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https://www.theoremoftheday.org/NumberTheory/Ramanujan/TotDRamanujan.pdf 

 

 
 
https://en.wikipedia.org/wiki/Chaos_theory#/media/File:Lorenz_attractor_yb.svg 
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From: 
 
ℓ-ADIC PROPERTIES OF THE PARTITION FUNCTION 
AMANDA FOLSOM, ZACHARY A. KENT, AND KEN ONO 
(Appendix by Nick Ramsey) - Celebrating the life of A. O. L. Atkin 
 
Ramanujan's famous partition congruences modulo powers of 5; 7; and 11 imply that 
certain sequences of partition generating functions tend  ℓ-adically to 0. little is 
known about the ℓ-adic behaviour of these sequences for primes ℓ ≥13. Using the 
classical theory of “modular forms mod p", as developed by Serre in the 1970s, we 
show that these sequences are governed by “fractal" behavior. 
 

From: 

https://mathworld.wolfram.com/j-Function.html 

 

In 1979, Conway and Norton discovered an unexpected intimate connection between 
the monster group  and the j-function. The Fourier expansion of  is given by 

 

 

 

j-Function 
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The -function is the modular function defined by 

 

(1)

where  is the half-period ratio, , 

 

(2)

is Klein's absolute invariant,  is the elliptic lambda function 

 

(3)

 are Jacobi theta functions, 

 

(4)

is the nome, and . 

Gauss was apparently aware of the -function before 1800. Hermite used it in solving the quintic in about 1858. Dedekind gave a nice definition 

in about 1877, and Klein studied the function beginning in 1879 or 1880. The -function is related to the factors of the group order of the monster 
group and to supersingular primes (Ogg 1980). 

This function can also be specified in terms of the Weber functions , , , , and  as 

 

 

(5)

 

 

(6)

 

 

(7)

 

 

(8)

 

 

(9)

(Weber 1979, p. 179; Atkin and Morain 1993). 

The -function is an analytic function on the upper half-plane which is invariant with respect to the special linear group . It has 
a Fourier series 

 

(10)
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where 

 

(11)

 is therefore related  via 

 

(12)

The coefficients in the expansion of the -function satisfy: 

1.  for  and , 

2. all s are integers with fairly limited growth with respect to , and 

3.  is an algebraic number, sometimes a rational number, and sometimes even an integer at certain very special values of . 

The latter result is the end result of the massive and beautiful theory of complex multiplication and the first step of Kronecker's so-called 
"Jugendtraum." 

Therefore all of the coefficients in the Laurent series 

 

(13)

(OEIS A000521) are positive integers (Rankin 1977, Apostol 1997). Berwick (1916) calculated the first seven , Zuckerman (1939) found the 
first 24, and van Wijngaarden (193) gave the first 100. 

Some remarkable sum formulas involving  for , where  is the upper half-plane, and  include 

 

 

(14)

 

 

(15)

 

 

(16)

where  is an Eisenstein series,  is a q-Pochhammer symbol, and 

 

(17)

where  is the divisor function, and  is the tau function (not to be confused with the half-period ratio ). In addition, 



6 
 

 

(18)

(Lehmer 1942; Apostol 1997, p. 92). These are closely related to Eisenstein series. 

Equation (18) leads immediately to the remarkable congruence 

 

(19)

Lehmer (1942) showed that 

 

(20)

for all , and Lehner (1949ab) and Apostol (1997, pp. 22, 74, and 90-91) demonstrated that 

 

(21)

 

(22)

 

(23)

 

(24)

 

(25)

More generally, 

(26)

(27)

(28)

(29)

(Lehner 1949ab; Apostol 1997, p. 91). Congruences of this type cannot exist for 13, but Newman (1958) showed 

 

(30)

where  and  if  is not an integer (Apostol 1997, p. 91). Congruences for  have been generalized by 
Atkin and O'Brien (1967). 
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An asymptotic formula for  was discovered by Petersson (1932), and subsequently independently rediscovered by Rademacher (1938): 

 

(31)

Let  be a squarefree positive integer, and define the half-period ratio by 

 

(32)

so 

 

(33)

It then turns out that  is an algebraic integer of degree , where  is the class number of the binary quadratic form 

discriminant  of the quadratic field  (Silverman 1986; Berndt 1994, p. 90). 

 

If , then  is an algebraic integer of degree 1, i.e., just a plain integer. Furthermore, the integer is a perfect cube. But these are 

precisely the Heegner numbers , , , , , , , , . The exact values of  corresponding to 
the Heegner numbers are 

 

 

(34)

 

 

(35)

 

 

(36)

 

 

(37)

 

 

(38)
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(39)

 

 

(40)

 

 

(41)

 

 

(42)

The positions of these special values of  are illustrated above. (Note the curious though not particularly significant fact that number 5280 is also 
the number of feet in a mile.) 

The greater (in absolute value) the Heegner number , the closer to an integer is the expression , since the initial term in  is the 

largest and subsequent terms are the smallest. The best approximations with  are therefore 

 

 

 

(43)

 

 

 

(44)

 

 

 

(45)

(the latter of which appears in Trott 2004, p. 8). The almost  integer generated by the last of these 

,  (corresponding to the field  and the imaginary quadratic field of maximal discriminant), is sometimes known as 

the Ramanujan constant. However, this attribution is historically fallacious since this amazing property of  was first noted by Hermite 
(1859) and does not seem to appear in any of the works of Ramanujan. 

There are 18 numbers having class number , with the odd discriminants not divisible by three corresponding to the exact values 

 

 

(46)

 

 

(47)

 

 

(48)

 

 

(49)

 

 

(50)

 

 

(51)

 

 

(52)

and even  for , 10, 13, 22, 37, 58, 

 

 

(53)

 

 

(54)
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(55)

 

 

(56)

 

 

(57)

 

 

(58)

and discriminants divisible by 3, 

 

 

(59)

 

 

(60)

 

 

(61)

 

 

(62)

 

 

(63)

with the square factor being a fundamental unit. 

The best approximations for  are, for even discriminants, 

 

(64)

and for odd discriminants, 

 

(65)

The numbers 

 

 

(66)

 

 

(67)

 

 

(68)

are also almost integers. These correspond to binary quadratic forms with discriminants , , and , which are the largest (in 
absolute value) discriminants with class number two that are divisible by 4. They were noted by Ramanujan (Berndt 1994, pp. 88-91). 

SEE ALSO:Almost Integer, Heegner Number, Imaginary Quadratic Field, Klein's Absolute Invariant, Monster Group, Ramanujan 
Constant, Supersingular Prime, Weber Functions 

Portions of this entry contributed by Tito Piezas III 
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From: 
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12 
 

 

 

 

From: 

Asymptotic formulæ in combinatory analysis – Srinivasa Ramanujan 
Proceedings of the London Mathematical Society, 2, XVII, 1918, 75-115 

From: 

(1.54) 

 

For x = 24, we obtain: 

((24^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/24)) * [exp(Pi^2/(6 ln(1/24)))-1] 
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Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

Polar coordinates: 

 

0.328043 

 
Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 
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Integral representations: 

 

 

 
 
For x = 240 
 
((240^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/240)) * [exp(Pi^2/(6 ln(1/240)))-1] 
 
Input: 
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Exact result: 

 

Decimal approximation: 

 

Polar coordinates: 

 

0.30428 

 
Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 
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Integral representations: 

 

 

 
 
For x = 504 
 
((504^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/504)) * [exp(Pi^2/(6 ln(1/504)))-1] 
 
Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

Polar coordinates: 

 

0.299596 
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Alternate forms: 

 

 

 

 
Alternative representations: 

 

 

 
Series representations: 
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Integral representations: 
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For x = 1728 
 
((1728^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/1728)) * [exp(Pi^2/(6 ln(1/1728)))-1] 
 
Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

Polar coordinates: 

 

0.294243 result very near to the following Ramanujan continued fraction: 

https://sites.google.com/site/marelv83/fisica-moderna/serie-infinite-per-p (in Italian) 

 

 
Alternate forms: 
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Alternative representations: 

 

 

 
Series representations: 
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Integral representations: 

 



24 
 

 

 
 
 
From 
 

 
 
we obtain, for x = 744: 
 
((744^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/744)) * [exp(Pi^2/(6 ln(1/744)))-1] 
 
Input: 

 

 

 
Exact result: 

 

Decimal approximation: 

 

Polar coordinates: 

 

0.297603 
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Alternate forms: 

 

 

 

 
Alternative representations: 

 

 

 
Series representations: 
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Integral representations: 
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for x = 196884 
 
((196884^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/196884)) * [exp(Pi^2/(6 ln(1/196884)))-1] 
 
Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

Polar coordinates: 

 

0.292193 result very near to the following Ramanujan continued fraction: 

https://sites.google.com/site/marelv83/fisica-moderna/serie-infinite-per-p (in Italian) 
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Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 
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Integral representations: 

 

 

 
 
for x = 21493760 
 
((21493760^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/21493760)) * [exp(Pi^2/(6 
ln(1/21493760)))-1] 
 
Input: 

 

 

Exact result: 

 

Decimal approximation: 
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Polar coordinates: 

 

0.307509 

 
Alternate forms: 

 

 

 

 
Alternative representations: 
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for x = 864299970 
 
((864299970^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/864299970)) * [exp(Pi^2/(6 
ln(1/864299970)))-1] 
 
Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

 

Polar coordinates: 

 

0.327704 

 
Alternate forms: 
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Alternative representations: 

 

 

 
 
Series representations: 
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For x = 20245856256 
 
((20245856256^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/20245856256)) * [exp(Pi^2/(6 
ln(1/20245856256)))-1] 
 
Input: 
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Exact result: 

 

Decimal approximation: 

 

Polar coordinates: 

 

0.349836 

 
Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 

 

 



37 
 

 

 
Integral representations: 
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For x = 333202640600 
 
((333202640600^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/333202640600)) * [exp(Pi^2/(6 
ln(1/333202640600)))-1] 
 
Input: 

 

 

 
Exact result: 

 

Decimal approximation: 

 

Polar coordinates: 

 

0.373158 

 
Alternate forms: 
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Alternative representations: 

 

 



40 
 

 
Series representations: 
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Integral representations: 
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Now, we have that: 
 
 
x = 24     0.328043                      
 
x = 240   0.30428 
 
x = 504   0.299596 
 
x = 1728  0.294243        Arithmetic mean = 0.3065405 
 
 
 
x = 744    0.297603 
 
x = 196884    0.292193 
 
x = 21493760   0.307509 
 
x = 864299970    0.327704     Aritmetic mean = 0.30625225 
 
x = 20245856256   0.349836 
 
x = 333202640600   0.373158     
 
 
Total arithmetic mean = 0.3174165 
 
 
Minimal value = 0.292193 ;    Maximal value = 0.373158 ;    Mean = 0.3326755    
 
 
We note that obtain also: 
 
2*1/(0.328043  +   0.30428  +   0.299596  +  0.294243 + 0.297603 +   0.292193  + 
0.307509  +   0.327704   + 0.349836  +  0.373158) 
 
Input interpretation: 
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Result: 

 

0.630086967… result very near to the Hausdorff dimension of Cantor set that is 
equal to 0.6309 

 

And: 

(0.328043  +   0.30428  +   0.299596  +  0.294243 + 0.297603 +   0.292193  + 
0.307509  +   0.327704   + 0.349836  +  0.373158)^1/(2Pi) 

Input interpretation: 

 

Result: 

 

1.20181….result very near to the Hausdorff dimension of Fibonacci word fractal 60° 
that is equal to 1.2083 

 
Alternative representations: 
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Series representations: 
 

 

 

 

 
Integral representations: 
 

 

 

 

 

 

Now, we perform the following calculations: 

 

(0.328043  +   0.30428  +   0.299596  +  0.294243 + 0.297603 +   0.292193  + 
0.307509  +   0.327704   + 0.349836  +  0.373158)^1/6 
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Input interpretation: 

 

 
Result: 

 

1.212286…. result very near to the Hausdorff dimension of Boundary of the tame 
twindragon, that is equal to 1.2108 

 

And: 

 

2^(1/sqrt2)(0.328043  +   0.30428  +   0.299596  +  0.294243 + 0.297603 +   
0.292193  + 0.307509  +   0.327704   + 0.349836  +  0.373158)^1/13 

where √2^√2 = 2^(1/√2) is the square root of Gelfond - Schneider constant 

Input interpretation: 

 

 
Result: 

 

1.784215..... result very near to the Hausdorff dimension of Von Koch curve 85° that 
is equal to 1.7848 

Now, we show the plots regarding the results that we have obtained. 
 
 
plot(0.292193,  0.294243,   0.297603,  0.299596,  0.30428,  0.307509,   0.327704,   
0.328043,   0.349836,   0.373158) 
 
Input interpretation: 
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Plot: 

 

 
 
 
plot(0.328043, 0.30428, 0.299596, 0.294243, 0.297603,  0.292193, 0.307509,   
0.327704, 0.349836, 0.373158) 
 
Input interpretation: 

 

 
Plot: 
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Now, we have that: 
 
(24  +  240  + 504  + 1728  + 744  + 196884  + 21493760  + 864299970  + 
20245856256  + 333202640600)/10 
 
Input: 

 

 
Result: 

 

35433449071 
 
From which, for the principal formula, we obtain: 
 
((35433449071^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/35433449071)) * [exp(Pi^2/(6 
ln(1/35433449071)))-1] 
 
Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

Polar coordinates: 

 

0.35422 
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Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 

 

 



50 
 

 

 
Integral representations: 
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From which: 
 
5*((35433449071^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/35433449071)) * [exp(Pi^2/(6 
ln(1/35433449071)))-1] 
 
Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

Polar coordinates: 

 

1.7711 

 
Alternate forms: 
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Alternative representations: 

 

 

 
 
 
 
Ln(7) / ln(3) 
 
Input: 

 

 

Decimal approximation: 

 

1.7712437491…  
 
The above result is equal to  hexaflake, that is a fractal constructed 
by iteratively exchanging hexagons by a flake of seven hexagons. The Hausdorff 
dimension of the hexaflake is equal to ln(7)/ln(3), approximately 1.7712. It may also 
be constructed by projecting the Cantor cube onto the plane orthogonal to its main 
diagonal. 
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Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

 
Integral representations: 
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We have also: 
 
-2.3219*2*((35433449071^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/35433449071)) * 
[exp(Pi^2/(6 ln(1/35433449071)))-1] 
 
where 2.3219 is the Hausdorff dimension of fractal Pyramid, that is equal to ln (5) / 
ln (2) 
 
Input interpretation: 

 

 

Result: 

 

Polar coordinates: 

 

1.64493 

 
Alternative representations: 
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Series representations: 
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Integral representation: 

 

Or: 

-ln(5)/ln(2)*2*((35433449071^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/35433449071)) * 
[exp(Pi^2/(6 ln(1/35433449071)))-1] 

Input: 
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Exact result: 

 

Decimal approximation: 

 

Polar coordinates: 

 

1.64495 

 
Alternate forms: 
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Alternative representations: 

 

 

 
Series representations: 
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60 
 

 



61 
 

 

 
Integral representations: 
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And: 

-ln(5)/ln(2)*2*((35433449071^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/35433449071)) * 
[exp(Pi^2/(6 ln(1/35433449071)))-1] - (29-2)i1/10^3 

Input: 

 

 

 

Exact result: 

 

Decimal approximation: 

 

1.6179488735009…. 
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Polar coordinates: 

 

1.61795 

 
Alternate forms: 

 

 

 

Expanded form: 
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Alternative representations: 

 

 

 

 

 

 

Now, we have for: 

x = 24      
 
x = 240    
 
x = 504    
 
x = 1728   
 
 
 
x = 744     
 
x = 196884    
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x = 21493760   
 
x = 864299970     
 
x = 20245856256    
 
x = 333202640600    
 
From: 
 

 
     
For x = 24, we obtain 
 
(((1-24)^1.5))/(2Pi)  exp(((Pi^2)/(6(1-24)))) 
 

Input: 

 

Result: 

 

Polar coordinates: 

 

40.9677 

 

Series representations: 

 

 



 

 

 (((1-240)^1.5))/sqrt(2Pi)  exp(((Pi^2)/(6(1

Input: 

 

Result: 

 

Polar coordinates: 

1463.92 

Series representations: 

66 

 

240)^1.5))/sqrt(2Pi)  exp(((Pi^2)/(6(1-240)))) 

 

 

 

 

 

 

 

 



 

 

(((1-504)^1.5))/sqrt(2Pi)  exp(((Pi^2)/(6(1

Input: 

 

Result: 

 

Polar coordinates: 

4485.42 

 

Series representations: 

67 

504)^1.5))/sqrt(2Pi)  exp(((Pi^2)/(6(1-504)))) 

 

 

 

 

 

 

 

 

 



 

 

(((1-1728)^1.5))/sqrt(2Pi)  exp(((Pi^2)/(6(1

Input: 

 

Result: 

 

Polar coordinates: 

28604.5 

 

Series representations: 
 

 

68 

1728)^1.5))/sqrt(2Pi)  exp(((Pi^2)/(6(1-1728)))) 
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With regard the plot, we have: 

plot (40.9677 , 1463.92,  4485.82,  28604.5) 

Input interpretation: 

 

 
Plot: 

 

Download Page 

 

From the results, we obtain: 

(40.9677+1463.92 +4485.82+ 28604.5)^1/21 

Input interpretation: 

 

 
Result: 

 

1.644916… 

and: 

(40.9677+1463.92 +4485.82+ 28604.5)^1/21-(29-2)1/10^3 

Input interpretation: 
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Result: 

 

1.617915588372…. 

 

We have also: 

(24  +  240  + 504  + 1728)/4   

Input: 

 

Result: 

 

624 

From the above expression, we obtain: 

(((1-624)^1.5))/sqrt(2Pi)  exp(((Pi^2)/(6(1-624)))) 

Input: 

 

Result: 

 

Polar coordinates: 

 

6187.22 
 

Series representations: 
 

 



 

 

 

From which: 

(((1-624)^1.5))/sqrt(2Pi)  exp(((Pi^2)/(6(1

Input: 

 
Result: 

 

Polar coordinates: 

6276.22  result practically eq
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624)^1.5))/sqrt(2Pi)  exp(((Pi^2)/(6(1-624))))-89i 

 

 

qual to the rest mass of Charmed B me

 

 

 

 

 

eson 6276 
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Series representations: 

 

 

 

 

 

[(((1-624)^1.5))/sqrt(2Pi)  exp(((Pi^2)/(6(1-624))))]^1/18 - 7/10^3 

Input: 

 

Result: 

 

Polar coordinates: 

 

1.6172 

 

 

 

 

 



 

Series representations: 
 

 

From the previous analyzed 
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 expression: 
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for x = 480,  264  and 66211 , we obtain: 

((480^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/480)) * [exp(Pi^2/(6 ln(1/480)))-1] 
 
Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

Polar coordinates: 

 

0.299867 

 
Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 
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Integral representations: 

 

 

 
 
((264^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/264)) * [exp(Pi^2/(6 ln(1/264)))-1] 
 
Input: 
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Exact result: 

 

Decimal approximation: 

 

Polar coordinates: 

 

0.303608 

 
Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 
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Integral representations: 

 

 

 
 
((66211^1/24 / (sqrt(2Pi)))) * sqrt(ln(1/66211)) * [exp(Pi^2/(6 ln(1/66211)))-1] 
 
Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

Polar coordinates: 

 

0.290721 result very near to the following Ramanujan continued fraction: 
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https://sites.google.com/site/marelv83/fisica-moderna/serie-infinite-per-p (in Italian) 

 

 

 

Alternate forms: 

 

 

 

 
Alternative representations: 

 

 



81 
 

 
Series representations: 
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Integral representations: 

 

 

 
 
From the three results, we obtain: 
 
(1.2683+0.538) (0.290721 + 0.299867 + 0.303608) 
 
where 1.2683 and 0.538 are Hausdorff dimensions of  Julia set z2-1 and Feigenbaum 
attractor respectively  
 
Input interpretation: 

 

Result: 

 

1.6151862348 
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Observations  

 

 
From: 
https://www.scientificamerican.com/article/mathematics-
ramanujan/?fbclid=IwAR2caRXrn_RpOSvJ1QxWsVLBcJ6KVgd_Af_hrmDYBNyU8mpSjRs1BDeremA 

 
Ramanujan's statement concerned the deceptively simple concept of partitions—the 
different ways in which a whole number can be subdivided into smaller numbers. 
Ramanujan's original statement, in fact, stemmed from the observation of patterns, 
such as the fact that p(9) = 30, p(9 + 5) = 135, p(9 + 10) = 490, p(9 + 15) = 1,575 
and so on are all divisible by 5. Note that here the n's come at intervals of five units. 
 
Ramanujan posited that this pattern should go on forever, and that similar patterns 
exist when 5 is replaced by 7 or 11—there are infinite sequences of p(n) that are all 
divisible by 7 or 11, or, as mathematicians say, in which the "moduli" are 7 or 11. 
 
Then, in nearly oracular tone Ramanujan went on: "There appear to be 
corresponding properties," he wrote in his 1919 paper, "in which the moduli are 
powers of 5, 7 or 11...and no simple properties for any moduli involving primes other 
than these three." (Primes are whole numbers that are only divisible by themselves or 
by 1.) Thus, for instance, there should be formulas for an infinity of n's separated by 
5^3 = 125 units, saying that the corresponding p(n)'s should all be divisible by 125. 
In the past methods developed to understand partitions have later been applied to 
physics problems such as the theory of the strong nuclear force or the entropy of 
black holes. 
 
Note that: 
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Thence: 

 

And 

 

That are connected with 64, 128, 256, 512, 1024 and 4096 = 642 

 
(Modular equations and approximations to π - S. Ramanujan - Quarterly Journal of 
Mathematics, XLV, 1914, 350 – 372) 
 
 
All the results of the most important connections are signed in blue throughout the 
drafting of the paper. We highlight as in the development of the various equations we 
use always the constants π, ϕ, 1/ϕ, the Fibonacci and Lucas numbers, linked to the 
golden ratio, that play a fundamental role in the development, and therefore, in the 
final results of the analyzed expressions. 
 
In mathematics, the Fibonacci numbers, commonly denoted Fn, form a sequence, called 
the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 
0 and 1. Fibonacci numbers are strongly related to the golden ratio: Binet's formula expresses 
the nth Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two 
consecutive Fibonacci numbers tends to the golden ratio as n increases. 
Fibonacci numbers are also closely related to Lucas numbers ,in that the Fibonacci and Lucas 
numbers form a complementary pair of Lucas sequences  

The beginning of the sequence is thus: 

 
 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 
17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 

3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155...  

 

The Lucas numbers or Lucas series are an integer sequence named after the 
mathematician François Édouard Anatole Lucas (1842–91), who studied both that sequence and 
the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form 
complementary instances of Lucas sequences. 

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each 
term is the sum of the two previous terms, but with different starting values. This produces a 
sequence where the ratios of successive terms approach the golden ratio, and in fact the terms 
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themselves are roundings of integer powers of the golden ratio.[1] The sequence also has a variety 
of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers 
two terms apart in the Fibonacci sequence results in the Lucas number in between. 

The sequence of Lucas numbers is: 

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 
24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 
4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803…… 

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the 
Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all 
Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to 
the golden ratio. 

 

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are: 

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ... 
(sequence A005479 in the OEIS). 

 
In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden 
ratio.[1] That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every 
quarter turn it makes. Approximate logarithmic spirals can occur in nature, for example the arms 
of spiral galaxies[3] - golden spirals are one special case of these logarithmic spirals 

From Wikipedia 

The Rössler attractor is the attractor for the Rössler system, a system of three non-
linear ordinary differential equations originally studied by Otto Rössler. These 
differential equations define a continuous-time dynamical system that exhibits  
chaotic dynamics associated with the fractal properties of the attractor.  

The Lorenz attractor was the first example of a low-dimensional differential 
equations system capable of generating chaotic behavior.(fractal) 

In conclusion we obtain also many results that are very good approximations to the 
value of the golden ratio 1.618033988749..., that is also a Hausdorff dimension and 

to ζ(2) = 
గమ

଺
= 1.644934… 
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