An Elementary Proof of Goldbach's Conjecture

Michael Hatfield*

Abstract

Goldbach's conjecture is proven using the Chinese Remainder Theorem. It is shown that an even number $2 N$ greater than four cannot exist if it is congruent to every prime p less than $N(\bmod$ a different prime number).

1 Introduction

Goldbach's Conjecture states that every even number greater than two is the sum of two primes. In 2013, Helfgott showed that Goldbach's weak conjecture was true. ${ }^{[1]}$ The strong conjecture has been empirically verified to $4 \times 10^{18[2]}$ but remains unproven. The following is a proof of the strong conjecture.

2 Proof

Every even number greater than four can be written as the sum of two odd numbers. Let \mathbb{P} be the set of odd prime numbers. Then for $p \in \mathbb{P}$ and $q \in \mathbb{P}$, assume the following theorem is true

Theorem 1 There exists an even number $2 N \in \mathbb{Z}, N>2$, such that for all p_{i} where $i \leq \pi(N)$

$$
2 N=p_{i}+a_{i} q_{i}
$$

where $a_{i} \in \mathbb{Z}, a_{i}>1$, and $\pi(N)$ is the prime-counting function.
Theorem 1 requires a solution to the following system of congruences

$$
\begin{aligned}
2 N & \equiv p_{1} \quad\left(\bmod q_{1}\right) \\
2 N & \equiv p_{2} \quad\left(\bmod q_{2}\right) \\
& \vdots \\
2 N & \equiv p_{\pi(N)} \quad\left(\bmod q_{\pi(N)}\right)
\end{aligned}
$$

For any number m, the modular multiplicative inverse of $2(\bmod m)$ is $(m-1) / 2+1$ since

$$
2\left(\frac{m-1}{2}+1\right) \equiv 1 \quad(\bmod m)
$$

Then the system of congruences becomes

$$
\begin{aligned}
N & \equiv p_{1}\left(\frac{q_{1}-1}{2}+1\right) \quad\left(\bmod q_{1}\right) \\
N & \equiv p_{2}\left(\frac{q_{2}-1}{2}+1\right) \quad\left(\bmod q_{2}\right) \\
& \vdots \\
N & \equiv p_{\pi(N)}\left(\frac{q_{\pi(N)}-1}{2}+1\right) \quad\left(\bmod q_{\pi(N)}\right)
\end{aligned}
$$

[^0]From the Chinese Remainder Theorem, one solution to this system of congruences is

$$
N=\sum_{i=1}^{\pi(N)} p_{i}\left(\frac{q_{i}-1}{2}+1\right) \frac{Q}{q_{i}} z_{i}
$$

where $Q=\prod_{i=1}^{\pi(N)} q_{i}$ and z_{i} is the modular multiplicative inverse of $Q / q_{i} . Q$ is independent of the sum so it can be factored out

$$
\begin{equation*}
N=Q \sum_{i=1}^{\pi(N)} \frac{p_{i}\left(\frac{q_{i}-1}{2}+1\right) z_{i}}{q_{i}} \tag{1}
\end{equation*}
$$

$Q \geq 3^{\pi(N)} \approx 3^{\frac{N}{\ln (N)}}$ so $N<Q$. Then the summation in the right side of (1) must be less than one for a valid solution to exist.

$$
\begin{aligned}
& \sum_{i=1}^{\pi(N)} \frac{p_{i}\left(\frac{q_{i}-1}{2}+1\right) z_{i}}{q_{i}}<1 \\
& \sum_{i=1}^{\pi(N)}\left(\frac{p_{i} z_{i}}{2}+\frac{p_{i} z_{i}}{2 q_{i}}\right)<1 \\
& \sum_{i=1}^{\pi(N)} \frac{p_{i} z_{i}}{2}+\sum_{i=1}^{\pi(N)} \frac{p_{i} z_{i}}{2 q_{i}}<1
\end{aligned}
$$

For the left side to be less than $1, \sum_{i=1}^{\pi(N)} p_{i} z_{i}$ must be less than 2 . But $p_{i} \geq 1$ and $z_{i} \geq 1$, so $\sum_{i=1}^{\pi(N)} p_{i} z_{i} \geq 2$ since $\pi(N)$ is at least 2 .
Therefore, no solution exists and Theorem 1 is false. Together with $4=2+2$, every even number greater than two can be written as the sum of two primes.

References

${ }^{[1]}$ Helfgott, Harald A. The ternary Goldbach conjecture is true. Available at arXiv:1312.7748
${ }^{[2]}$ Toms Oliveira e Silva, Siegfried Herzog, and Silvio Pardi, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4×10^{18}, Mathematics of Computation, vol. 83, no. 288, pp. 2033-2060, July 2014 (published electronically on November 18, 2013).

[^0]: *Michael Hatfield — mhatfield@nym.hush.com

