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"Entia non sunt multiplicanda praeter necessitatem" (Ockam,
w.)

"Dios no juega a los dados con el Universo” (Einstein, Albert)

"Te doy gracias, Padre, porque has ocultado estas cosas a los
sabios y entendidos y se las has revelado a la gente sencilla” (Mt
11,25)

Abstract

In this brief paper it is proved that, for some positive integer n and
some prime number g < n such that ged (¢,n) = 1, it holds that the set
S={x:0<z<n,ged(z,gn) = 1} has no less than %ﬂ) elements.
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1 Theorem

Let o (n) = an‘n (”%) denote the Euler’s totient function, which counts the

number of elements of the set {z : 0 <z < n, ged (x,n) = 1}. In this paper it
is proved the following

Theorem. Let it be some positive integer n, and some prime number ¢ < n such
that ged (¢,n) = 1. Then, it holds that S = {z : 0 <z < n, ged (z,qn) = 1}

has no less than %q”) elements.

1.1 Proof for n being some prime number

If n = p, where p is some prime number, and ¢ < p, then to get the elements of .S
we need to substract from ¢ (p) those numbers that are multiples of ¢; as there
are only L%J numbers less than p are relatively prime to p and not relatively
prime to ¢p, we have that
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And subsequently we get that
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Operating, we get that
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As ged (q,p) = 1, and applying the multiplicative properties of ¢ (n), we get
that
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Therefore, for n being some prime number,
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And the theorem is proved for this particular case.

1.2 Proof for n being some composite number

If n is some composite number, then less than [%J numbers less than n are

relatively prime to n and not relatively prime to gn; concretely, the multiples of
g and each prime factor of n could be double-excluded by ¢ (n) and %, and there-
fore need to be added once if necessary. Therefore,

|S|=<p(n)—LZJ+z|;(Lq7;J)

Where Zp‘n (L%J) counts the common multiples of ¢ and each prime factor of

n, which already are double excluded by ¢ (n) and %.

We have that
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Thus, we can affirm that
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Where w (n) counts the number of distinct prime divisors of n.

Operating, we get that

|S‘>‘P(n)—g 1—Z<1> +1—w(n)+w(n)



For w (n) > 1, it is easy to show that
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Asp(n) =n]],, (”p%l), we have that
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Operating,

s (15 2 (152)

510 (29 12 - (£12)

As ged (¢,n) = 1, and applying the multiplicative properties of ¢ (n), we have
that

¢ (gn) = ¢ (n) ¢ (q)

Thus,
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As the rate of growth of w (n) is much lesser than the rate of growth of @, then
we can affirm that, excepting the cases n = 6 and n = 15, which can be verified
manually to fulfill the theorem,

Then we have that




And subsequently
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Therefore, for n being some composite number,
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And the theorem is proved.



