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Abstract: 
 

The Riemann Zeta function or Euler–Riemann Zeta function, ζ(s), is a function of a complex 
variable z that analytically continues the sum of the Dirichlet series: 
 
[1]    𝜁(𝑧) = ∑ 𝑘−𝑧∞

𝑘=1  

The Riemann zeta function is a meromorphic function on the whole complex z-plane, which is 
holomorphic everywhere except for a simple pole at z = 1 with residue 1. One of the most 
important advance in the study of Prime numbers was the paper by Bernhard Riemann in 
November 1859 called “Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse” (On 
the number of primes less than a given quantity). In this paper, Riemann gave a formula for 
the number of primes less than x in terms the integral of 1/log(x), and also provided insights 
into the roots (zeros) of the zeta function, formulating a conjecture about the location of the 
zeros of 𝜁(𝑧) in the critical line Re(z)=1/2. 
 
[2] Riemann Hypothesis: All nontrivial zeros lie on the critical line, or Re(z) = 1/2. 
 
In this paper, we use the decomposition of the Riemann Zeta function in the form: 
 

 
[3] ζ(z) = X(z) - Y(z) 
 

 
To prove the Riemann Hypothesis.  
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Nomenclature and conventions 
 

a. ζ(z)= ∑ 𝑘−𝑧∞
𝑘=1  is the Zeta function of Riemann 

b. z*: any nontrivial solution of the Zeta function verifying that ζ(z*)=0. By default, a reference to zero of 
ζ(z) will mean a nontrivial zero of ζ(z). 

c. ß(n) is the nth zero of the Riemann function in the critical line x=1/2 in C . e.g. b1=14.134725… 

d. α=Re(z) is the real part of z  

e. ß=Im(z) is the imaginary part of z 

f. If z=α+iß, Modulus(z)= |z| = √(α2+ß2) 

g. If z=α+iß, Absolute Square(z)= |z|2 = α2+ß2 

  



  

 

3 | Page   Proof of Riemann Hypothesis using the decomposition of ζ(z) = X(z) - Y(z) - Pedro Caceres 

 

1. A decomposition of ζ(𝑧) for Re(z)>0, z≠1 

 
From (2, Caceres 2020), one can write ζ(𝑧) as the difference between the functions X(z) and Y(z): 

 
[3]  ζ(z) = X(z) - Y(z), where: 
 
 

[4]  X(z,n) = (∑ 𝑘−𝛼 (cos (ß ∗ ln(𝑘)𝑛
𝑘=1 ) +

1

2
 𝑛−𝛼cos (ß ln(𝑛)) + 

   + 𝑖 ∗ (∑ 𝑘−𝛼 (sin (ß ∗ ln(𝑘))𝑛
𝑘=1 +

1

2
 𝑛−𝛼 sin (ß ln(𝑛))) 

 
and: X(z) = lim

𝑛→∞
𝑋(𝑧, 𝑛) 

 

[5]  Y(z, n) =  n
(1−α) 

 
1

[(1−α)2+ß2]  [((1 − α) ∗ cos(ß ln(n)) + ß ∗ sin(ß ln(n))) + 

+ i  (ß ∗ cos(ß ln(n)) − (1 − α) ∗ sin(ß ln(n)))] 
 
 

 and:  Y(z) = lim
𝑛→∞

𝑌(𝑧, 𝑛) 

 
2. Analysis of Absolute Square |𝑌(𝑧, 𝑛)|2  

 

[6] |𝑌(𝑧, 𝑛)|2 =  [( 𝑛
(1−𝛼)  

1

[(1−𝛼)2+ß2]  [(1 − 𝛼) ∗ 𝑐𝑜𝑠(ß ∗ 𝑙𝑛(𝑛)) + ß ∗ 𝑠𝑖𝑛(ß ∗ 𝑙𝑛(𝑛))])2  

 +  (𝑛
(1−𝛼)  

1

[(1 − 𝛼)2 + ß2]
 [ß ∗ 𝑐𝑜𝑠(ß ∗ 𝑙𝑛(𝑛)) − (1 − 𝛼) ∗ 𝑠𝑖𝑛(ß ∗ 𝑙𝑛(𝑛))])2] 

 

[7] |𝑌(𝑧, 𝑛)|2  =  𝑛2(1−𝛼) ∗ 
1

[ß2+(1−𝛼)2]
 

 
 

 
Figure 1: |𝑌(𝑧, 𝑛)|2has a polynomial representation 
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2.1 |𝑌(𝑧, 𝑛)|2 is a straight line if and only if 𝛼 =
1

2
 

 
The slope of |𝑌(𝑧, 𝑛)|2  with respect to n is given by: 
 

[8]  𝑠𝑙𝑜𝑝𝑒(|𝑌(𝑧, 𝑛)|2)  = 𝑑(|𝑌(𝑧, 𝑛)|2)/𝑑𝑛 
 
Which equals to: 
 

[9] 𝑠𝑙𝑜𝑝𝑒(|𝑌(𝑧, 𝑛)|2) =  2(1 − 𝛼) 𝑛1−2𝛼 ∗  
1

[ß2+(1−𝛼)2]
  

 
|𝑦(𝑧)|2  can only be a line when the slope is constant, which can only happen if and only if:  

 
(1 − 2α) = 0 

 
therefore:  

 

 |𝑌(𝑧, 𝑛)|2 is a straight line if and only if 𝛼 =
1

2
  

 
 

2.2 Summary for |𝑌(𝑧, 𝑛)|2  for 𝛼 =
1

2
: 

 

 the slope |𝑌(𝑧, 𝑛)|2 is constant if and only if 𝛼 =
1

2
   

 

 The slope for |𝑌(𝑧, 𝑛)|2  is  
1

[ß2+
1

4
]
 

 

 When α=1/2, |𝑌(𝑧, 𝑛)|2  = 
𝑛

[ß2+
1

4
]
   

 

3. Analysis of Absolute Square |𝑋(𝑧, 𝑛)|2  

 

[10] |𝑋(𝑧, 𝑛)|2  =  (
1

2
𝑛−𝑎 cos(ß ln(𝑛)) + ∑ 𝑘−𝛼 𝑐𝑜𝑠(ß 𝑙𝑛(𝑛))2 +  

(
1

2
𝑛−𝑎sin (ß ln(𝑛)) + ∑ 𝑘−𝛼 𝑠𝑖𝑛(ß 𝑙𝑛(𝑛))2 

 

[11] |𝑋(𝑧, 𝑛)|2  =
1

4
𝑛−2𝑎(cos2(ß ln(𝑛)) + sin2(ß ln(𝑛))) + 

∑ 𝑘−𝛼 𝑐𝑜𝑠(ß 𝑙𝑛(𝑛))2 + ∑ 𝑘−𝛼 𝑠𝑖𝑛(ß 𝑙𝑛(𝑛))2 + 

     𝑛−𝑎[cos (ß ln(𝑛)) ∗ ∑ 𝑘−𝛼 𝑐𝑜𝑠(ß 𝑙𝑛(𝑘))] + 

𝑛−𝑎[sin (ß ln(𝑛)) ∗ ∑ 𝑘−𝛼 𝑠𝑖𝑛(ß 𝑙𝑛(𝑘))] = 

 
 

[12] |𝑋(𝑧, 𝑛)|2  =
1

4
𝑛−2𝑎 + ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (

𝑘

𝑗
))𝑛

1
𝑛
𝑘=1 + 

   𝑛−𝑎[cos (ß ln(𝑛)) ∗ ∑ 𝑘−𝛼 𝑐𝑜𝑠(ß 𝑙𝑛(𝑘))] + 𝑛−𝑎[sin (ß ln(𝑛)) ∗ ∑ 𝑘−𝛼 𝑠𝑖𝑛(ß 𝑙𝑛(𝑘))] 
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[13] |𝑋(𝑧, 𝑛)|2  =
1

4
𝑛−2𝑎 + ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (

𝑘

𝑗
))𝑛

1
𝑛
𝑘=1 + 

   𝑛−𝑎 ∗ ∑ 𝑘−𝛼 [𝑐𝑜𝑠 (ß 𝑙𝑛 (
𝑘

𝑛
) + cos(ß ∗ ln(𝑘𝑛)))] + 

   𝑛−𝑎 ∗ ∑ 𝑘−𝛼 [𝑐𝑜𝑠 (ß 𝑙𝑛 (
𝑘

𝑛
) − cos (ß ∗ ln(𝑘𝑛)))) = 

 

[14] |𝑋(𝑧, 𝑛)|2  =
1

4
𝑛−2𝑎 + ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (

𝑘

𝑗
))𝑛

1
𝑛
𝑘=1  

+2 𝑛−𝑎 ∗ ∑ 𝑘−𝛼cos (ß ∗ ln (
𝑘

𝑛
)) 

   
    
 

 When |𝑋(𝑧, 𝑛)|2 is represented graphically, one can observe that: 
 
 

- |𝑋(𝑧, 𝑛)|2 is a wave that converges when n → ∞ and α>1 (Fig. 2) 

- |𝑋(𝑧, 𝑛)|2 is a wave that does not converge when n → ∞ and α<1 (Fig. 3) 

- |𝑋(𝑧, 𝑛)|2 is a wave that collapses to a line when n → ∞ and α=1/2 and ß=Im( 𝜁(𝑧∗)) (Fig. 4) 

-  

 
 

Figure 2: |𝑋(𝑧, 𝑛)|2 for α>1 
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Figure 3: |𝑋(𝑧, 𝑛)|2for α<1 

 

 
Figure 4: For a=0.5, b=b1, |𝑋(𝑧, 𝑛)|2collapses to a line 
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3.1. |𝑋(𝑧, 𝑛)|2 converges when 𝑛 → ∞ and α>1 to |𝜁(𝛼, ß)|2 

 

The limit of |𝑋(𝑧, 𝑛)|2outside the critical strip [0,1] can be calculated from [4]: 
 

[15] 𝑙𝑖𝑚
𝑛→∞

|𝑋(𝑧, 𝑛)|2   = ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (
𝑘

𝑗
))𝑛

𝑗=1
𝑛
𝑘=1  

 
As one can see in some examples in the following table where z=α+iß: 
 

 α ß  lim
𝑛→∞

|𝑋(𝑧, 𝑛)|2      |𝜁(𝛼, ß)|2 

  1.0 7  1.074711506185445  1.074756 
  1.0 10  1.4413521753699579  1.441430 
  2.5 7  1.0093487944300192  1.009349  

2.5 10  1.0507402208589398  1.050740 
_______________________________________________________________________________ 

Table 1 
 

[16] 𝑙𝑖𝑚
𝑛→∞

|𝑋(𝑧, 𝑛)|2 =  |𝜁(𝑧)|2 = 𝜁(𝛼 + ß𝑖) ∗ 𝜁(𝛼 − ß𝑖)   𝑓𝑜𝑟 𝛼 > 1 

 
 

And also, in the following figure 5: 
 

|X(z,n)|2 with α and ß variable 

 
Figure 5. |𝑋(𝑧, 𝑛)|2 converges when 𝑛 → ∞ and α>1 

 
One can observe that the graphs for α=1 do not converge while graphs for α>1 they all converge. 
This observation can be used to prove that there are no zero values of ζ(z) for z with Re(z)=α>1. 
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3.2. |𝑋(𝑧, 𝑛)|2 diverges when 𝑛 → ∞ for α≤1 

 

|𝑋(𝑧, 𝑛)|2diverges when 𝑛 → ∞ for α<1 because: 
 

[17] |cos (ß (ln (
𝑘

𝑗
)) | < 1 

 
And:  
 
[18] ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼𝑛

𝑗≠𝑘
𝑛
𝑘=1  𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑠 𝑓𝑜𝑟 𝛼 < 1 

 
Therefore: 
 

[19] 𝑙𝑖𝑚
𝑛→∞

|𝑋(𝑧, 𝑛)|2   = ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (
𝑘

𝑗
))𝑛

𝑗=1
𝑛
𝑘=1  𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑠 𝑓𝑜𝑟 𝛼 < 1 

 
 
 

3.3. |𝑋(𝑧, 𝑛)|2 does not collapse to any polynomial function |𝑋(𝑧, 𝑛)|2 = C ∗ nt for t > 1, and C constant 

 
One can prove it with a reduction to absurd. 
 

Let’s assume that |𝑋(𝑧, 𝑛)|2 = 𝐶 ∗ 𝑛𝑡 𝑓𝑜𝑟 𝑡 > 1 where C and t integers C>0 and t>0 
 

If |𝑋(𝑧, 𝑛)|2 = 𝐶 ∗ 𝑛𝑡  then: 
 

[20] lim
𝑛→∞

|𝑋(𝑧, 𝑛)|2/𝑛𝑡  = 𝐶 

 
But: 

[21] lim
𝑛→∞

|𝑋(𝑧, 𝑛)|2 /𝑛𝑡   =
1

𝑛𝑡 ∗ lim
𝑛→∞

∑ 𝑘−2𝛼𝑛
𝑘=1 +

1

𝑛𝑡 ∗ ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ cos (ß (ln (
𝑘

𝑗
))𝑛

𝑗≠𝑘
𝑛
𝑘=1  

 
And: 
 

[22] 
1

𝑛𝑡 ∗ lim
𝑛→∞

∑ 𝑘−2𝛼𝑛
𝑘=1 = 0   𝑓𝑜𝑟 𝑡 > 1 

 

[23] 
1

𝑛𝑡 ∗ ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ cos (ß (ln (
𝑘

𝑗
))𝑛

𝑗≠𝑘
𝑛
𝑘=1 =  0 𝑓𝑜𝑟 𝑡 > 1 

 
So, 𝐶 must be 0 which is an absurd. 
 
 

3.4. |𝑋(𝑧, 𝑛)|2 collapses to a straight-line |𝑋(𝑧, 𝑛)|2 = 𝐶𝑛   𝑖𝑓 𝑅𝑒(𝑧) = 1/2 

 
The proposition says that the following limit exists only for Re(z) = 1/2 
 

[24] lim
𝑛→∞

(|𝑋(𝑧, 𝑛)|2/ 𝑛) = S 

 
 
Using the expression: 
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[25] 𝑙𝑖𝑚
𝑛→∞

(|𝑋(𝑧, 𝑛)|2 / 𝑛) = 𝑙𝑖𝑚
𝑛→∞

1

𝑛
(∑ 𝑘−2𝛼𝑛

𝑘=1 + ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (
𝑘

𝑗
))𝑛

𝑗≠𝑘
𝑛
𝑘=1 ) 

 
3.4.1. For α>1/2 , one can see that lim

𝑛→∞
(|x(z, n)|2/ 𝑛) = 0: 

 

[26] lim
𝑛→∞

1

𝑛
(∑ 𝑘−2𝛼𝑛

𝑘=1 ) = 0 because 2α>1 and the series is convergent 

 

[27] 𝑙𝑖𝑚
𝑛→∞

1

𝑛
∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (

𝑘

𝑗
))𝑛

𝑗≠𝑘
𝑛
𝑘=1 )  < 𝑙𝑖𝑚

𝑛→∞

1

𝑛
∑ ∑ (𝑘−𝛼 ∗ 𝑗−𝛼𝑛

𝑗≠𝑘
𝑛
𝑘=1 ) < 

 𝑙𝑖𝑚
𝑛→∞

1

𝑛
(∑ 𝑘−2𝛼

𝑛

𝑘=1

) 

 
So: 
 

[28] lim
𝑛→∞

(
1

𝑛
∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ cos (ß (ln (

𝑘

𝑗
))𝑛

𝑗≠𝑘
𝑛
𝑘=1 ) = 0 

 
 

3.4.2. For α<1/2, one can see that lim
𝑛→∞

(|𝑋(𝑧, 𝑛)|2/𝑛)= ∞ as: 

 

[29] lim
𝑛→∞

1

𝑛
(∑ 𝑘−2𝛼𝑛

𝑘=1 ) < lim
𝑛→∞

1

𝑛
(𝑛 ∗

1

𝑛
) = lim

𝑛→∞

1

𝑛
=  0 

 
And: 
 

[30] lim
𝑛→∞

1

𝑛
∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ cos (ß (ln (

𝑘

𝑗
))𝑛

𝑗≠𝑘
𝑛
𝑘=1 ) > lim

𝑛→∞
(

1

𝑛
∗  𝑛2 ∗

1

𝑛2𝛼)= ∞ 

 
Where the summations are replaced by the number of elements in the matrix (n x n) times the smallest 
value in each row (1/n) then 1>(2-1-2α)>0 when α<1/2 
 
 
3.4.3. Limit for α=1/2.  

 

When α=1/2, one can express (|𝑋(𝑧, 𝑛)|2/n) as: 
 
 

[31] lim
𝑛→∞

(|𝑋(𝑧, 𝑛)|2 /𝑛)  = 

= lim
𝑛→∞

1

𝑛
(∑ 𝑘−1

𝑛

𝑘=1

+ ∑ ∑ 𝑘−1/2 ∗ 𝑗−1/2 ∗ cos (ß (ln (
𝑘

𝑗
))

𝑛

𝑗≠𝑘

𝑛

𝑘=1

) 

=  𝑙𝑖𝑚
𝑛→∞

1

𝑛
(∑ 𝑘−1

𝑛

𝑘=1

) + 𝑙𝑖𝑚
𝑛→∞

1

𝑛
(∑ ∑ 𝑘−1/2 ∗ 𝑗−1/2 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (

𝑘

𝑗
))

𝑛

𝑗≠𝑘

𝑛

𝑘=1

)  = 

 

=  0 + 𝑙𝑖𝑚
𝑛→∞

1

𝑛
(∑ ∑ 𝑘−1/2 ∗ 𝑗−1/2 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (

𝑘

𝑗
))

𝑛

𝑗≠𝑘

𝑛

𝑘=1

) =  

=  𝑙𝑖𝑚
𝑛→∞

2𝑛

𝑛
(∑ 𝑛−1/2 ∗ 𝑗−1/2 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (

𝑛

𝑗
))

𝑛−1

𝑗=1

) = 
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=  𝑙𝑖𝑚
𝑛→∞

2( 𝑛−
1
2  ∑∗ 𝑗−

1
2 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (

𝑛

𝑗
))

𝑛−1

𝑗=1

) =    

 
Using the integral approximation of the infinite series 
 

= 2 ∗ lim
𝑛→∞

2 ∗ √𝑛 ∗ cos (ß ∗ 𝑙𝑛 (
𝑛
𝑛

)) − 2 ∗ ß ∗ sin (ß ∗ ln (
𝑛
𝑛

)

4 ∗ ß2 + 1
∗ 𝑛−

1
2 

=  2 ∗  
2 ∗ √𝑛

4 ∗ ß2 + 1
𝑛−

1
2  =  2 ∗  

2

4 ∗ ß2 + 1
 =   

1

ß2 + 1/4
 

 

So, if lim
𝑛→∞

(|𝑋(𝑧, 𝑛)|2 /𝑛) exists will be equal to: 

 

[32] lim
𝑛→∞

(|𝑋(𝑧, 𝑛)|2 /𝑛) =  
1

ß2+1/4
  if z=1/2+iß 

  
 
And this limit can only exist when |X(z, n)|2 is monotonous which means that the curve will cross the x-
axis only once.  
 

[33] |𝑋(𝑧, 𝑛)|2 = (∑ ∑ 𝑘
−

1

2 ∗ 𝑗
−

1

2 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (
𝑘

𝑗
))𝑛

𝑗=𝑘
𝑛
𝑘=1 ) 

    = 2 ∗ 𝑛−𝑎 ∗ (∑  𝑗−𝑎 ∗ cos (ß ∗ (ln (
𝑥

𝑗
)))𝑛−1

𝑗=1 ) 

 
 

4.  Calculating the zeros of |𝑋(𝑧, 𝑛)|2    

 

Let’s define the function 𝐶2(𝑛, 𝑎, 𝑏) =  |𝑋(𝑧, 𝑛)|2 in R (where z=a+bi) such that: 
 

[34]  𝐶2(𝑛, 𝑎, 𝑏) =  2 ∗ 𝑛−𝑎 ∗ (∑  𝑗−𝑎 ∗ cos (𝑏 ∗ (ln (
𝑛

𝑗
)))𝑛−1

𝑗=1 ) 

 
With the following wave representation for 𝐶2(𝑛, 𝑎, 𝑏): 

 

 
Figure 6. 𝐶2(𝑥, 𝑎, 𝑏) for a=0.4 and variable b 
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Figure 7. 𝐶2(𝑛, 𝑎, 𝑏) for a=0.5 and variable b 
 
 

 
 

Figure 8. 𝐶2(𝑛, 𝑎, 𝑏) for a=0.6 and variable b 
 

 

As a wave, 𝐶2(𝑛, 𝑎, 𝑏) can have one or more zeros. For 𝐶2(𝑛, 𝑎, 𝑏) to have only one zero, it must cross the 

axis y=0 only once, which means that the wave collapses to a polynomial line. A numeric method has been 

created and coded to find the values of  (𝑛, 𝑎, 𝑏) such that 𝐶2(𝑛, 𝑎, 𝑏)=0. The following table shows an 

example of those calculated values, where x=n, a=Alfa, and b=Beta: 
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Table 2. Number of Zeros of 𝐶2(𝑥, 𝑎, 𝑏)for different values of a=Alfa, and b=Beta 
 
 

The calculations for 𝑎 ∈ (0,1) and 𝑏 ∈ [1, 100] only found single zeros for 𝐶2(𝑥, 𝑎, 𝑏) for values of 𝑎 = 0.5 

as shown in the following table that summarizes the single zeros found in those intervals: 

 

 
 

Table 3. List of first Zeros of 𝐶2(𝑥, 𝑎, 𝑏) 
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One can observe that: 
 
[35]  𝑖𝑓  𝐶2(𝑥, 𝑎, 𝑏) = 0 → 

 
𝑎 = 1/2 

       
     𝑏 =  𝐼𝑚(𝑧)        𝑤𝑖𝑡ℎ 𝜁(𝑧) = 0 

 
(a, b) are the Nontrivial Zeros of ζ(z) in the critical line. 

 

𝑥 = 𝑏2 +
1

4
 

      
And the calculated values of lim

𝑥→∞
𝐶2(𝑥, 𝑎, 𝑏) for the values of (a,b) from Table 3 are: 

 

 
Table 4. Limit of 𝐶2(𝑥, 𝑎, 𝑏) for b in Table 10 and x->∞ 

 
 

 
Table 5. Comparing “b” calculated with known zeros of ζ(z) 

 
 

|𝑋(𝑧, 𝑛)|2 = C(𝑛, 𝑎, 𝑏) has the following special properties for all (a,b) such that ζ(a+bi)=0.  
 

 if S=  
1

𝑏2+1/4
 

 

  𝐶2(𝑛, 𝑎, 𝑏) =  0 𝑤ℎ𝑒𝑛 𝑥 =
1

𝑆
, 𝑎 =

1

2
,   𝑏 = 𝐼𝑚(𝑧∗) with z∗ a nontrivial zero of 𝜁(𝑧) 

 

  lim
𝑥→∞

𝐶2 (𝑛,
1

2
, 𝑏) = 𝑆 
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Graphically: 
 

 
Figure 9. 𝐶2(𝑛, 1/2, 𝑏) such that ζ(1/2+b*i)=0 

  
 

 
The decomposition of ζ(z) = X(z) – Y(z) for Re(z)≥0, z≠1, has enabled us to study the zeros of ζ(z).  
 
For Re(z)≥0, z≠1, the representation of X(z) and Y(z) only coincide, making ζ(z)=0, when X(z) and Y(z) 
are both a straight line with slope 1/(ß2 + ¼), which happens only when Re(z)=1/2. 
 

 
5. Theorem. For Re(z)≥0, z≠1, if z* is a nontrivial zero of ζ(z), then Re(z*)=1/2 

 
Proof: 

 
▪ From [3], [4], [5] ζ(z) = 𝑋(𝑧) − 𝑌(𝑧) for Re(z)>0, z≠1 

▪ From [7] is always a polynomial line. 

▪ From [9]|Y(z, n)|2 is only straight line if and only if Re(z)= ½  

|𝑌(𝑧∗)|2 = lim
𝑛→∞

|Y(z∗, n)|2  tends to a straight line with slope 
1

[ß∗2+1/4]
 

▪ From [32] |X(z, n)|2 is a wave function that has only one polynomial representation in the form of a 

straight line if and only if Re(z)= ½ and for certain values of Im(z)=ß* that we calculated. This values 

of ß* coincide with the imaginary parts of the nontrivial zeros of Riemann Zeta z*, so: 

|𝑋(𝑧∗)|2 = lim
𝑛→∞

|X(z∗, n)|2  tends to a straight line with slope 
1

[ß∗2+1/4]
 

▪ If z=z* is a zero of ζ(z) then there exists an N such that for any n>N then |X(z*)|2 -|Y(z*)|2 <∈ 

arbitrarily small 
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▪ From[9] and [32] Of all possible representations of |X(z*)|2 and |Y(z*)|2 at any z* nontrivial zero of 

ζ(z), the only one in common for both functions is a representation as a straight line with slope 
1

[ß∗2+1/4]
 

when Re(z)=1/2. 

▪ Therefore, all z* nontrivial solution of ζ(z) must have Re(z*) = ½  

 

 

 

 

************************************************* 
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