An interesting property of Euler's totient function

Moreno Borrallo, Juan
March 11, 2020
e-mail: juan.morenoborrallo@gmail.com
"Entia non sunt multiplicanda praeter necessitatem" (Ockam, W.
"Dios no juega a los dados con el Universo" (Einstein, Albert)
"Te doy gracias, Padre, porque has ocultado estas cosas a los sabios y entendidos y se las has revelado a la gente sencilla" (Mt 11,25)

Abstract

In this brief paper it is proved that, for some positive integer n and some prime number $q<n$ such that $\operatorname{gcd}(q, n)=1$, it holds that the set $S=\{x: 0 \leq x \leq n, \operatorname{gcd}(x, q n)=1\}$ has no less than $\frac{\varphi(q n)}{2 q}$ elements.

2010MSC: 11A99

1 Theorem

Let $\varphi(n)=n \prod_{p \mid n}\left(\frac{p-1}{p}\right)$ denote the Euler's totient function, which counts the number of elements of the set $\{x: 0 \leq x \leq n, \operatorname{gcd}(x, n)=1\}$. In this paper it is proved the following

Theorem. Let it be some positive integer n, and some prime number $q<n$ such that $\operatorname{gcd}(q, n)=1$. Then, it holds that $S=\{x: 0 \leq x \leq n, \operatorname{gcd}(x, q n)=1\}$ has no less than $\frac{\varphi(q n)}{2 q}$ elements.

1.1 Proof for n being some prime number

If $n=p$, where p is some prime number, and $q<p$, then to get the elements of S we need to substract from $\varphi(p)$ those numbers that are multiples of q; as there are only $\left\lfloor\frac{p}{q}\right\rfloor$ numbers less than p are relatively prime to p and not relatively prime to $q p$, we have that

$$
|S|=\varphi(p)-\left\lfloor\frac{p}{q}\right\rfloor
$$

As $q \nmid p$, we can affirm that

$$
\left\lfloor\frac{p}{q}\right\rfloor \leq \frac{p-1}{q}=\frac{\varphi(p)}{q}
$$

And subsequently we get that

$$
|S| \geq \varphi(p)-\frac{\varphi(p)}{q}
$$

Operating, we get that

$$
\begin{aligned}
& |S| \geq \varphi(p)\left(1-\frac{1}{q}\right) \\
& |S| \geq \varphi(p)\left(\frac{q-1}{q}\right)
\end{aligned}
$$

As $\operatorname{gcd}(q, p)=1$, and applying the multiplicative properties of $\varphi(n)$, we get that

$$
\varphi(p)\left(\frac{q-1}{q}\right)=\frac{\varphi(p) \varphi(q)}{q}=\frac{\varphi(q n)}{q}
$$

Therefore, for n being some prime number,

$$
|S| \geq \frac{\varphi(q n)}{q}>\frac{\varphi(q n)}{2 q}
$$

And the theorem is proved for this particular case.

1.2 Proof for n being some composite number

If n is some composite number, then less than $\left\lfloor\frac{n}{q}\right\rfloor$ numbers less than n are relatively prime to n and not relatively prime to $q n$; concretely, the multiples of q and each prime factor of n could be double-excluded by $\varphi(n)$ and $\frac{n}{q}$, and therefore need to be added once if necessary. Therefore,

$$
|S|=\varphi(n)-\left\lfloor\frac{n}{q}\right\rfloor+\sum_{p \mid n}\left(\left\lfloor\frac{n}{q p}\right\rfloor\right)
$$

Where $\sum_{p \mid n}\left(\left\lfloor\frac{n}{q p}\right\rfloor\right)$ counts the common multiples of q and each prime factor of n, which already are double excluded by $\varphi(n)$ and $\frac{n}{q}$.

We have that

$$
\begin{gathered}
\left\lfloor\frac{n}{q}\right\rfloor \leq \frac{n-1}{q} \\
\sum_{p \mid n}\left(\left\lfloor\frac{n}{q p}\right\rfloor\right) \geq \sum_{p \mid n}\left(\frac{n-(q-1) p}{q p}\right)
\end{gathered}
$$

As

$$
\sum_{p \mid n}\left(\frac{n-(q-1) p}{q p}\right)=\sum_{p \mid n}\left(\frac{n}{q p}-1+\frac{1}{q}\right)
$$

Thus, we can affirm that

$$
|S|>\varphi(n)-\frac{n-1}{q}+\sum_{p \mid n}\left(\frac{n}{q p}\right)-\omega(n)+\frac{\omega(n)}{q}
$$

Where $\omega(n)$ counts the number of distinct prime divisors of n.
Operating, we get that

$$
|S|>\varphi(n)-\frac{n}{q}\left(1-\sum_{p \mid n}\left(\frac{1}{p}\right)\right)+\frac{1}{q}-\omega(n)+\frac{\omega(n)}{q}
$$

For $\omega(n)>1$, it is easy to show that

$$
\prod_{p \mid n}\left(\frac{p-1}{p}\right)-\frac{1}{n} \geq 1-\sum_{p \mid n}\left(\frac{1}{p}\right)
$$

Therefore,

$$
|S|>\varphi(n)-\frac{n}{q}\left(\prod_{p \mid n}\left(\frac{p-1}{p}\right)-\frac{1}{n}\right)+\frac{1}{q}-\omega(n)+\frac{\omega(n)}{q}
$$

As $\varphi(n)=n \prod_{p \mid n}\left(\frac{p-1}{p}\right)$, we have that

$$
|S|>\varphi(n)-\frac{\varphi(n)}{q}+\frac{2}{q}-\omega(n)\left(1-\frac{1}{q}\right)
$$

Operating,

$$
\begin{aligned}
& |S|>\varphi(n)\left(\frac{q-1}{q}\right)+\frac{2}{q}-\omega(n)\left(\frac{q-1}{q}\right) \\
& |S|>\varphi(n)\left(\frac{\varphi(q)}{q}\right)+\frac{2}{q}-\omega(n)\left(\frac{\varphi(q)}{q}\right)
\end{aligned}
$$

As $\operatorname{gcd}(q, n)=1$, and applying the multiplicative properties of $\varphi(n)$, we have that

$$
\varphi(q n)=\varphi(n) \varphi(q)
$$

Thus,

$$
|S|>\frac{\varphi(q n)+2}{q}-\omega(n)\left(\frac{\varphi(q)}{q}\right)
$$

As the rate of growth of $\omega(n)$ is much lesser than the rate of growth of $\frac{\varphi(n)}{2}$, then we can affirm that, excepting the cases $n=6$ and $n=15$, which can be verified manually to fulfill the theorem,

$$
\omega(n)<\frac{\varphi(n)}{2}
$$

Then we have that

$$
\frac{\omega(n) \varphi(q)}{q}<\frac{\varphi(n) \varphi(q)}{2 q}
$$

And subsequently

$$
\frac{\varphi(q n)+2}{q}-\omega(n)\left(\frac{\varphi(q)}{q}\right)>\frac{\varphi(q n)}{2 q}
$$

Therefore, for n being some composite number,

$$
|S|>\frac{\varphi(q n)}{2 q}
$$

And the theorem is proved.

