®t po 12g g8 8 uvp 6£§:|
(3.38)
14 1 . (4
R—— o ——g"g’e*trF, F Wablag®e2H H ,
(27[) 8 w ¢ g uv: po 12g g8 8 uvp "+ oel
(3.39)
where
F, =3,A -3,A, +v2[A,,A ] H. =3B -7 AF —\/EA[AA] cl
w — Yutly vOu wr v b ﬂVﬂ_ﬂVP_Er /tvp_3 uly, A, ||+ cict.

These two actions are obtained each other identifying among them the fields corresponding of the
two different theories and putting @¢” =—¢@'; the change of sign in dilaton connected the
perturbative aspect of Type I with that non-perturbative of heterotic and vice versa.

3.3 Duality Het/T* —IIA/ K3[6]

With regard to duality Het/ T*—1IA/ K3, the heterotic relation contain, metric, antisymmetric
tensor, dilaton, 10+6+64=80 scalars and 8+16=24 vectors; with M € 0(4,20), M =M' we can
write

R—— 0, MLo ML
(2 ) 8 (y v )
1 2 1
€ 28" (LML) By = e 8" g g H o H o ], (3.40)

where

» =9,B, +;A L F”+czcl

1 "ab
The duality group is, in this case, 0(4,20;Z).
When we compactific the IIA on K3, we have 58 scalars describing the fluctuations in the complex

and kahlerian structure of manifold; 22 scalars that we obtain decomposing B, , with respect to the

mn?
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22
22 harmonics 2-forms @’ of K3: B, (x,y)= z¢p (x)®” (y) with x coordinates on R°® and y
=1
coordinates on K3. Altogether we have 80 scalars that parametrize a coset O(4,20)/ O(4)x O(20)
22
as for the heterotic. Decomposing C,,, in the base of 2-forms, C,, (x,y) = ZA;’ (x)w! (y), we

; hence we have

obtain 22 gauge fields; another arise from A, and another on obtain dualizing C,,,;

24 gauge fields. The effective action is

14

1 1
= d,MLI ,ML)-—e>g"" ”"F LML), F" —
(271_)3 ( ) 4 g g ( )ab vo
1 ¢ 1, po & 1 gﬂvpagg
—-——e H,H,, ———F——B F: 3.41
12 g8 8 & vol 16 H uv= po ah ] ( )
where H,,=9,B, +cicl.

We note that the egs. (3.10)-(3.22) and (3.26) are connected with egs. (3.29)-(3.32) and (3.37) with
regard to the DBI action, and with (3.38)-(3.39)-(3.40) and (3.41) with regard to the duality type I —

SO(32) and duality Het/T* —1IIA/ K3, respectively. Furthermore, we have obtained also the
connection with Palumbo’s model. We find that, for example,

(2715)3 (po)[5(l?2 _mz)—5(p2)]e—iﬁ-x -

1 Lo 27a')? “
= - [d "¢ ¢\/—det(g+f)[l—( ) ((RT)D,M(RT)W

27) o 192

= 2Ry ) oy (R)? = (Ry) s ROP® +2R,R™ ) | =
XyJ— {R——g’”a @, ¢——g“” e “trFmea—llzg””g”"ge;e *H, Hos;}
26 Vo 1 v —
—J-d x\/_[—@—ggﬂpg Tr(Gvapa)f(¢)_5gﬂ aywv¢}_
)1/2 _2¢{R+4a q)a/lq)__‘H‘ __T QF| )} (3.42)
0 K‘10 10

4. On some correlations obtained between some solutions in string theory, Riemann zeta function
and Palumbo’s model.

In the paper: “Brane Inflation, Solitons and Cosmological Solutions:I”, that dealt various
cosmological solutions for a D3/D7 system directly from M-theory with fluxes and M2-branes, and
in the paper: “General brane geometries from scalar potentials: gauged supergravities and
accelerating universes”, that dealt time-dependent configurations describing accelerating universes,
we have obtained interesting connection between some equations concerning cosmological
solutions, some equations concerning the Riemann zeta function and the relationship of Palumbo’s
model.
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4.1 Cosmological solutions from the D3/D7 system.[7]

The full action in M-theory will consist of three pieces: a bulk term, §,,, ., a quantum correction

term, S and a membrane source term, §,,,. The action is then given as the sum of these three

quantum
pieces:

S=8,,+S  +8,,. (41)

quantum

The individual pieces are:

1 1 1
S =——|d"xJ-g|R——G* |- CAGAG, (42
i = [ g[ 48 } vl @2

where we have defined G = dC, with C being the usual three form of M-theory, and x° =87G".

This is the bosonic part of the classical eleven-dimensional supergravity action. The leading
quantum correction to the action can be written as:

1
S quantum =b1Tzfd“x\/—g{Jo _EEg}_TZIC/\ X,. (4.3)

27

2 1/3
—j ,and b, is a constant

The coefficient 7, is the membrane tension. For our case, 7, :( >
K

number given explicitly as b, = (27)*3727". The M2 brane action is given by:
T
Sy, = _?Zjd%n/— 7/[7’”8#XM8VX Ngun —1+§gﬂvpaﬂXMavaapx PCMNP] (4.4)

where X" are the embedding coordinates of the membrane. The world-volume metric
V>V =012 is simply the pull-back of g, , the space-time metric. The motion of this M2

brane is obviously influenced by the background G-fluxes.

4.2 Classification and stability of cosmological solutions.

The metric that we get in type IIB is of the following generic form:

a =L va vac)s La Lo a4y

where f, = f,(y) are some functions of the fourfold coordinates and &, and ¥ could be positive

or negative number. For arbitrary f;(y)and arbitrary powers of t , the type IIB metric can in
general come from an M-theory metric of the form

ds® = e*'n,, dx"dx" +e*’ g, dy"dy" + ezc|dz ’, (4.6)

with three different warp factors A, B and C, given by:
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3 3
A :llog%+llogf—22, B =llog% 1log —, C= l:log /5 +log } 4.7
27 k3 27 1 3 7]

To see what the possible choices are for such a background, we need to find the difference B — C .
This is given by:

fofs

7B

B-C= Elog +1g . (4.8)

Since the space and time dependent parts of (4.8) can be isolated, (4.8) can only vanish if

f2:f3_1'|z_i|’ 7+IB:0’(4-9)

2

with @ and f,(y) remaining completely arbitrary.
We now study the following interesting case, where = =2, y=0 f, = f,. The internal six

manifold is time independent. This example would correspond to an exact de-Sitter background,
and therefore this would be an accelerating universe with the three warp factors given by:

i

Azglog—z, ;{logfz logf‘} C——glog - (4.10)

We see that the internal fourfold has time dependent warp factors although the type IIB six
dimensional space is completely time independent. Such a background has the advantage that the
four dimensional dynamics that would depend on the internal space will now become time
independent.

This case, assumes that the time-dependence has a peculiar form, namely the 6D internal manifold
of the IIB theory is assumed constant, and the non-compact directions correspond to a 4D de-Sitter
space. Using (4.10), the corresponding 11D metric in the M-theory picture, can then, in principle,
be inserted in the equations of motion that follow from (4.1). Hence, for the Palumbo’s model, we
have the following connection:

e 6,6, ) (0)- 0, 0,0] -

! 10 /2 2 u L~ 2 K12() 2)
=[5 [d"x(-G)"* | R+49, 0 D~ || Ko (B)| =
0 2K 2 810

Lo P
=5 - [d \/_[R G} [caGac @,

48 127

where the third term is the bosonic part of the classical eleven-dimensional super-gravity action.

4.3 Solution applied to ten dimensional IIB supergravity (uplifted 10-dimensional solution).[8]
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This solution can be oxidized on a three sphere S° to give a solution to ten dimensional 1IB
supergravity. This 10D theory contains a graviton, a scalar field, and the NSNS 3-form among other
fields, and has a ten dimensional action given by

S, = jdwx\/QBR—%(aqﬁ)z— -Zﬂ’HMHW} (4.12)

We have a ten dimensional configuration given by

2 3/4 }"2 r 5/4 Q 2
dsyy = (—j —h(r)de® + r*dx; s + dr? +(—j do’ +dy’ +dg’ +(dlﬂ+cos qu)——sdtj
r o h(r) 2 5y

5 r
=-"log—,
¢ 21087

H,= —%dmdtA(dw+cos0d¢)—isin9d0Ad¢Ady/. (4.13)
r

V2

This uplifted 10-dimensional solution describes NS-5 branes intersecting with fundamental strings
in the time direction.

Now we make the manipulation of the angular variables of the three sphere simpler by introducing
the following left-invariant 1-forms of SU(2):

o, =cosyd@+sinysinbdp, o, =sinydfd—cosysinbdey, o, =dy +cos@dp, (4.14)

and h, =0, —%isdt. (4.15)

r

Next, we perform the following change of variables

4
o5, =27, dx, = ——d%,, de:%dZ, g=+2%, 0=22"0, 0. =—5.. (4.16)

og1|,_.

o~ 2
452 :%p_l [d§62]+~%[&f + 62 +(&3 —ﬁ—d?j ]+dez,
8
¢ :_lnp’

~

V2gp°

H3=—~L25'1/\52/\E3+ di ndp Ahy, (4.17)
g

where we define
~ p2
a”s})2 = —h(,o)d?2 +~—dp2 +p2d)?0%4 (4.18)
i(p)
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and, after re-scaling M,

7 ~2
_M g
p> 32

s

P (4.19)

6 °

. 07 1
8

We now transform the solution from the Einstein to the string frame. This leads to

~ 2
2 1 -2 2 1 ~2 ~2 o~ gQ 1 =~ 2
dElo ZE'O [dgé ]+? O, +0, +| 0, —m? t +dZ"°,

5=—2lnp,
H,=H,. (420

We have a solution to 10-dimensional IIB supergravity with a nontrivial NSNS field. If we perform
an S-duality transformation to this solution we again obtain a solution to type-1IB theory but with a
nontrivial RR 3-form, F;. The S-duality transformation acts only on the metric and on the dilaton,

leaving invariant the three form. In this way we are led to the following configuration, which is S-
dual to the one derived above

~ 2
1 Plar ~o [~ 80 1
ds: =—|ds2 |+ = |62 +6% +| 6, —==—dri | |+ p*dZ?,
10 2[ 6] gzll 2 3 4\/5[)4 P
¢ =2Inp,
F,=H,. (421

With regard the T-duality, in the string frame we have

42 1t

2 2
dﬁfzékhﬂ+§7{af+o§+(a3—i§ll;mj}+r4dz?(423

This gives a solution to IIA supergravity with excited RR 4-form, C,. We proceed by performing a
T-duality transformation, leading to a solution of IIB theory with nontrivial RR 3-form, C,. The
complete solution then becomes

2 2
ds;, =l[ds§]+r—2{af +0; +(03 —ﬁidtj }+ ridz? ,
2 g

¢ =2lnr

37



C, =—L261 ANO, ANhy — —dt Adr Ah;. (4.23)

«/_gr

We are led in this way to precisely the same 10D solution as we found earlier [see formula (4.21)].
With regard the Palumbo’s model, we have the following connection:

—I a*xg [‘L—lg 8" Tr(G G )f(¢)—1g””aﬂ¢av"’} i

162G 8
)1/2 -2¢[R+4a cpaﬂcp——‘H‘ ——T QF|2)}_)
0 Klo 810
1,1 L - v
R ;dlox@hR-E(aw L en ] a2

4.4 Connections with some equations concerning the Riemann zeta function|[9]

We have obtained interesting connections between some cosmological solutions of a D3/D7 system,
some solutions concerning ten dimensional IIB supergravity and some equations concerning the
Riemann zeta function, specifying the Goldston-Montgomery theorem.

In the chapter “Goldbach’s numbers in short intervals” of Languasco’s paper “The Goldbach’s
conjecture”, is described the Goldston-Montgomery theorem.

Assume the Riemann hypothesis. We have the following implications: if 0<B, <B, <1 and
Bl

F(X,T)= LTlogT uniformly for —— <7 < X" log’ X , then
2 log” X
X

j (w1 +0)x)-w(x)-8(x) dx = %éXz log%, (4.25) uniformly for L <5< XlB, . We take the

B,
1

Lemma 3 of this theorem:

Lemma 3.

Let f(¢) >0 a continuous function defined on [0,+oo) so that f (1) <<log’(t+2).1If

1) = (Smk“j f(u)duz(%+€'(k)jklog%, (4.26) then

J(T) = j f)dt=(1+€)TlogT , (4.27)

with |8'| small if |€(k)| < & uniformly for

<k< l1og2 T.
TlogT T

Now, we take the equation (4.10) and precisely A = glog h . We note that from equation (4.27) for

2
&'= —% and T =2, we have J(T) = .[f(t)dt =(1+&")TlogT =§10g2. This result is related to
0
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Ji

2 ) )

A= glOngl putting - =2, hence with the Lemma 3 of Goldston-Montgomery Theorem. Then,
t t

we have the following interesting relation

A= glog ho, jf(t)dt =(1+&)TlogT, (4.28)

t2

hence the connection between the cosmological solution and the equation related to Riemann zeta
function.

Now, we take the equations (4.13) and (4.21) and precisely ¢ = —ilogg and ¢ =2Inp. We note

that from equation (4.27) for 8:5 and T = 1/2 , we have

T
J(T) = jf(t)dt =(1+&)TlogT = glog%.
0
t 1
Furthermore, for ¢'=3 and T= 1/2, we have J(T) = J-f(t)dt =(1+&)TlogT = 210g5.
0

These results are related to ¢ = —ilogg putting r=1and to ¢ =2Inp putting p =1/2, hence

with the Lemma 3 of Goldston-Montgomery Theorem. Then, we have the following interesting
relations

6= —%log% - —jf(t)dt =—[(1+&)T10gT], $=2Inp= jf(t)dt =(1+&)TlogT, (4.29)

hence the connection between the 10-dimensional solutions and the equation related to Riemann
zeta function.

4.5 Further connections between some equations of string theory and lemma 3 of Goldston-
Montgomery theorem.[10]

We now show that, in a large class of string constructions with NS-NS tadpoles, including brane-
antibrane pairs and brane supersymmetry breaking models, the one-loop threshold corrections are
UV finite, despite the presence of tadpoles.

In order to obtain a field-theory interpretation, one can turn windings into momenta via a pair of T-
dualities that also convert D9 and D5 branes into D7 and D3. The one-loop threshold corrections for
the D3 gauge couplings are found to be

A=-2(rr0 [ ailp® - p®)-(1r0?)

Vv, 0 2° v, v,
(4.30)
where Q is a gauge generator for the D3 gauge group, v,,v,,v, are the volumes of the three internal

4 2 " "
N dlﬁ_z[zi+&_i

—1)" pOp@
0 7712 3 192 672773 j( )

tori, P and P“ are Kaluza-Klein momentum sums along the torus where the T-duality was
performed and along the other two tori, respectively, P> is a corresponding even momentum sum,
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n and ¢ are Jacobi functions. The non-supersymmetric contribution in the second line of (4.30) is
IR and UV finite, where IR and UV refer to the open (loop) channel. The UV finiteness can be
explained from the supergravity point of view, while the IR finiteness is guaranteed by the
separation between the D3 (branes) and the D 3 (antibranes) in the internal space. In the field theory
(large volume) limit the non-supersymmetric contribution is negligible, while the explicit evaluation
of the first term in (4.30) gives

A= —ib“v-” WGl mu), @31

where for a rectangular torus of radii R,,R,, G =R,R, and ImU =R, /R,. In (4.31), b
denote beta function coefficients for Kaluza-Klein excitations in the compact torus where the T-
dualities were performed, that fill N = 2 multiplets. The first, BPS-like contribution in (4.30), is
similar to the standard N = 2 one in orientifold models, and is finite. The non-supersymmetric one
originates from the cylinder and reflects the D3— D3 interactions between branes and antibranes
located at different orbifold fixed points. This explains, in particular, the origin of the alternating
factor (—1)". The remarkable property of (4.30) is that the threshold corrections are UV finite,
despite the presence of the NS-NS tadpole. This can be understood noting that in the [ — oo limit
the string amplitudes acquire a field-theory interpretation in terms of dilaton and graviton
exchanges between Dp-branes and Op-planes. For parallel localized sources, the relevant terms in
the effective Lagrangian are

XN — G{R —l(a¢)2 _;6(5—p—2)¢/2F2

2 2(p+2) ’”2}
[ amel=alr,e et v e R [ g, @32)
Y=)i

where & are brane world-volume coordinates, ¢ = £1 distinguishes between branes or O-planes and

antibranes or O -planes, G is the 10-dimensional metric, ¥ is the induced metric and C 7Y denotes

a R-R form that couples to the branes.
We note that the eq. (4.32) is related to the Palumbo’s model. Indeed, we have the following
connection:

J-d%.x\/g|:_ﬁ_%gﬂpgngr(Gvapa )f(¢)_%gﬂvay@v¢:| =

=

1/2 29 u _l~2_K_120 2
[ ~G)"e [R+4aﬂc1>a @ 2\113\ o 77, () )}:

10, /— _l 2_; (5-p-2)p/2 12
d”x G{R (09) 2)!e F,

2 2(p+
_J- dp+1§{'\/:/[Tpe(p_3)¢/4 + e(p_7)¢/4trF ]+ qC(p+1)} (433)
Y=Yy;

From (4.31), we have Az—ibw‘z) ln(Rle,u2|77(U)|4R1/R2), where putting b = A and

(R1R2ﬂ2|77(U 14R1 / R2)= B, we obtain A= —iAlnB. Also this equation can be related to the
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Riemann zeta function and precisely to the lemma 3 of Goldston-Montgomery theorem, with the
change of sign. Then:

T
—Df(t)dt}=—[(1+8')T10gT] that for T =2 and &'= —% lead to —%logZ. For Az—%AlnB
0

and A, B=2, we have — %ln 2. Thence, we obtain the following relation:

A= —%b(n—b 1n(R1R2,L12|77(U)|4 R /R, ):> —{ j f(t)dt} =—{(1+&)T1ogT]. (4.34)

5. On the solutions of some differential equations describing configurations with naked singularities
and mathematical connections between naked singularities and some differential elliptic equations
concerning open sets.

In this chapter, we have related some differential equations describing configurations with naked
singularities, with some theorems applied to differential equations concerning open sets of
Stampacchia’s papers.

5.1 On some equations whose cosmological solutions leads to the naked singularities.|[8]

Now we consider the following action in (q+n+2) dimensions, containing the metric, g avo @ dilaton

field, ¢, with a general scalar potential, V(¢), and a (q+2)-form field strength, F,_, =dA

q+1°
conformally coupled to the dilaton:

s=],

Here R is the Ricci scalar built from the metric. The Ricci scalar is given by the simple expression

ar ﬂ{aR BOg) ﬁ e TFL - (¢)}. (5.1)

q+ n+2

(MS' <1nr>) Lt gt 2V0) | (g+2-nnQ°h(r) jowsinn,200m) (55

8 n+q (n+q)g(r)

The field equations obtained for the action of eq. (5.1) are given by:

o 1
= T, [¢]+( Tl |-V 0)s.

24 n o 2 i
2:BV ¢_ O-(q+2) Fq+2+d¢V(¢)

V(e ?F*)=0, (5.2b)

where T, [p]=V 0V, ¢ 2gw(w and T, [F,]=(q+2)F F, g, F>

2 q+2
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We look for solutions having the symmetries of the well-known black g-branes. To this end we
consider the following metric ansatz:

ds® =—h(F)de® + h(F) " dF* + f*(F)dx;, + & (F)dy?, (5.2¢)

where dx,f!n describes the metric of an n-dimensional maximally-symmetric space with constant
curvature k =-1,0, 1 and dyj describes the flat spatial g-brane directions. Let us assume the metric
component g can be written in the form g = r for constant c, and with the new variable r defined by

the redefinition r = f(?) . It is also convenient to think of the dilaton as being a logarithmic function
of r, with ¢(r)=MS(Inr), where M is a constant. Subject to these ansatz the solutions to the
previous system of equations are given by

drz c 1y Ty ...y nr)-Ldnr) —M*—(N— Ty ...y
ds2 Z—h(}”)dtz + ( )+I’2dX,§n +r2 dqy’ (5.2d) Ff}] Yq — QeOYMS(l )—L(1 )r M —(N l)gl‘}l Yy ,
8gr ,

with g(r) = h(r)r?>™ Ve ™" " (52¢) and the function L(Inr) is given in terms of S(Inr) by

2
%(X)ZE(Z_S(X)j . The constants M and N are related to the parameters n, q and c by
X o\ dx
2
M?=n+cq, N:n+Mczq.

To proceed further, we must choose a particular form for V(¢). We take the following Liouville
potential

V(g)=Ae™. (5.3)
Now, we present three classes of solutions for the Liouville potential (5.3), with A #0.
Let us start by rewriting the general form of the solutions in this case, substituting in (5.2d) and (5.2e)

the form of S given by formula S(Inr) = plnr . We find in this way:

2

ds” =—h(r)de” + d: ) +ridx;, +r*dy),  ¢(r)=pMinr, F7 = QpopMoN-ME-ppt las gy
g\r

(5.3a)

with g(r) = h(r)rN*#*/@D \With these expressions the (tt) and (rr) components of Einstein’s

equations imply the following condition for h:

Mzh(r)z{( n(n—l)k

e < ,8 2/ )j|r2(ﬁp2/a+N—l)_ZMMZrN+ﬁp2/a!—M2_
—2+N+pp I

an opM +28p% | o A r2(N+ﬁp2/a!)
Naloom —2n+M>+N+Bp21a)| P |l aM>+N+B0 la-ApMm)| M
(op Bp 0 p
(5.3b)

where M is an integration constant. On the other hand the dilaton equation implies h(r) must also
satisfy:
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2 2 2 opM +2 0% |
Mh(r) = =2MMpN P 1eM ﬂCfQ2 : A
2,3/0((7/0M —-2n+M"+N+ fp /a) 2N

2UN+Pp% 1 @)
AN )} ! . (5.3¢)

_{2,5p(M2+N+,Bp2/a—/ipM oM

The (y . yr) components of the Einstein’s equations impose the further conditions

_ 2 2
g (C _1)[n(7]lv[ zl)k _ Z]ﬁ - ro-pM—Z(n—l) _ a]/‘; - r—ﬂpM+2i| =q- |:(I’l —l)k _ UQ ro;aM—Z(n—l):| ) (53(1)
a

In order to obtain solutions we must require that egs. (5.3b) and (5.3c) imply consistent conditions for
h(r), and we must also impose eq. (5.3d). We find these conditions can be satisfied by making
appropriate choices for the parameters in the solutions. We identify three classes of possibilities
which now enumerate, giving interesting solutions for extended objects.

Class I. This class of solutions are defined for zero spatial curvature k = 0. The form of the metric in
this case is given by

rﬁpzla_ Ar? .\ an
P oMM - Bt la+l] aM2n—-M? -1+ B )’

h(r) =-2M (5.4)

and g(r) = h(r)r>#"'* The dilaton and gauge fields are given by
6(r)= MS(Inr), (5.5) and F™"" = Qe®StrLan .-'-N- gmin, (5 6

with the relevant values of the parameters. Let Bo”> >a(M>+1) and M<0. For A>0, the

solution is static everywhere and there are no horizons at all. There is a naked singularity at the origin
and the asymptotic infinity is null-like.

Class II. These solutions are defined for non zero spatial curvature k = -1, 1. The form of the metric
is given by

2 2
rﬁp la Z,Al"zﬁp la an

h(r)=-—2M"——— + :
" P 28oMIME 1+ Bp*la) aM*2n—-M? + Bp* -1

(5.7)

and g(r)=h(r)r>*"'% Let Bp’> >« and M<0. For A<0, and k = -1 the solutions are static
everywhere with a naked time-like singularity at the origin.

Class III. These solutions are defined only for positive spatial curvature k = 1. The metric is given by

rﬁpzla _ Ar2 .\ 0.77Q2r2,3p2/a’
P oM M 1= B’ la| 280M M -1+ Bp* el

h(r)=-2M (5.8)
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and g(r)=h(r)r*'% Let Bp’>a(M?+1) and M<0. For A>0, the solution is static
everywhere with a naked singularity at the origin.

5.2 On further equations having naked singularities solutions.[2]

We start from the differential equation

(1-y) (5.9

2

d-lny=c

Configurations with naked singularities can be solutions of this equation. An exact solution of this
equation can be obtained by asking that ¥ depends on some real combination of (z,z), for example

by x=z+7Z. In this case, it is simple to show that (5.9) can be reduced to a first order differential
equation

dx

2
(iln z//j - c(w—;lj +0?,(5.10)
W

where @ is a positive real constant. Eq. (5.10) can be reassembled in the following way

c Y d Y c’
o’ +—] —(— j =lc+—|. .11
(W e L e (5.11)
At this point, it is easy to show that the general solution for the equation (5.11) is given by

p =M+ Ne® + P, (5.12)
e

where the real numbers M, N, P are integration constants that satisfy the condition

N :—izzé(l—\/1+16MP). (5.13)

a

Since ¥ is real and positive, this implies that M,P >0.

The general supersymmetric solution above, eq. (5.12), can be seen to constitute the most general
axially symmetry solution that preserves supersymmetry, and maximal space-time symmetry in 4D.
The general solution depending on the variable x with the coordinates

2 17 27 —if
e’ =re"’, e =re’"”, (5.14)

depends only on the radial coordinate r, and, consequently, it is axially symmetric. In terms of these
coordinates, the solution is:

L
dsg =1,,dx"dx" +e*"" (di’z ""”zdez), p=y2e ", p=g,

" -y 2 _ '
F,=-8¢°¢ { '2”), A, =——Y 13,1, (5.15)
8 ry gy
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with the definitions and constraints:

2

~2 (1 \2 2 —gy~2
g8 1=y , W:L(M—Lzrupr“j, c=8°¢ "¢ % (/iT16MP -1). (5.16)
4 rly re o 8 2

B

The limit ¥ — 0, is obtained by properly sending M, ¢ and P to zero. The function ¢** can be

rewritten as

2
c
r ¥ —mM +—2r”’—Pr2“
w 2ce” 1 o

- Mng2 r2 1

1
(1))
P MPo* M

. (5.17)

The singularity structure can be read from the metric function e** given in formula (5.17). When the
hyperscalars are turned on, the solution has unavoidable, timelike singularities at the points at which
this function vanishes, or diverges. This occurs at the positive zeros of the function 1-y =0, where

the conformal factor ¢*® vanishes. These are located at

a 1J1+mwl+mﬂ]_1J c(\/Hinlj.(s.ls)
o

vy 1+—
2 2

£ p a’

2P

We have the presence of these singularities because the 6D potential and target-space metric, blow up
at these positions. The physical space-time lies in the coordinate range r  <r <r_. We now consider

the limit » — r_. The relevant part of the metric is
ds? = e® 0 (dr? +r%d6?), (5.19)

with e** given in eq. (5.17). Performing the coordinate transformation

= Jp g o e, (5.20)

o
L T

brings the metric (5.19), for p — 0 (thatis, r — r_), to the form
ds; =dp® +ypd8*, (5.21)

with y=4car” (r_“ - rf’). This implies that near r_ the metric does not have a conical singularity,
but a more serious one: a naked time-like singularity.

5.3 On some mathematical theorems concerning open sets applied to the naked singularities.[11]

If an open set is a set formed only from the internal points, without the points belonging to the
boundary, hence without consider the boundary, and a naked singularity is a singularity formed only
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from the internal parts, without events horizon and no bounded from a black hole, hence without the
boundary, then open sets and naked singularities can be related and the mathematical theorems
concerning the open sets (differential equations and boundary conditions) can be applied to the naked
singularities, obtaining new interesting mathematical considerations.

Let R™ an euclidean space of m dimensions (m > 2) of generic point xE(xl,xz,...,xm) ,
y= (yl,yz,..., ym),... . We denote with (y, p) the sphere of R™ with centre in y and radius p and
with IT'(y, p) the spherical hyper-surface boundary of I(y, p). Furthermore, we denote with X(x) an
measurable set of I'(x,1) and with |Z(x)| the measure m-1 dimensional of it. In relation to X(x) we
denote with S(x, p) the set of points of I(x,p) that are projected from x in X(x). If we have a

bounded and open set Q of R™, we’ll tell that Q is of type (S) if there are two positive numbers: @
and p (w< a)m_l) so that for each xe Q can be determined a set X(x) with |Z(x)| > @ hence

S(x, p) cQ.
Let C'(Q) the real functions space u(x) continuous with the partial first derivative in Q so that
ue L'(Q),Due L' (Q),(i =1,2,...,m) and we introduce the norm

e

l..m
lLa = ||u||L“(Q) + Z||Diu||L“(Q) . (5.22)

We denote with H"“(Q) the completion of C"“(Q) as regards the norm H|u|”1 L H Q) =H'(Q) is

a Hilbert’s space. Then, we denote with H é’” (Q) the sub-space of H"*(Q) formed from the close, in
H"(Q), of the functions of C'(Q) having contained support in Q; in H"*(Q)=H é (Q) the two

l..m
norms H|u|”1 and ||u|| = Z”D,u” are equivalents.
i

L'(Q)

Let V a closed manifold of H'(Q) so that H (Q)cV cH'(Q). Furthermore, let
a;(x),(i, j=12,..,m) real functions bounded and measurable in Q that satisfy the following

condition:
1..m 1..m 1..m
Y A<D a, (A SMY A (5.23)
i i i

A eR (=12...m;xe Qu>0} f,(x),... f, (x) m+l functions € L’ (Q) with p =2, while
c(x),b,(x),...,b,(x) are measurable and limited in Q with c(x) =20, (b, (x)| <M . Now, we put for

u,ve H'(Q):

1..m 1..m
a(u,v) = j{ a; (x)DuD ;v + ZbiDiuv + c(x)uv}dx (5.24), and
Q¥

i

(f.v)= j{lfﬁl),.w fov}dx. (5.25)

4
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One function u(x)e V that, for each ve V, satisfy the relation a(u,v) = < f ,v>, is denoted shortly

with u(x) = E(Q,V) . Hence, we have the following relation:

I{lm a; (x)DuD ;v + l.Zr:nbiDiuv + C(X)uv}dx = j{lfﬁl)iv + fo\/}dx . (5.26)
i i on

Q

We denote with H*,[H "] the values of k€ R' hence t, (w(x)) e V,[t, (u(x))e V] foreach ue V.

If u(x)eV, we denote with A™ (k),[A” (k)] the set of points x € Q where u(x) > k,[u(x)<k]. We
now denote with A(k) the sets A*(k) and A (k), and with H the sets H*" n(0,400) and
H™ N(=,0).

LEMMA 1.

If u(x)=E(Q,V), it is possible to determine two constants 7,A:y = y(i,M),A=A(u,M,Q) so
that, for each k€ H , we have:

l..m

j Z(Diu)zdeQ/j (u—k)zdx+Aj (i"f,?dx. (5.27)

A(k) i A(k) A(k) 1

LEMMA 2.
We suppose that Q is the type (S), fixed q with 1< g <2, it is possible to determine two positive

constants, deriving from Q and ¢g:77, and S so that for each function u(x)e H'(Q), and for each

ke R' hence
misA(k) <n , (with mis we denote the Lebesgue’s measure m-dimensional) we have:

[ e —k*dx<p | §H|Diu|qu{misA(k)}q/m. (5.28)
A(k) Atk E

PROPOSITION 1.

Let Q an open set of type (S), a;(x),[a; =a;],b;(x),c(x) are measurable and limited functions in
Q and (5.23) let satisfied, furthermore let 4uc(x) — Zbiz (x)z2v>0; f,eLl”(Q),(1=1,...,m) with

p>m.
If the function u(x)e H}(Q) satisfy the relation

l.m l..m l.m
j{ > 4y (x)DuD ;v + ZbiDiuv + c(x)uv}dx = Zj.fiDivdx , (5.29)
ij i rQ

Q

l.m
for any ve H,(Q), then we have the following increase: sup|u(x)| <C Z” fi
xeQ i

v with C deriving

only from Q and from the constants # and M of the (5.23).

PROPOSITION 2.
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Dirichlet’s Problem (with boundary conditions not homogeneous). In the similar hypotheses of
proposition 1 and if y is the trace of a function u having first derivatives in Q (in L”(Q)) with p >

m, we argue, for each function u(x)e H'(Q) having trace ¥ on 0 and that satisfy the relation
(5.29), the following increase:

1..m 1..m
suplu(0| <S5, + S0
Putting W =u —u , we have W € H(l) () and from (5.29):

. +m§ax|u|.

1..m 1..m
J.{z a;(x)DWD v + Zb[Din + c(x)Wv}dx =
Q i

i

_ 12':" j { f _1.2”% (x)D jﬁ}Divdx— j {Lfbi g—ﬁ+c(x)ﬁ}vdx, (5.30)
i Q i i X

J Q i
PROPOSITION 3.

Neumann’s Problem (with boundary conditions homogeneous). In the similar hypotheses on
Q, a; (x),[aij = aﬁ],c(x) formulated in the proposition 1, let g € L” with p >m and c(x) >v > 0. If

u(x)e H'(Q) satisfy the relation:
1..m
j Zaij (X)D;uD ;v + c(x)uv pdx = J.gvdx , (5.30b)
Ql i Q

for any ve H'(Q), we have the increase: su£)|u(x)| < A|| g
xeQ

r@’
PROPOSITION 4.

Dirichlet — Neumann’s mixed Problem. Let dQ =9,QUd,Q, and u e H, (Q) satisfy the relation:

1..m
I{Za[jDiuDjv+c(x)uv}dx = J.gvdx (5.31)
ij Q

Q

for each ve V, where V is the sub-space of the v of H'() and the trace on 9,Q : w is vanish.
Because H' =(0,400),H =(—,0), we have, as for proposition 1, the limitation

s%p|u(x)| < C”g”mg) '

LEMMA 3.

If u(x)e H'(Q) with Q of type (S), it is possible to determine two constants &, = J,(Q),d, = 5, (Q)
so that we have:

u(o| <6, |”(t1!_1 dr+6,[ S|Da——dr. (532
Q|x—t| Q i |X—t
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for almost all xe Q.

LEMMA 4.

If u(x)e H'(Q) with Q of type (S), for each q with 1< g <2 there is a constant 3, = 5,(q,Q) so
that we have:

(mis{E _o[u|> & > 0]) """ < ﬁ;{ [luco]dx+ | §|Diu|qu} . (5.33)
o & Q i

From this lemma, we obtain:
LEMMA 5.

In the similar hypotheses of lemma 4, and preserving the similar notations, there is the following
inequality:

J.|l/t|qu < ,51{_“u|qu+I§|D[u|qu}[mis§20]qlm , (5.34)
Q i

Q Q

where € denote the set of the points of  where u # 0 (QO =QNE Hu| > O])

Let Q be a bounded connected open set in the n-dimensional real Euclidean space R",Q its closure
and 0Q its boundary. We shall denote by V the subspace of H'(Q) consisting of all distributions
ue H'(Q) such that u = 0 on 9,Q. The space V provided with the norm induced from that of

H'(Q), being a closed subspace, becomes a Hilbert space. We shall assume that Q and 0,Q are
such that the following Poincare type inequality holds for all ue V: There exists a constant
C =C(Q,9,2) >0 such that ||, <C

Ul -
Assumption A. We require that there exist a constant g, >0 such that [z (x)] > U, forall xe Q.

Assumption A’. Q and 0,Q are the images under a bi-Lipschitz mapping of some Q' and 9,Q'
which satisfy the assumption A.
Let A be a bounded open set in R" and >0 be a constant. F(/f,A) denotes the family of all

subsets B of A such that the following inequality holds for all ue Cl(Z) vanishing on B
o, <8

assumption of admissibility described below.

u, where 1/¢g" =1/g—1/n for all 1< g <n. We shall require that Q satisfies a mild

q,A

Qly,
Assumption B. For all ye dQ we have  liminf | b '0)|

> 0. There exist a constant >0 and, for
=0 |(y, p)

all

y€ dQ,a p(y)>0 such that (1) forall ye 515 and 0< p<p(y), QNS(y,p)e F(B,Q(y,p));
(2) for all yed,Q and 0<p<p(y), every subset E of Q(y,p) such that |E|>1/2|Q(y, p)|
belongs to the family F(8,Q(y, p)).
We consider on Q a linear uniformly elliptic second order differential operator of the form
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Au = —i(a (X )g.) (5.35) where the coefficients a; are bounded measurable functions defined

satisfying m|§|2 <a, (068, SM|§2, for all £€ R” and ae. in Q, with some constant of

ellipticity

m > 0. We shall write a(u,v) = J.Qajk (u; (x)v, (x)dx (5.36).

Then it is clear that there exists a constant C > 0 such that |a(u,v)| < C||u||v||v

Vo for all u,veV, and
hence A maps V continuously into its dual space V’.

Letusset K={ueViu>y in Q }={ueV;u—w >0 in Q }. Itis clear that K is a closed convex
subset of V.
Let TeV' be given. We shall be concerned with the variational inequality

ue K;a(u,v—u) 2 <T,v — u> ,forall ve K (5.37), where <,> denotes the pairing between V and V.
When 9,Q is Lipschitz, the functionals of the form
(Tv)= [, (fov+ v )de+ || gvdo (5.38) . forall ve V.,

belong to V’ provided that

foe L(Q),r22n/n+2); f,€ I'(Q),p>2, forj=1,..n;
ge L'(d,Q),g=22(n—1)/n

where do denotes the (n-1)-dimensional volume element on d,<.
Let u be the solution of the variational inequality (5.37) and p 22. Let k, = max(maxg ¥,0). For
any real number k =k, let v =min(u, k) which is clearly in the convex set K. If A(k) denotes the set

{xe Q:u(x)> k} then, since v-u vanishes in Q — A(k), we obtain on substituting this v in the
variational inequality (5.37):

[, amuades] (fou=k)+ fugdx+[  gu-kydo (5.39.

(k)M2,Q

Assumption C. In the sense of distributions, Ay is a measure on  and dy/dv is a measure on
d,Q such that:
max(Ay — f,0)€ L"(Q), p > n/2;max(Qy/dv)—g,0) € L' (d,Q),g >n—1.

If the Assumption A (or A’), B and C are satisfied, then u is a solution of the variational inequality

ue Kia(u,v—u) > jgf(v—u)dx+ja _g(v—wdo forall ve K. (5.40)
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We have that ue K. If ve K, then v—u, €V for each m. Since the quasi-linear form b, (u,v),

corresponding to the function 6., is monotone and (hemi-) continuous it follows that

m

b;n(v,v—u;n) > b,'n(u;n,v—u'm) = a(u;n,v—u;n) —ng(l//,f)Q;n(u;n —lﬂ)(v—u;n)dx
=], 0 QW 826, Gt~y =, )do = | f=u,)d+ | g(v-u,)do. (541)

Since ve K implies that v—y >0 so that 8, (v—) =0, we have P(y, )8, (v—w)=0 in Q,
Qw,8)8, (v—w)=0 on 9,Q,and hence a(v,v—u,)=b, (v,v—u,) for ve K.
We thus obtain the inequality

a(v,v=u,)2 [ fv—u,)dx+ J-ang(v —u)do . (5.42)
Here since u, — u weakly in V, we can pass to the limits on both sides and we find that
a(v,v—u) = jﬂf(v —uw)dx+ ja ,&—udo, forall ve K. (5.43)

Now we give an interpretation of the boundary conditions formally imposed by the variational
inequality (5.43). We have show that the solutions u, (a subsequence of u,,) of the non-linear mixed

boundary value problems converge in V nC®*(Q) to the solution of the variational inequality
(5.43). Thus the variational inequality (5.43) can be formally described as follows:

Au—femax(Ay — £,000(u—-w) in Q ,
u=0o0nd,Q, du/dv—ge max((aw/av)—g,O)g(u—w) on 9,Q. (5.44)

We observe that if @ is an open subset of Q where u >y, then e ¥) =0 and so u is a solution
of the linear mixed boundary value problem

Au=f in wNQ (in the sense of distribution),
u=0on @Nad,Q,du/dv=g on ®Nad,Q. (545)

If 0,Q is of class C', then it admits a continuously varying tangent space at each of its points and a
continuous normal vector field v, oriented towards the interior of €. Then, for any

ue C'(Q) N D(A), we obtain by applying Green’s formula

j (Au)vdx = a(u,v) — ja ‘3—“vdo (5.46)
Q 22 Jy

where ‘3—“ =a, (x)v, (X)u,;. Thus we see that if ue C'(Q) N D(A), then
%

a(u,v) = jﬂ fudx + jm (Qu/dv)vdo , forall ve V. (5.47)
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Let V(0,Q)=V/V, (V, being the space of all functions v in V having its trace on 9,Q zero) be
provided with the quotient norm. There exists a unique element G(u) € [V (d,Q)]', the dual space of
V(9,Q), such that (G(u),v) =(Au,v)—a(u,v). By definition we set (du/dv)=G(u) on 9,Q. We
know that V(9,Q) < L°(9,Q) and the inclusion mapping is continuous so that every ge L*(9,Q)
defines a continuous linear functional on V(d,Q). Moreover, we can then write

<G(u),v> = .L ngdO' , (5.48) thatis (du/dv) =g on d,Q in a “generalized sense”.

These considerations lead us to the following formal interpretation of the boundary conditions.
1) If there exists an open subset E, of d,Q where u >y , then du/dv=g on E,.

2) If u=y and g—-0dwy/dv is a positive measure on a subset E, of 0,Q, then again
ou/dv=g on E,.
3) If u=y and Jdy/dv—g is a positive measure on a subset E, of d,Q then, since

0<6(t)<1,wehave g<ou/dv<0y/dv on E,.

The solution u of the variational inequality (5.43) can also be obtained by another approximation
procedure of potential theoretic nature.
Suppose u € K is the solution of the variational inequality (5.43). Let K, denote the cone of all

we V. which can be written in the form w =t (u-v) for some ve K and t> 0, and K , beits
closure in V. Then it is clear that

au, w) > jg fwdx + L _ewdo, forall we K,. (5.49)

We next observe that the positive cone {we Viw 2 Oinﬁ} is contained in K, and in particular,
(5.49) is satisfied. These considerations lead us to introduce the following definition:
A distribution we H'() is said to be a super solution with respect to V, A, f and g if

a(w, @) > J-Qfo+J-BZQg¢dG, forall pe C'(Q) with =0 on 9,Q and ¢ >0 in Q. (5.50)

We have the following Theorem: If u € K is the solution of the variational inequality (5.43) and
W denotes the set of all super-solutions with respect to V, A, f and g such that w>0 on 9,Q and
w2y in Q (5.51) then u = min{w;we W}.

Let we W be arbitrary and let v = min(u, w). Then ve K because of (5.51) and we shall show
that v = u. Substituting v in the variational inequality we get

a(u,v—u) = _[Qf(v—u)dx+ja Qg(v—u)dO'. (5.52)

Since w is a super solution and v—u e V with v—u <0 in Q, we have

alw,v—u) < _[Qf(v—u)dx+ja Qg(v—u)dO'. (5.53)
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We can write the left hand side as

a(w,v—u) =(J-( )+L : jaikka (v—u) dx where we have v—u=0 and v, =u_ on the set
u=w u>w N N

{xe Q;u(x) = w(x)} and v=w and v_=w_on the set {xe Q;u(x) > w(x)}. Hence the first
integral vanishes and we have

alv,v—u)=a(w,v—u) < jﬂf(v—u)dx+ja Qg(v—u)dO'. (5.54)

Let u, and ¥ be two functions belonging to H'(Q) such that ¥ <0 on 9,Q. Consider the
closed convex set K, in H'(Q) defined by K, ={ve H'(Q);v—u, € Vandy —u, > yinQ}. Then
all our results can be extended to the variational inequality

ue Kya@v—u)> [ [f,(v=u)+ f,(v- uxj]dx+j (v—u)do, forall ve K, . (5.55)

The variational inequality (5.55) formally corresponds to the mixed boundary value problem:

Aw = f, = (f;), in Q (in the sense of distributions)
w=u,on d,Q, ow/dv=g on d,Q. (5.56)

Examples of equations concerning open sets applied to equations whose solutions describing
naked singularities.

Now we take the following equation:
S :jdlox\/r[R——(8¢) m’ ‘“’/2} (5.57)

which is a special form of eq. (5.1) obtained by choosing o =1, f=1/2, A= %mz and in the

formula V(¢) = Ae™ | A =-5/2. Furthermore, we take the eq. (5.4). If Q= h(r), where h(r) is

equal to eq. (5.4), we know that for Bo> >a(M*+1) and M <0, A>0, there is a naked
singularity at the origin. Then, from the eqs. (5.30) or (5.31), we obtain the following relation:

j{li“naii (x)Dl.uDjv+c(x)uv}dx = jgvdx = J.jdlox\/r{R——(agb) m? Wz} (5.58)

From the eqgs. (5.46), (5.47) and (5.57) we obtain:

j (Au)vdx = a(u,v) — j [ jvda a(u,v) = j fudx + j [ jvda hence

J-Q(Au)vdx = jg fodx + LZQ [%jvda - LZQ [%jvda =



(Auyvdx=| fodx=| [d"x R——(a¢) m?e>'? |. (5.59)
[, = [, = [, fax ] |

We note that also these equations can be related with the Palumbo’s model. Indeed, we have the
following connections:

J.{Lzr:na[j(x)DiuDjv+c(x)uv}dx:Igvdx:J.J.dlox\/r{R__(am m? 5¢/2}:>
i Q Q

Q

26 up _vo 1 uv _
:>J-d X\/_|:_@_§g 8 Tr(GvapO')f(¢)_§g aywv¢:|_

w0 )1/2 —2¢{R+4a cpaﬂcp__‘H‘ __T 0F| )] (5.60) and
g

0 10

JQ<Au>vdx=wx=udwxﬂze--<a¢> e

= jd26x\/_[—%—gg”png"(GwGpg)f(¢)—5(§’”vaﬂ¢av¢}=

o

2
G)'2e® {R +49, 0" D —%\ng —%Trv (£, )} . (5.61)
10

0

Conclusions.

Our conviction is that the following theorems, as so for open sets, can be applied also to the naked
singularities. Principally the expressions concerning the boundary conditions for these equations
describing open sets, must be considered and applied to the equations whose solutions describing
naked singularities.
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