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"An equation for me has no
meaning unless it expresses a

thought of God."
~Srinivasa Ramanujan

http://www.aicte-india.org/content/srinivasa-ramanujan




From:

The Fate of Massive F-Strings
Bin Chen, Miao Li, and Jian-Huang She - https://arxiv.org/abs/hep-th/0504040v2

In the following, we set o = % Energy conservation gives

M= \JM2+ 82+ Mg + 12, (2.5)

with & the momentum in the noncompact dimension.

What we want to consider is the averaged semi-inclusive two-body decay rate. That
is, for the initial string, we average over all states of some given mass, winding and KK
momentum. For one of the two final strings, we sum over all states with some given mass,
winding and KK momentum; only the other string’s state is fully specified (by keeping
explicit its vertex operator).

This decay rate can be written as
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(26)

with closed string coupling g., compactification radius R;, and numerical coeflicient A, =

2—p
2 Pxr"2

Ty and Fj, and Fg are given by
2

Fu= 30 20 1@ V(i wis k)@ (2.7)
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Fr= Y Y [(®|Ve(nu, wi,k)|@)|". (2.8)
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D — 26 is the full space-time dimension.



In the following, we shall calculate the decay rate (2.6). In the above discussions, we

have fixed the levels of the incoming string states and one of the outgoing string state
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we fix the quanta of the incoming string states, the outgoing string states could have
various kinds of masses, KK-momenta and windings, with respect to the energy condition

(2.5), and conservations:
Q=6 +0:, Q=01 +Q: (2.40)

Omne important observation is that we have inequality

o N af Ny, € +f/ Ny (2.41)
¥ pE 1 v Lls — Y A X '
The equality saturate when
M M- i
k=0 - (2.42)
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cutgoing string states with fixed level Ny 'I'he same inequality holds in the right-mover.
Given a very massive initlal string of high level, ivs stale density has the asyipiotic

form

2o _DHL aoW D—2

G(N)~ N "+ 3% | a.=2'.'rv— . (2.43)

The ratio between the first two terms in (2.37) can be estimated to be

G(NL —1) | a(vNi—n—y/NiomFml ) (2.44)

G(Nr —2n+m3)

Using the incquality(2.41), it is at most of order

IR = =y == / .N—__ ; :
exp(aly' Ny — VNap)), v Nap =2 — (2.45)
ar

exp(a(3v/ Nor, —v/N1)), Vv Nap < (2.46)

In the extremal case Ny;, = Ny, one can try to calculate I direcily. Thus if generically

1 58 = M- >~ Np the Arat torm dominates the whole @rmmmation in 2927V and t o oather
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terms will he neglected to get
Fy & (N, — Nog — s )G(N (2.47
L‘“{iL_*EL_EmL}d( 21,). (2.47)



Fr can be carried out in the same way.

Note that in our approximation, Fy, g do not depend on the details of the state
specified in eq.(2.7) and (2.8) by the vertex operators, and all states of the same level are
emitted with the same probability. Taking advantage of this, we can get the total decay
rate for decays into arbitrary states of given mass, winding and KK momentum by simply

multiplying eq.(2.6) by the state density G(N;)

2 d.
TI(M, ns, w;) — (m, nag, wig) + (Mo, n9s, wes)] = Ap_a Je N NaGyGrkP—3—d H i

“ M2
(2.48)
where . ]
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s G(N N N- N.
g, = J(+ 'LL)‘:?( 2L) . Gp= G(! 1R)€(1 QR)_ (2_50)
G(NL) G(Ng)
Remember that
2 1 : : .
mi = E(m2 — Q% )~ 2Ny;. (2.51)
As long as Ny, 3> 1 and Npp, 3> 1, we can use eq.(2.43) to write
T
Gi v (QJ;TTH)—DEI (w)—%e—ﬁ%ﬁn’ (2.52)

N—L

with the Hagedorn temperature Ty = %\/% and t; = N, — /Ny, — vNap, in a
sense coming from the kinetic energy released in the decay process. We have in the above
restored the multiplicative constant in front of the state density. Note that for later
convenience, in our notation we set G(M)dN = G(N )dN, a little different from usual sense

G(M)dM = G(N)dN.

We can also compactify type II strings on the torus. According to the above caleula-
tions, we will obtain the same formulas as in (2.37), (2.47)-(2.50). Now the state density
has the asymptotic form

o oAl
G(NL) m 2 £ N, < emVENL, (4.1)



Consider first open strings and NS sector only. The state degeneracy Gy g(n) is given

by
_|_ :TF X3 ,wn

fns(w) = Trl Z Gns(n)w™ H — w“ , (A1)

with N the summation of the bosonic and fermionic number operators. Generalization of

Hardy-Ramanujan formula gives

i l—i—w”'"1 Inw, 1 B
H = 94(0]w) = (———) " 0x(0]e™), (A.2)
where the modular transformation of ¥ function
TN 1
94(0]7) = (~ir)205(0] - 2) (A.3)
has been used, with "
ilnw
B (A4)



As w — 1, the second argument of 75, which now reads

3 1 i ¥
TTTTT Thw (A.5)
approaches oco. We know from the expansion
Y2(0)r") = Z eim(n—3)*r' (A.6)
that
i i
D207 — 00) — 23T = 2eThw, 7
) ! A.T)
Thus (A.2) is asymptotically
S R Y Inw,. 1 2
H(l—'w“) e T ) 22exl)(fllnw)' (4.8)

n=1

(From (A.1), the state degeneracy Gng(n) can be expressed as a contour integral on

a small cirele around w =10

Gusn) = — ¢ ¥ g, (A9)

2mg | wntl

To compute the above integration, we make a saddle point approximation near w = 1.

The power of w can be put on the exponential

Gns(n) = %j{& ln:) 9 exp[——i— (n + 1) Inw]duw, (A.10)

to get the saddle point at

V2m

Inwy = 3 Al
1= art .

where expansion can be made
Inw = Inwy + i (A.12)

Then Gy g(n) is approximately

1 1 \/_ ni
Gns(n) ~ 555 (= ji “‘/ﬁ/ u?)du. (A.13)
Carrying out the integration over u we find

Gns(n) ~ 2 n—demVER, (A.14)



Or using n ~ a/m?, write it out in terms of mass

n .
Gns(m) ~ 2= 5/ s m—z emVBa'm (A.15)

Here we use the convention Gy g(m)dn = Gy s(n)dn, different from [17].
At this point, we also note that R sector has the same expression. And combine the

left and right pieces together we arrive at the expression for closed strings
G (n) = [g7(n)]? ~ 2~ ¥n VR, (A.16)

Taking care of the difference between the mass shell conditions of open and closed strings
(a/m? ~ 4n for closed strings), the state degeneracy for closed string as a function of mass

reads

: i >
G m) ~ 2% o/ T2 m 1T VEEm (A.17)

Thus open and closed strings have the same Hagedorn temperature

1 i
Thp=———. A18
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We know that (The Legacy of Srinivasa Ramanujan, RMS-Lecture Notes Series No.
20, 2013, pp. 261-279.The Partition Function Revisited - M. Ram Murty):

The partition function. denoted p(n). is the number of ways of writing n as a non-
decreasing sum of positive integers. Thus, p(1) = 1, p(2) = 2, p(3) = 3 and
p(4) = 5 since

4y 148 242 TddaZy kb I-4140
are the five partitions of 4. Thus, each partition can be “factored™ uniquely as
thghe. ..
where the notation symbolizes

n=141+4--+1+2424---42+--.
ki ks

and that:



The question of the asymptotic behaviour of p(n) was first answered in the 1918 paper
ol Hardy and Ramanujan [9]. They proved that

eV 2n/3

p(n) ~ ., M — DO. (4)
dn+/3

In their proof, they discovered a new method called the circle method which made
fundamental use of the modular property of the Dedekind »-function. We see from the

Hardy-Ramanujan formula that p(n) has exponential growth.

We have, from (2.41), that:

VNiL + VN < VN

V3 + /5 < V/8; 1,732050807 +2,23606797 < 2,82842712;
3,968118777 < 2,82842712

Thence, we have that:

p()~ =™/ (4)

G(N)~ N(Dﬂm e2m/(D=2)/6VN (3 43)

We observe that the eq. (2.43) and the (4) is practically very similar.
Now, we have, from (2.43), for N=10, o’ =1/2, and D = 26:

G(N)~ N=eVV o g=2y Da_ :
that is:
GIN)~ 021/ (D-2)/6VN

N(D+1)/4

+1

{‘\l} i _._' -'__ ¢ E'LFV/_ 10-27/4 e4’E\/10 — 10-6.75 e4ﬁ(3,1622776) — (1,778279410038 sk 10-7)
* (181195519824656285,625) = 32221626209,548572. Given a very massive initial

string of high level, its state density has the above asymptotic form. We note that
(32221626209,548572)"* = 1,65546399123955
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From the paper “RAMANUJAN'S CLASS INVARIANTS,KRONECKER'S LIMIT
FORMULA, AND MODULAR EQUATIONS BRUCE C. BERNDT, HENG HUAT CHAN,

AND LIANG-CHENG ZHANG”, we have various expressions that can be related with
some sectors of the string theory.

We take:

I T nj
— [113 + 5/505 [ 105 + 54/505
(130v/5+20V/101) +/ 169440 + TE-i[‘iv’SﬁE:(\v," T;‘ ’ ]+\.'“ ’ ;“ s

/ 8

3
( ,‘Il 13 + 54/505 “ ; 10545 \hj.)
] Il i
f g :

that is equal to 1164,269601267364. We note that (1 164,269601267364)1/ 14—
1,655784548804.
We have that:

N(26+1)/4

48\/ L. ¢2m/(26-2)/6V10 = 1 6554639 ...

and

3
1 113 + 5v505 105 + 5v505
+ = 1,6557845

8 8

Thence a new possible mathematical connection between the asymptotic form of the
state density of a very massive initial string of high level, and the above Ramanujan’s
class invariant. We have indeed:

3

N(26+1)/4

43\/ 1 . 021 (26-2)/6vT0 — 14\/(\/113+Z\/505+\/105 8\/505>

1,65546 ~ 1,65578
results that are very near to the mass of the proton (1,672 * 10™)

We have, from (2.52), that:

10



p1 Ny N: D41 o
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with the Hagedorn temperature Ty = é,f% and t; = VNr — VN1 — VNarp

76,1095894446859531 * 0,01436287608 * 1659103,33006 = 1813653,1217337...
that is the total decay rate for decays into arbitrary states of given mass. We note that
(1813653,1217337)"*° = 1,6166591858....

We have that:

1 .
(301 | 48v43) |

1 .
5 \',f’*fqeamx | 3056+/13)

V2

) [ .:i
_ |( [46+7VE | (424 7V
B A |

that is equal to: 852,2635597... We have that (852,2635597)"" = 1,6192977355292

Thence, we have the following new mathematical connection:

_p=1 NypNop . _oar _ o
gL Y [gﬂTJI:] ] { .‘\'IT :] i e v I.J ”'-
VL

—27/4
/G- ~30\/(2n - 0,1125395)25/2 (%) e—V2(-1,1396916/0,1125395) —

32/1813653,1217337 =1,6166591858 ...

3
1 46 + 7V43 42 + 7v43
\/ +\/ =1,6192977 ...

4 4

Thence:
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30 15 -2 /4
(27 - 0,1125395)~25/2 <§> e —V2(-1,1396916/0,1125395) ~

3
I |46+ 7V43 |42 4 7443
= T+ 7

1,61665 = 1,61929

values very near to the electric charge of the electron.

Now, we have:

That is equal to: 28390031,9 we note that (28390031,9)"** =1,65657369... and

3
1 113 + 5v505 105 + 5v505
+ = 1,6557845

8 8

Thence, we have:

3
113 + 5v505 N \/105 + 5v505
8 8

14
3§/(2—13/4 . 8-11/4 . g87) = \/

1,65657 = 1,65578

results that are very near to the mass of the proton.

We have:

12



That, for n =4, is equal to: 121357,2462164 and (121357,2462164)"* =
1,66359013

and:

/1135610 7 R I o1 1123 [10 1 1243
| o I o /2y 1 e 4 = ¥y, == IIl I|l
\'." 5{}.3-}619'!‘ 78300+/3) ‘./§(bi +504/3) = (1|'|| 3 i qlbll 5 ) .

that is equal to: 736,53184348... We have that (736,53184348)""* = 1,661702198...
Thence:

3
13
23 (2_1 /4. 4-11/4 . em/ﬁ) _ M + M
2 2

1,66359 = 1,66170

results that are very near to the mass of the proton.

Now, we have:

2 13 i 1Y =oidEmE
9,"".75{”1) ~ 2 a gl 4 nl—?fa.\f‘&&’m,r

That is equal to: 121357,180534 with results similar as the expression obtained
above.

We have:

i

47/ 2n

]
[

T

[ ]
l-.'ll

74

G%(n) =[G°P(n)]? ~ 2~

That is equal to: 58910324836,98435 and (58910324836,98435)""* =
1,65882214636257.

We have that:

(Vfl 13 4 5/505 : ,'j 105 — & m) |

8 V ]

that is equal to 1164,269601267364. We note that (1164,269601267364)"* =

1,655784548804
13



We obtain:

3
14
43/2—9/2 L 4-11/2 . p4mV8 — \/113 + 5v505 N \/105 + 5505
8 8

1,65882 =~ 1,65578
results that are very near to the mass of the proton.

In conclusion, we have:

\ old -3 _11_w/Ba!
G4 (m) ~ 23 @' 2 mHemVEa'm,

That is equal to: 2309101,7209 and (2309101,7209)"% = 1,657406627...

We have that:

23/213/2 . 0’5—11/2 . 2,828427_11 . p2m2,828427

3
o J113 + 54505 s J105 + 5v/505
B 8 8

1,65740 = 1,65578

values that are very near to the mass of proton.

From:

Brane World of Warp Geometry: An Introductory Review
Yoonbai Kim, Chong Oh Lee, Ilbong Lee

https://arxiv.org/abs/hep-th/0307023v?2
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3.1 Pure anti-de Sitter spacetime

When the bulk is filled only with negative vacuum enerecy A < 0 without other matters
Statter = 0 so that T45 = 0, then the Einstein equations (2.14)~(2.15) are

2A

A'=0and A2= ——" .
plp+1)

(3.1)

Notice that A(Z) can have a real solution only when A is nonpositive. General solution of

2|A|
A2V =4, ———ZF 1+ A 3.2
+(Z) o ) + Ay, (3.2)

where the integration constant Ay can be removed by rescaling of the spacetime variables of

Eq. (3.1) is given by

p-brane, i.e., dr* — d¥* = eodz*. The resultant metric is
ds* = ey, ditdz” — dZ°, (3.3)

where k = \/2|A|/p(p + 1) and a schematic shape of the metric %) is shown in Fig. 2. Since

2/'-1-1__

the metric function e vanishes or is divergent at spatial infinity Z = Foco respectively,
there exists coordinate singularity at those points. Despite of the coordinate singularity, the
spacetime is physical-singularity-free everywhere as expected

_ 8(p+2)

RABCD R, - A2, 3.4
ABCD pz(p—l—l}| | ( )
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4.2 Gauge hierarchy from model I

As we explained briefly in the introduction, the gauge hierarchy problem is a notorious fine
tuning problem in particle phenomenology of which the basic langnage is quantum field
theory. So the readers unfamiliar to field theories may skip this subsection.

Let us assume that we live on the p-brane at Z = r.m and try a dimensional reduction
of the Einstein gravity from the D = p 4+ 2-dimensional gravity to p + 1-dimensional gravity

on the p-brane at Z = r.m. Then we have

B 2 —f‘ép [ d%\/@ R (4.23)

= _féfﬂ [1 — gt / dPt iz /| det g | (Rpp1 + - -) (4.25)

- ﬂ‘zpéfck [ e /| det g | (Rprs + ) (4.26)

= SgHpt1+-- (4.27)

We used gp = e 2PHV¥Zl det g,,, and R = e?lg R, + ... = ¢®ZIR, .1 + ... when we

calculated the second line (4.24) from the first line (4.23). By comparing the third line (4.25)
with the fourth line (4.27), we obtain a relation for 3-brane among three scales Mpjanex, M.,

Al (p=3):
M e 1[% [1 — exp (—4 p(i% )] MP=3, (4.28)

A natural choice for the bulk theory is to bring up almost the same scales for two bulk

mass scales, i.e., M, ~ |/|A|. Suppose that the exponential factor in the relation (4.28) is

negligible to the unity, which means r. is slightly larger than 1/4/|A|. Then we reach

Mpianae = M. ~ \J|A]. (4.29)

A striking character of this Randall-Sundrum compactification I is that it provides an

explanation for gauge hierarchy problem that why is so large the mass gap between the Planck

scale Mpgpac ~ 1019GeV ~ 1073 M, and the electroweak scale Mgy ~ 10°GeV ~ 1073 M,

without assuming supersymmetry or others. As a representative example, let us consider a
massive neutral scalar field H which lives on our 3-brane at Z = rom :

Seealar = /.rfﬂ— dza(z - Tc""‘—) /d4r g5 [%9.433_4H63H - %ﬂ{g]ancng

o —Tew
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- [mr ng_%'z](?[Z— Tatl) [(1'-41"-\/—7@'4
1

1 : i
iLirglm‘lrcl(J'TjT2 - EQZZ (aZH)Q}

X Eeg’“‘lfl §0,HO,H — S

= et [t [, ng’apﬂa,,ﬂ . g(e—fcﬁ*ﬂfmmuszﬂ (4.30)

= e-?&”’ff diz\/—ds [%_f}*“’BPHBVH - %MEWHQ} (4.31)

where ds? = gapdadde? = e 2lg  dotdzr” — dZ2. The last two lines give us a relation:

Mpw  _ exp (_ %rcﬂ) e P28 (4.32)

iq?'fPlanck P+ 1

Therefore, the radius r, of compactified extra dimension of the Randall-Sundrum brane
world model T is determined nearly by the Planck scale :

il a ﬂJP’&IICk
SaBp— a— ]\ ; 4.33
e 166110 Al 30 (4.33)

All the scales such as the fundamental scale of the bulk M., the bulk cosmological constant
/|A|, the inverse size of the compactification 1/r,, are almost the Planck scales Mpa ~
10" GeV together. The masses of matter particles on our visible brane at Z = 7.7 are in

electroweak scale Mpw ~ 10° GeV, however those on the hidden brane at Z = 0 in the
Planck scale. Though the gange hierarchy problem seems to be solved, it is actually not
because a fine-tuning condition was urged in Eq. (3.25). However, it becomes much milder
than that before.

17



Finally let us consider a fermionic field of which mass is provided by spontaneous sym-
metry breaking and its Lagrangian is

ﬁf&rmion = ‘i"".f;lv:!.q” + Q@‘i‘@. ('-136)

where g is the coupling constant of Yukawa interaction. If we neglect the quantum fluctuation
d¢ of ¢, i.e. ¢ = (@) + d¢b, the Lagrangian (4.36) becomes

*Cfermion — "IJ'".“"_I'GA‘IJI +g {U} ﬂ:'IID A vy (—137)

where the second term is identified as mass term, and we neglected the vertex term gdgpUW
because we are not interested in quantum fluctuation. Again the fermion lives on our 3-brane
at Z = r.m, and then the action is

AP [ N ATEET v / d'z/g5 [TV A + Mpiana P (4.38)

where ¢ is vielbein defined by gip = nuetel and Mpua = g (¢) since the symmetry
breaking scale should coincide with the fundamental scale. Subsequently, the action (4.38)
becomes

Stemion = [ dZ8(Z — rer) [ d'e /5[0 eAV AY + Mprana U]

_ / T dZeMI§(Z — rom) [ RS

< [HHTy eV, Y — B EEV LY + Mptana U]

= 6_3\"ch / (fl:.t‘\a' —§4 [‘i"‘}ﬂégvp v+ '?errmion@@]- (4'40)

Once again we obtain the same mass hierarchy relation mermion = €= Mpanek = Mpw for
the fermion from Eq. (4.39) and Eq. (4.40) with the help of Eq. (4.32).

We know that the mass Planck is defined as:

[he
mp = 1#."51

where c 1s the speed of light in a vacuum, G 1is the gravitational constant, and 7 is the
reduced Planck constant.

Substituting values for the various components in this definition gives the
approximate equivalent value of this unit in terms of other units of mass:

1 mp=~ 1.220910x10" GeV/c* =2.176470(51)x10"° k.

18



Particle physicists and cosmologists often use an alternative normalization with the
reduced Planck mass, which is

he
By

My ~2.435%10" GeV/c* =4.341x10 " kg

Mp =

Now, from (4.28)

P 8[A s
M2 Pt = - M3
Planck — \| 2| ".!. C‘Xp }(P + 1) T &
we have that:

M2 gneie = 1,4906212281 x 1038 and E = 1,098819 * 10°° or:
M2, e = 5929225 x 10%¢ and E =2,1915 * 10

And, from (4.33), we have that:

i o i | i \‘IP]a.nc'k
30

re  16v/61n10"Y 1]

Thence: — = 4,0697 * 107 and 1, = 2,4571835761 * 10™"*

Tc

r. = 2,4571835761849767796152050519694 * 10"* or:
— =28,11666 * 10'® and 7. = 1,2320328542 * 10"’

Tc
We have that:
Mpw ~ 10°GeV
and
Mtermion = € * Mpianck = Mpw
We have that:

Meermion = 1,22091 * 10" GeV/c or
Meermion = 2,435 x 10'® GeV/c*. The energy Eis: 2,1915 * 10%

Now:

19



2,435 x 10"™)# =1 61784715017 or (2 435 10" )" =1,609125347 and for
(
the value of the fermion energy E (for E = mc?):

(2,1915 * 10*)"1%* = 16231608397 or (2,1915 * 10°%)"'% =1,6185153159.
Further, we have:

(1,2320328542 * 10"7)"" = 0,614656924537 and the reciprocal is 1,626923833;
and

(5,929225 x 1036)"'%" = | 65533879.. and (5,929225 x 1036)"'"® =1,609125347.

All results very near to the value of the golden ratio

Now, we have that:

Y ] '
; 5+ 1 43 + 3+/205
P™2 := ((asGarys)* = (v’ .)+ ) (%)
2 e
74+8v8 [3vE+vEL)
- 2 2 ) '
A

that is equal to: 46,9787137637477918 (42,9767315949145297) = 2018,991572...
and (2018,991572)"'° =1,6090550645269

Thence:

: anck \ 2|"\L

8|A] .-
= = MP==,
o (2]

= 5,929225 x 103° and (5,929225 x 103%)"'"®=1,609125347.

We have the following interesting mathematical connection:

20



178
p(p + 1) 8|A| p=3
—— | 1—exp| — | —=r.m | | M, =
2|A P p(p+1) ¢

107 43V5\"  (3V5 + VAT
)

1,6091253 = 1,609055

Values that are very near to the electric charge of positron.

Now:

1 m W i A lrF']a.nck

re  16v6In10Y 30

= 8,11666 * 10'° and . = 1,2320328542 * 107"

and 1/(1,2320328542 * 107'7)"** = 1,626923833.

We have that:
%[301 +46v/43) + %V”ﬂzsgu + 3956+/43)
V< V2
N ,"'I 46+ 7V | 13 +7+/43 3
R4 | | 1 ‘
= 852,2635597... and (852,2635597)""* =1,6192977355292.
Thence:

3
80 ,M anc Wi a6+7va3 424743
(1/ P;Ok>:\/<\/ . +\/ " );

1,626923 = 1,619297

Values that are a good approximations to the electric charge of the positron and to the
value of the golden ratio.

Now:
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PR — '.(".Tlri' I = N
Miermion = € *lfl-"‘]anck = -'T"IP_.‘\-".'

=2,435x 10" and (2,435 x 10")"* =1,609125347.
We have that:

16[(7 +3V5\"  [3V5 + VAT)
——) +(=——) =160905s.

Thence:

“ 1677 +3V5\"  [3V5 + VAT\
e~ ek . Mpignek = +
2 2

1,60912 = 1,60905

values very similar and very near to the electric charge of the positron.

We calculate the following double integrals:

(4P1/23) 1/(10"55) integrate integrate [5.929225 *10"36]

[4 %] m% [[ ['5.929225 m“dx']i:x

1.61976x107%° ¥°

/

/ [ from -1.2t01.2)

x
0.5 1.0

and

(2*21) * integrate integrate [5.929225]

2 21[[[5.929225 ax)dx

124.514 x°
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(x from =1.2to 1.2)

-1.0 -0.5 : 0.5 1.0

(4P1/86) 1/(10"53) integrate integrate [2.1915 * 10735]

(4 é] mlsg '[112.1915-1035“]“

Result:

1.60112x107%° »?

Plot:
¥
!
2. w10-19 |
|

1.5%10-19 |
|

1.%10-18 |

(x from -1.2t0 1.2}

(4P1/95) 1/(10736) integrate integrate [2.435 x 10"18]

T 1 g 18
[4 —]-— [12.435 10 d’x]d’x
Result:

1.61048 x107%° ¥?

Plot:
¥
i
2,101 |

1.33-&1[]'”']%

[ [ from -1.2t01.2)
1.x10719|
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(24P1/5) 1/(10736) integrate integrate [2.1915 * 10735]

(24 g] m%‘['[‘['z.ww 10 drx) dx

1.65235 x°

/

“-f / (x from=1.2to 1.2}

X
0.5 1.0

(3Pi72/2) * 1/(10"55) * integrate integrate [2.1915 * 10735]
#) 1 fer i
[3 E] ]_D? ( [[ 21915 10" dx|dx

1.62219x 107 &°

(o from=1.2t01.2)

All the results are good approximations to the value of the electric charge of positron

From:

Modular Relations for J-invariant and Explicit evaluations

M.S. Mahadeva Naika, D.S. Gireesh and N.P. Suman

Communicated by P. K. Banerji - Palestine Journal of Mathematics - Vol. 5(2) (2016)
, 83-95
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Theorem 4.2. We have

it

5 73 3

. o

(1) J@B—ﬁ(i(al“‘bl)) ; (4.12)

%
Gi) Trs=3 (3()9830 165393 \/5) " (4.13)
479510 99832633v/33 \ °
i = (mmj 1079 19983 En!\/s_) | i
1

(iv) Jygr= (531?45995375 + 1160364892501/21 ) i (4.15)
] 1

(v) Jinn =~ (a2 +b)3, (4.16)

4
where
a; = 180040533 + 39288067+/21,
by = 2?3\/ 2 (434025969567 + 94908627499v/21 )

ay = 21187806942033 4 2806393586997+/357,
and
by = _7_\/44892%03012831|072.984|3933 4 594@|32352465192851%6?7@1\/ﬁ_

We have:

1
3

(ii) Jog =3 (3(1983{] _ ]65}93\.@)

that is equal to: 0,6239645246738... we have that: (1/0,6239645246738...) =
=1,60265521589... and (1,60265521589) * 8§ =12,821241..; (1,60265521589) * 4 =
= 6,41062.. values that are good approximations to the mass of the SMBHS87 and to
the reduced Planck’s constant.

-

i —

1
J ( 1147951079 1998326;?13«.;’33) :

that is equal to: 1047,06697; (1047,06697)""* = 1,64328337... and (1,64328337) * 8
=13,146266997; (1,64328337) * 4 =6,573133... values that are very near to the
mass of the SMBHS&7 and to the reduced Planck’s constant.

1
Ty = (531745995375 + 116036489250v/21)

that is equal to: 10207,312425; (10207,312425)""? = 1,6255313... and (1,6255313) *
8 =13,00425; (1,6255313) * 4=6,5021252; values that are very near to the mass of
the SMBHS87 and to the reduced Planck’s constant .
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Now:

ax = 21187806942033 + 2806393586997+ 57,

and

e 7\/448'5123[630]286]1072934130-33 594613253524651981512667761/57
= & 2 + ) .

I 1
(v) Jm = 7 (a2 + b2)?

a, = 42375613884065,949055701411614262
b, =42375613884065,967937986172212435

The result is : 10981,3400827; (10981,3400827)""" =1,63179677... and
(1,63179677) * 8 = 13,0543742; (1,63179677) * 4 =6,5271871...; values that are
very near to the mass of the SMBH87 and to the reduced Planck’s constant.

Now:

a; = 180040533 4 3928806721,
by =273 \/2 (43492596956? + 94908627499y 2 l) ;

_ 5 (3 3
(1) -I63:32 1('5114—51) ;

a; = 360081073,935996
by = 360081088,577444

The result is: 127,2478775... (127,2478775)"'% = 1,6235477... (1,6235477) * 8 =
12,9883816; (1,6235477) * 4 =6,4941908... values that are very near to the mass of
the SMBHS87 and to the reduced Planck’s constant.

Now, we have that:

Theorem 4.3.

. ) 726039836531 10¢; S 3
Tz = 5  8704c 151022371885959 ) 4.22
(1) Juz ( “  {42731803018405828801 : ) ' )
544127 592131660065 + 264809328784v/5
(ii) Jns = ies7v34 Y s AT (4.23)

i 2

where ¢ = 52235675270180751422872710058531/3,
|

72603983653110c1 | 1 c1099001 0050 gg) :
o Lol JI. .

144731803018405828801
26

(1) Joaz =5 (87040_1 +



5(151022371885959,00037 + 8703,999 + 151022371885959)"° =

=5 (67095,0417540786) = 335475,2087...

We have that (335475,2087)"*" = 1,6019689349... (1,6019689349) * 8 = 12,81575...
(1,6019689349) * 4 = 6,407875 values that are very near to the mass of the SMBHS87
and to the reduced Planck’s constant.

We now calculate the following double integral:

(P)*2 * (1/(10)"33) * integrate integrate [335475.2087]

2 l - u X
X —— ([[3354?5.2D8?dx] dx
103% J L

1.6555% 10727 »°

¥

25%10750

Y | Il
% 2.%10757 | rf
\ ) ! f_..
e { (% from =1.2to 1.2)
L1027 |
A 109 |

— x

1.0 0.5 ) 0.5 1.0

Result that is a good approximation to the proton mass

Now:

544127 592131660065 + 264800328784+/5
S 4 121667V5 + v i o s

— —

(ii) Jxz5s =

We have that: 272063,5 +272055,682618 + 544119,316028 = 1088238,498646

We obtain: (1088238,498646)"*° = 1,61496420014; (1,61496420014) * 8 = 12,9197
and (1,61496420014) * 4 = 6,4598568 values that are a good approximation to the
reduced Planck’s constant and to the mass of the SMBH&7

We calculate the following double integral:

(Pi)/(13%0.25)"2 * (1/(10)"24) * integrate integrate [1088238.498646]

ha

(13- 0.259* 10% (

U 1.088238498646 x m“ﬁsx] e
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Result:

1.61837x107%° ¥?

Plot:
¥

2.x10719 |

1.5x%1019 |

(x from=1.2t0 1.2)

S1o 05 05 10
Result that is a good approximation to the value of the electric charge of positron

Theorem 4.4. We have

s 920 :
Gy =15 [ B D2 BFE ) (4.25)
4 4
. a 1 /b i\
{H) J'_J,gj e— (f—l—i %—F;) . ':4?.6}
2758054
(i} Jins = w +28527876V/5 + as, 4.27)
%
2 a 1 /b
(iv) Jsoz = (Tﬁ Figh] o % (4.28)

where az = 893587548090400075 4 155553625762776261 \/3-_1
by = 9858008717311272244225627492154461,

3 = 17160590499003817972086593347646351/33,

ag = 21134513639551192813125 + 1860790168869410611875v/129,
by = 446667666780375406374724355998383412241203125,

¢4 = 39326895204313325954377906531132680150421875v 129,

ae = 97331938812393474148072097625 + 6865265632433907880859325375v 201,
be = 9473506312979507174752669289493277723352589662548820015625,

and

cg = 668209614466884909039855025792091189769949745940542671875/201.

We have that:
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1
y 4 1 /b T
(i) Jzgy = (E + 2y >+ E) ,

4 PR

ag = 21134513639551192813125 + 1860790168869410611875v 129,
by = 4466676667830375406374724355998383412241203125,

cq = 39326895204313325954377906531132680150421875v/129,
We obtain:

((((21134513639551192813125+(1860790168869410611875(sqrt(129)))/4)+0.5(sqr
t((446667666780375406374724355998383412241203125)/2+((39326895204313325
954377906531132680150421875*sqrt(129))/2)))))*0.33333

1
[[:l 21134513639551192813125+ 1860790 168869410611875 11.35?8] -

05 "[445 667 666 780375406374 724 355908 383412241203125 1
; J 2 2
30326805 204313325054 377006531 132680150421 875
0.33333
11.35?3}]
3.33121... x 107

33.312.064;

Note that: 3,33121 * 4 =13,32484 and 3,33121 * 2 =6,66242. Furthermore,
(33312064)"*° = 1,6403309248 and (1,6403309248) * 8 = 13,12264739;
(1,6403309248 * 4) = 6,56132369 values very near to the Planck’s constant and to
the mass of SMBHS&7.

We now calculate the following double integral:

(P1)"2 * (1/(10)*35) * integrate integrate [3.33121*10"7]

1 - u X
e [[[3.33121 mﬂu]ﬁrx
10%% J

1.64389 x 10727 »?
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2.5x1070

2.x1074 |

1.5x107 |

(x from=1.2t01.2)

w103

Result that is very near to the value of the proton mass

We have:

x 0./ 2a1e3) \
(1) J3gz =15 ((LT-O- (;—'_ﬁ'))

where a3 = 893587548090400075 + 155553625762776261V/33,
by = 9858008717311272244225627492154461,
c3 = 1716059049900381797208659334764635v/ 33,

We obtain:

15 ((0.25 ~ 893587548 090400075 + 155553625762 776 261 - 1.43614) +
2.25 /(2 (9858 008 717311272 244 225627492 154461 +
1716059 049 900 381 797 208 650 334 764 635
5.74456))"3333

T

1.44280... » 10

14428000;
Now: 1,4428 * 9=12,9852 and 12,9852 /2 =6,4926. Furthermore:

(14428000)"* = 1,6479561079... and 1,6479561079 * 8 = 13,183648;
1,6479561079 * 4 = 6,591824... all values very near to the reduced Planck’s constant

and to the mass of the SMBH&7.

We calculate the following double integral:
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(P1)/14 * (1/(10)"25) * integrate integrate [1.44280*10"7]

T 1 " " =
P [j 1.44280 - 10 dx]d’x
14  1ps

Result:

1.61882x107%° ¥?

Plot:

2.x10719 |

=119
1.5=10 |
! [ [ from =12t 1.2}

1.x10719]

Result that is very near to the value of the electric charge of positron.

Now, we have:

4

. E(Le; S ce |
) Jeoz= [ — —\f—+—’ :
(iv) Jeo3 (4 +2 > T3 .

ae = 97331938812393474148072097625 4 6865265632433907880859325375v/201,
be = 9473506312979507174752669289493277723352589662548820015625,

and

ce = 668209614466884909039855025792091189769949745940542671875+/201.

We obtain:

0.5
J(94?35D5 312979507 174752669280 493277 723352589 662548820015625/
1
2+ 5
668209614466 884900039 855025792001 189 769940 745040542671 -

875 14, 1??4]
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4 86659 = 10%®

(0.25(97331938812393474 148 072097625 +
6B865265632433907880 859325375 - 14.1774) +
4.86659 1028033333333

4.59993... x 10°
4.599.930.000;

We note that 4,59993 * 3 =13,79979; 13,79979 /2 = 6,899895. Furthermore:
(4.599.930.000)1/46 =1,62203346153.. and 1,62203346153 * 8 =12,976267692...;
1,62203346153 * 4 = 6,4881338; value very near to the reduced Planck’s constant
and to the mass of the SMBHS7.

We calculate the following double integral:

(P1)/44 * (1/(10)"35) * integrate integrate [4.59993*10"9]

T L (459993 . 10° ax)d
44 1p% [” EI]”c

1.64217% 10727 &?

(# from=1.2t01.2)

Result that is very near to the proton mass.

We have:
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Theorem 4.5. We have

3 ]
(i) Jyu =— (ﬂ) (—l[}4359189+ 13166003@)' . (4.32)
3 2
(ii) J5 =3 (369830 — 165393V5) ", (4.33)
107 50015 oy, 3575344 =
- oy (5333(}1‘091_. + 2407357 _144\/5)
(iii) Jy = == + 1216675 — = (4.34)
(iv) Jy =15 (15?554369 34381 182\/31)7‘ . (4.35)
Now:

(iv) T3 =15 (15T5543-69 " 34381132@f .

We obtain: 15(157554369 - 157554368,9970532)"° = 2,150505873... and

5(2,150505873) = 10,7525293... (10,7525293)"° = 1,60805954.... Thence:
(1,60805954) * 8 = 12,864476; (1,60805954) * 4 = 6,432238... values that are a

good approximation to the reduced Planck’s constant and to the mass of the
SMBHS7.

We have:
53830150015 + 24073575344+/5
— Y (53830150915 + 24073575344V5)
(iti) Jy = ——— + 1216675 — ~
We obtain:

(2720635 + 272055,6826184 - 544119,31602868) = -0,13341028; -(0,13341028)""
=0,60436224239. Now we note that 1/0,60436224239 = 1,6546367887... and
1,6546367887 * 8 = 13,237094309; 1,6546367887 * 4 = 6,618547... that are values
very near to the Planck’s constant and to the mass of the SMBHS7.

We calculate the following double integral:
Pi"2 * integrate integrate [0.13341028]
7 [([0.13341028 ax)ax

0.658353 x°
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/
&

s

[ / [ from=1.2t01.2)

x
0.5 1.0

We note that the integral is given utilizing the following simple rules:

[udzza.a:-I-C

a+1
f 2% dz = z+ =k C  (for @ # —1) (Cavalieri's quadrature formula)
a

2]

(i) Ju = - (T) (—104359189 + 1816660333 )

We obtain: -0,35718823192 and (0,35718823192)"° = 0,6847309205...

(0,6847309205) * 19 =13,00988; 13,00988 / 2 = 6,504943 that are values very near
to the reduced Planck’s constant and to the mass of the SMBHS&7.

We calculate the following double integral:
Pi * 3 integrate integrate [0.35718823192]

e “(D.ES?lEEEBlQE dx]dx

1.6832098880 x°
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(x from=1.2t01.2)

We note that (1,6832098) * 8 = 13,4656784; (1.6832098) * 4 = 6,7328392 values
very near to the reduced Planck’s constant and to the mass of the SMBHS87.

We have that:

Theorem 4.6. We have

3 — 3
(i) {(13\5— 35) + 53} 1B (1445 —35] R =0, (4.38)
(ii) (5°+4Y) L3 -5R)=0, (4.39)
(iii) (mi3 +2°%) L3z —mis K, — 0, (4.40)

where i3 = —155 + 4513,

(iv) (45 (a1 + bl}+‘i4) Lz —45 (a1 + by) Be; — 0, (441
(v) (rngs+ 8_;) L3s — wasRas = 0, (4.42)
where mi5 — 369830 — 165393/5,

i} (87 +3%) Ll — 8 mig Ry =0, (4.43)

where mygr = 531745995375 + 116036489250v/21,

wii) [27 (a2 + ) + 3% Liy; — [27 (@2 + )] RE7y = 0. (4.44)
- N

(viii) [403 (a3 | 9\/2(&3 | c;)) | _} Tioey a7 (fég | 94/2(bs | ) ) Rigs =0,  (4.45)
3 4 #*

(iX,I |:m-3f;25 + 8 3) ‘[’;;25 — '?le;gsﬁglnﬁ = U. (44f2l}

(x) [4{)311;3!,-..@ +1] L;‘;m —4011?1.3;4.;1'?;;,;9. (4.47)

where ma s = 369830 — 165393/5 and m3 49 = (]57554369 — 3438118221 ) .

We have:
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mi47 = 331745995375 + 1160364892501/21,

We obtain: 1063491990740,054608; we note that: (1063491990740,054608)"° =
1,6545042800359... and (1,6545042800359) * 8 = 13,2360342;
(1,6545042800359)*4 = 6,61801712 that are values very near to the Planck’s
constant and to the mass of the SMBH&7.

Now, we calculate the following double integral:

Pi * (1/(10)"39) * integrate integrate [1063491990740.054608]

[ 1.063491000740054608 x 10" ax| ax
[/ )

1072

1.670529312630269987 x 1077 »°

¥

g ferd
25107 |

y o | g
LY _ o | ,.-"
'- 2.x107=" |
% [ /
1

N 15x1072 |
1.0

; I i
{ (¥ from=1.2t01.2)
10~ |
B 1030 |
—_
0.5 0.5 1

]

Result very near to the value of the proton mass

From:

MODULAR EQUATIONS FOR THE RATIOS OF RAMANUJAN’S THETA
FUNCTION ¢ AND EVALUATIONS

M. S. MAHADEVA NAIKA, S. CHANDANKUMAR AND K. SUSHAN BAIRY
(Received August 2010)

We have:

—

VI3+5vV6+TV34+0v2 15+ 6v6+0v/3 +12V/2
NG ® V2 '

= (4.6)

That is equal to
36



(5,004983837549 + 5,5792454002) = 10,5842292; (10,5842292)"" = 1,6029938]1...
and (1,60299381) * 8 =12,82395; (1,60299381) * 4 =6,41197... that are values
very near to the reduced Planck’s constant and to the mass of the SMBHS7.

We calculate the following double integral:

Pi * (1/(10)"28) * integrate integrate [10.5842292]

l " " 5
mx—— [[[19.5342292£:x]£;x
l|:| x .

1.66257x 10727 ¥?

2.5%10° |

/
&

v

/ [ from=1.2t01.2)

x
0.5 1.0

And (1,66257) * 8 =13,30056; (1,66257) * 4 =6,65028 values very near to the
Planck’s constant and to the mass of the SMBHS7.

Now:

3+ 2v7 +4vV3+ V21 + VO + 24/21(2+ 3v/3 —7)
4 '

(4.15)

!
lg 7=

That is equal to: 27,37560109; we note that (27,37560109)1/7 =1,604492407... and

(1,604492407) * 8 =12,835939; (1,604492407) * 4 = 6,41796... that are values very

near to the reduced Planck’s constant and to the mass of the SMBHR7.

We calculate the following double integral:

Pi*4/8 * (1/(10)*29) * integrate integrate [27.37560109]

JTI_4

8 10%°.

['[‘['2?.3?550 109 dx] dx

1.66665% 10727 ¥°
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2.5%107% | /

\ 2.%10 —’_ /

[ from=1.2t01.2)

Result very near to the value of the proton mass.

Now:
Ig.9s = TVT + 11v/3 4+ 44/21 4+ 18 + (2 + VT)(2 + /3) /9 + 2V21. (4.21)

18,52025917 + 19,052558 + 18,33030 + 18 + (4,64575131)(3,7320508)(4,2620595)
= 147,79947... we note that (147,79947)"'° = 1,64803825... and (1,64803825) * 8
=13,184306; (1,64803825) * 4 =6,592153... that are values very near to the
reduced Planck’s constant and to the mass of the SMBHS&7.

We calculate the following double integral:

Pi*3/14 * (1/(10)"29) * integrate integrate [147.79947]

;|-3

14 1029 .

“{ 147.79947 dx) dx

1.63668 %1077 &*

\\ 2. %10 —’ :/;

1.5x10-2 |

(x from=1.2t01.2)

L1027 |

Result that is very near to the value of the proton mass.
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Chronology of the universe
From Wikipedia

Electroweak symmetry breaking[edit]
10™" seconds after the Big Bang

As the universe's temperature continued to fall below a certain very high energy
level, a third symmetry breaking occurs. So far as we currently know, it was the
final symmetry breaking event in the formation of our universe. It is believed that
below some energies unknown yet, the Higgs field spontaneously acquires a
vacuum expectation value. When this happens, it breaks electroweak gauge
symmetry. This has two related effects:

1. Via the Higgs mechanism, all elementary particles interacting with the Higgs
field become massive, having been massless at higher energy levels.

2. As a side-effect, the weak force and electromagnetic force, and their respective
bosons (the W and Z bosons and photon) now begin to manifest differently in
the present universe. Before electroweak symmetry breaking these bosons
were all massless particles and interacted over long distances, but at this point
the W and Z bosons abruptly become massive particles only interacting over
distances smaller than the size of an atom, while the photon remains massless
and remains a long-distance interaction.

After electroweak symmetry breaking, the fundamental interactions we know of —
gravitation, electromagnetism, the strong interaction and the weak interaction —
have all taken their present forms, and fundamental particles have mass, but the
temperature of the universe is still too high to allow the formation of many
fundamental particles we now see in the universe.

The quark epoch
Between 10~"7 seconds and 10”° seconds after the Big Bang

The quark epoch began approximately 10> seconds after the Big Bang. This was
the period in the evolution of the early universe immediately after electroweak
symmetry breaking, when the fundamental interactions of gravitation,
electromagnetism, the strong interaction and the weak interaction had taken their
present forms, but the temperature of the universe was still too high to allow
quarks to bind together to form hadrons.

During the quark epoch the universe was filled with a dense, hot quark—gluon
plasma, containing quarks, leptons and their antiparticles. Collisions between
particles were too energetic to allow quarks to combine into mesons or baryons.

The quark epoch ended when the universe was about 10 ° seconds old, when the
average energy of particle interactions had fallen below the binding energy of
hadrons.
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W and Z bosons
From Wikipedia, the free encyclopedia

The W and Z bosons are together known as the weak or more generally as the
intermediate vector bosons. These elementary particles mediate the weak

interaction; the respective symbols are W+, W , and Z. The W bosons have either a
positive or negative electric charge of 1 elementary charge and are each other's
antiparticles. The Z boson is electrically neutral and is its own antiparticle. The three
particles have a spin of 1. The W bosons have a magnetic moment, but the Z has
none. All three of these particles are very short-lived, with a half-life of about

3x107> s. Their experimental discovery was a triumph for what is now known as the
Standard Model of particle physics.

These bosons are among the heavyweights of the elementary particles. With masses
of 80.4 GeV/c> and 91.2 GeV/c, respectively, the W and Z bosons are almost
80 times as massive as the proton:

W: 80.379+0.012 GeV/c®  Z:91.1876+0.0021 GeV/c*

We note that: 80,379 /48 = 1,6745625; 80,379 /50 =1,60758 and 91,1876 /55 =
1,6579563; 91.1876 / 56 = 1,62835 values very near to the mass of the proton and
the electric charge of the electron.

B decay (electron emission)

An unstable atomic nucleus with an excess of neutrons may undergo 3 decay, where
a neutron is converted into a proton, an electron, and an electron antineutrino (the
antiparticle of the neutrino).

This process is mediated by the weak interaction. The neutron turns into a proton
through the emission of a virtual W boson. At the quark level, W emission turns a
down quark into an up quark, turning a neutron (one up quark and two down quarks)
into a proton (two up quarks and one down quark). The virtual W boson then decays

into an electron and an antineutrino.
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B* decay (positron emission)

Unstable atomic nuclei with an excess of protons may undergo B~ decay, also called
positron decay, where a proton is converted into a neutron, a positron, and an electron
neutrino.

Beta Decay

[f-decay, radioactive decay of an atomic nucleus accompanied by the escape of an
electron or positron from the nucleus. This process is caused by a spontaneous
transformation of one of the nucleons in the nucleus into a nucleon of another type—
specifically, a transformation either of a neutron (n) into a proton (p) or of a proton
into a neutron. In the former case, with an electron (e") escaping from the nucleus, so-
called B “decay takes place. In the latter case, with a positron (e") escaping from the
nucleus, B * -decay takes place. The electrons and positrons emitted in beta decay are
termed beta particles. The mutual transformations of the nucleons are accompanied
by the appearance of still another particle—the neutrino (v) in the case of " -decay,
the antineutrino (v) in the case of f~ -decay. In ™ -decay, the number of protons (Z) in
the nucleus increases by a unit and the number of neutrons decreases by a unit. The
mass number A4 of the nucleus—equal to the total number of nucleons present in the
nucleus—does not vary, and the product nucleus is an isobar of the original nucleus,
standing on the right of the latter in the periodic table of the elements. Conversely,
the number of protons in B -decay decreases by a unit and the number of neutrons
increases by a unit, so that an isobar standing to the left of the original nucleus is
formed. The two beta decay processes are written symbolically as

;x"*z+1x S A
*;xn*z_’}x + &'+ v
where #Xis the symbol of the nucleus, consisting of Z protons and 4 - Z neutrons.

The simplest example of B~ -decay is the transformation of a free neutron into a
proton with the emission of an electron and an antineutrino (neutron half-life =~ 13
min)

1 B~ 1 - -
ﬂn—;]p+c + v
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Higgs Boson

The Higgs boson is an elementary, massive and scalar boson that plays a fundamental
role within the standard model. It was theorized in 1964 and detected for the first
time in 2012 in the ATLAS and CMS experiments, conducted with the LHC
accelerator of CERN. Its importance is to be the particle associated with the Higgs
field, which according to the theory permeates the universe by giving the mass to
elementary particles.

Since the Higgs field is scalar, the Higgs boson has no spin. The Higgs boson is also
its own antiparticle and is CP-even, and has zero electric and colour charge.

The Standard Model does not predict the mass of the Higgs boson. If that mass is
between 115 and 180 GeV/c” (consistent with empirical observations of 125 GeV/c?),
then the Standard Model can be valid at energy scales all the way up to the Planck
scale (10" GeV).

We note that 1,602176 * 78 = 124,969728 and 1,672621 * 74 = 123,773954
where 1,602176 and 1,672621 are the electric charge of the positron and the mass of
the proton respectively.

Furthermore, we have that:

125,09 * 9 * 10'° = 11258100000000000000;  (11258100000000000000)"* =
= 1,6027082167167

Now, we want to analyze the parabola plots concerning the results of the various
double integrals. Indeed, for all values i.e. for the electric charge of positron, the mass
of the proton and the mass of the Higgs boson, the plot is always a parabola of this

type:

\‘\ 1.5x10-19 | v

[ (# from=1.2t01.2)
w1019
Mg10-20 |

—— x

1.0 0.5 ' 0.5 1.0

With regard the quantum harmonic oscillator, we note the following graphs:
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which represent the potential energy and probability density associated with the
ground state and the first excited states of the harmonic oscillator

From Wikipedia:

Quantum harmonic oscillator

T T ——

1

fien/2

Toﬁ') - X

Fig.: Wavefunction representations for the first eight bound eigenstates, » = 0 to 7. The horizontal
axis shows the position x. Note: The graphs are not normalized, and the signs of some of the
functions differ from those given in the text. (Wave function representations for the first eight
linked eigenstates).

This suggests that the graphs representing the parables associated with the particle
type solutions of the integrals carried out, could mean that electrons / positrons,
protons / neutrons and massive bosons, such as the Higgs one, are open strings. It is
important to underline that from the graphs mentioned above, it is highlighted that
these strings are in a sort of "ground state", therefore they are "static" strings.
Subsequently, due to the quantum fluctuations of the false vacuum, these strings pass
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from an inert state to a dynamic state, in which they begin to vibrate and behave like
waves, as happens for the quantum harmonic oscillator.

So, this could mean that, the static parabola represented in the graphs, is the
corpuscular nature of the electron, the proton and the Higgs boson, while the graph,
always of the parabolic type, of the harmonic oscillator, their wave nature (dualism
wave-particle)

One-dimensional harmonic oscillator

Hamiltonian and energy eigenstates

The Hamiltonian of the particle is:

A2 ~2
.~ D 1. . D 1 "
H=_——+ ki’ = — + -mu*#?,
2m 2 2m 2
where M is the particle’s mass,k is the force constant,w = 4 f — is the angular frequencyof rthe oscillator, # is the position operator

(given by X), andﬁ is the momentum operator {given b_\_ffi = —iﬁa ). The first term in the [Iamiltonian represents the kinetic

energy of the particle, and the secand term represnts its potential enepy, as in Hooke's law:

Onc may write the time independentSchrddinger equarion
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Hiy)=E|y) , .

where E denotes a to-be-determined real number that will specify a time-
independent energy level, or eigenvalue, and the solution |/} denotes that level's

energy eigenstate.

One may solve the differential equation representing this eigenvalue problem in the

coordinate basis, for the wave function {X|l;.'l) = q’J[X), using a spectral method. It ! ;.:'.- -

fims out that there is a family of solutions. Tn this basis, they amount to Hermite wavefunction representations for the

functions, first eight bound eigenstates,n = 0 to
7. The horizontal axis shows the
position x. Note: The graphs are not
normalized, and the signs of some of
the functions difer frcm those given

in the text.
]
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Corresponding probability densities.

1 mw\1/4 _mw? mw
1&“[;)_?‘(5) e 2 - H, Ta: ) n=012,....
V2" nl

The functions Hy, are the physicists'Hermite polynomials

H,(z) =(-1)" e % (e'zn) .

The corresponding enegy levels are

E, = hw n—{—% =(2n+1);w.

This energy spectrum is noteworthy for three reasons. First, the energies are quantized, meaning that only discrete energy values
(integer-plus-half multiples off1() are possible; this is a general feature of quantum-mechanicalsysterns when a particle is confined
Second, these discrete energy levels are equally spaced, unlike in the Bohr model of the atom, or the particle in a box. Third, the
lowest achievable energy (the energy of the 11 = O state, called the ground state) is not equal to the minimum of the potential well,
but [1¢5/2 above it; this is called zero-point eneigy. Because of the zero-point energy, the position and momentum of the oscillator in
the ground state are not fixed (as thev would be in a classical oscillator), but have a small range of variance, in accordance with the

Heisenberg uncertainty principle

The ground state probability density is concentrated at the origin, which means the particle spends most of its time at the bottom of
the potential well, as one would expect for a state with little eneizy. As the energy increases, the probability density peaks at the
classical "turning points”, where the state’s enegv coincides with the potential enegy. (See the discussion below of the highlv excited

states.) This is consistent with the classical harmonic oscillator, in which the particle spends more of its time (and is therefore more
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likely to be found) near the twning peints, where it is moving the slowest. The correspondence principleis thus satisfied. Moreover,
special nondispersive wave packets, with minimum uncertainty, called coherent states oscillate very much like classical objects, as

illustrated in the figure; they arenot eigenstates of the Hamiltonian.

From:
http://www.umich.edu/~chem461/Ex5.pdf

1. For a classical harmonic oscillator, the particle can not go beyond the
points where the total energy equals the potential energv. Identify these
points for a quantnm-mechanical harmonic oscillator in its ground state.
Write an integral giving the probability that the particle will go beyond
these classically-allowed points. (You need not evaluate the integral.)

B 3 =

2. Evalunate the average (expectation) valnes of potential energ

== A L

I..‘I

=4

=

'—'.

e

T oA

1
energy for the grmlm_l ‘atdtf;‘. of the harmonie oscillator. Cnmm
relalive magnilude of Lhese two quanlities.

3. Apply the Heisenberg uncertainty principle to the ground state of the
harmonic oscillator. Applying the formula for expectation values, calculate

Ax = 4f (x2).—{x)? ancl Ap = /(p?) — (p)?

and [ind the product AxzAp.
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1. The turning points for quantum number occur where the kinetic energy
equals 0, so that the potential energy equals the total energy. For quantum
number n, this is determined by

1
Ei\f;ztﬁmx — (n + E) hw
recalling that w = /k/m and o = Vmk /h, we find

hi 2n+1
2 = (2n+1) ! :(”4_)

max
v km v

Therefore

PlZinas € & € 00) = P(—60 €% € —Fi) = / \-1;"1n(:17_)|2 da

[Optional: For n = 0,

e v\ 1/2 ; 2 oo
Poutside = 2/ (2) L Tf et d
tiva * T T ol

where erfc is the complementary error function. This result means that in
the ground state, there is a 167, chance that the oscillator will “tunnel”
outside its classical allowed region.]

S
I
5]
4
o Y
o)
-
Q
=
[—y
o
[¢'a]

2.
o(z) = (a-/:fr)l/ile_mzﬂ, o = (mk/h?)Y?

Using integrals in Supplement 5,

<L > — / 'QIO(,I) (gkl ) '?_;.‘U(I) dr = E = lﬁu«‘ == EED

o — 00 =
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Thus the average values of potential and kinetic energies for the harmonic
oscillator are equal. This is an instance of the virial theorem. which states
that for a potential energy of the form V' (r) = const ™, the average kinetic
and potential energies are related by

3. The expectation values (z) and (p) are both equal to zero since they
are integrals of odd functions, such that f(—z) = — f(x), over a symmetric
range of integration. You have already calculated the expectation values
{_.E\,_..lf,Q i Beereise 9. e sy
x®) and (p?) in Exercise 2, namely

2
hoa
9

&t

1 2
— and =
2a ‘ )

Therefore

AzAp =

€

bo | ¢

which is its minimum possible value.

We know that the reduced Planck’s constant is:
h = 1,054 571 726(47) x 107> J.s = 6,582 119 28(15) x 10 ® eV - 5
Thence, we have that the minimum possible value is:

h 6582119 x 10716 _
AxAp = 5= > = 3,2910595 x 10716

Now, we calculate the following double integrals:

(2#1.618*Pi) * 1/(10"12) integrate integrate [0.00000000000000032910595]

1 - -
(2 1.618 1)« —— [JB.EQIDSQleU'IE’JI]JI
1|:|12

Result:

1.67288 % 10727 »?

Plot:
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2.5%10720 |

2.%107 |

Laape L (x from=1.2to0 1.2}

w10~ |

)-8 |

B 1L

-1.0 -0.5 ) 0.5 1.0

Or:

1.08643 * (8P1/27) * 1/(10"11) integrate integrate [0.00000000000000032910595]

1.08643(8 - —_ L. ‘[j‘B.EQIDSQSxID_mdx]dx

2';-" 1|:|11
Result:
1.66412x 1077 x*
Plot:

¥
25%1075

(x from=1.2t01.2)

-1.0 -0.5 ) 0.5 1.0

Or:

(Pi*2) * 1/(10"4) integrate integrate [0.00000000000000032910595]

1 " "
sy J U 3.2010595x 1071 d'x] %
10*

Result:

1.62407 %107 &*

Plot:

2 w1019 |

Y
1.5=10 |
' | (# from=1.2t01.2)

1.x10719]
B 102 |

-1.0 -0.5 ' 0.5 1.0

And
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1.08643 (7*Pi"2) (10"16) integrate integrate [0.00000000000000032910595]
1.08643 (7%} 10'6 f[[3.291&595“(3'164::']4;:

123.511 °

[ from=1.2t01.2)

Value very near to the mass of the Higgs boson, while the energy from the E = mc?,
considering the value 125,09 is 11,2581 * 10'® . Note that (11,2581 * 10'%)""¥ =
1,63704797... value very near to the mass of the proton.

We now calculate the following double integral:
1.08643 (Pi/12) * 1/(10"37) * integrate integrate [11.2581*10"18]

T 1
1.08643 . — =
12 1037 .

“ f'll.zsm g™ dx] dx

1.60105x107%° ¥?

1.60105 * 10" result very near to the value of the electric charge of positron

(o from=1.2t01.2)

1.08643 (Pi*5/(3*37)) * 1/(10746) * integrate integrate [11115990000000000000]

That is the value of the energy obtained from 123,511
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e 1 -

1.08643 —
3237 qp4b

[fll 115 990000 000 000 000 x| dx

Result:

1.66474 % 10727 x?

¥
25%1075

2. %1077 |

Lampe L (x from=1.2to0 1.2}

Or:

1.08643 * (e) * 1/(10°46) * integrate integrate [11115990000000000000]

1 3 N
1.08643 ¢ - —— U1111599DDDDDDDDDDuuwx]dx

1D46

Result:

1.6414%x 10727 »?

¥

2.x10-3 |

151027 |
i [ [ from=1.2tcl.2)

1.%107 |

Results 1.66474 * 10" and 1.6414 * 10" that are good approximations of the
proton mass
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