An interesting property of Euler’s totient
function

Moreno Borrallo, Juan

March 3, 2020

e-mail: juan.morenoborrallo@gmail.com

"Entia non sunt multiplicanda praeter necessitatem" (Ockam,
w.)

"Dios no juega a los dados con el Universo” (Einstein, Albert)

"Te doy gracias, Padre, porque has ocultado estas cosas a los
sabios y entendidos y se las has revelado a la gente sencilla” (Mt
11,25)

Abstract

In this brief paper it is proved that, for some positive integer n and
some prime number g < n such that ged (¢,n) = 1, it holds that the set
S={x:0<z<n,ged(z,gn) = 1} has no less than %ﬂ) elements.
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1 Theorem

Let ¢ (n) =n]],, (pp%l) denote the Euler’s totient function, which counts the

number of elements of the set {z : 0 <z < n, ged (z,n) = 1}. In this paper it
is proved the following

Theorem. Let it be some positive integer n, and some prime number ¢ < n such
that ged (¢,n) = 1. Then, it holds that S = {z : 0 <z <mn, ged (x,¢gn) = 1}
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has no less than elements.

1.1 Proof for n being some prime number

If n = p, where p is some prime number, applying the multiplicative proper-
ties of ¢ (n) and taking into account that ged(g,n) = 1, then we have that
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Other hand, if p is some prime number and ¢ < p, then L%J numbers less than
p are relatively prime to p and not relatively prime to gp; thus, we have that
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Therefore, and noting that
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We can affirm that
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Operating, we have that
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Thus, for proving the theorem for n being some prime number it suffices to show

that
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As 24 > 0, then it follows that £ ((2 - -285) — (1= 1)) > 0 when (2 - ;2) -
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Operating,

(1 — %) > 0; subsequently, we need to evaluate only this last expression.

Operating,
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As g > 0, then it follows that qun) >0 when ¢g+1— % > 0; subsequently,
we need to evaluate only this last expression.

As the minimum value of ¢ is ¢ = 2, we could affirm that ¢ + 1 — % > 0 for

every value of ¢ and n if % < 3.

As

And % < 3 for every n prime number greater than 3, we can affirm that, for

every prime number p > 3,
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We can check manually that for p = 2 there exists no prime g < p (and therefore,
the theorem is not applicable); and for p = 3 there exists only one prime ¢ < p
(¢ = 2). It could be checked that
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Subsequently, for every prime number p < 3, the theorem holds.
Therefore, for n being some prime number,
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And the theorem is proved for this particular case.

1.2 Proof for n being some composite number

If n is some composite number, then less than L%J numbers less than n are rela-
tively prime to n and not relatively prime to gn; concretely,
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Therefore, and noting that

We can affirm that



Where each % counts the common multiples of ¢ and each prime factor of n,
which are double excluded by ¢ (n) and %, and therefore need to be added
once; and w (n) counts the number of distinct prime divisors of n, which need to
be substracted when transforming L%J into (;’—p to avoid overestimation of the
minimum value of | S |.

Operating, we get that

For w (n) > 1, it is easy to show that
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Therefore,
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Asp(n) =n]],, (pp%l), we have that
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As before, we have that
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Thus, for proving the theorem for n being some composite number it suffices to

show that
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Operating,




Ag #lan) _ o(n) (1 — %), subtituting,
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By the definition of ¢ (n), and as ged (¢, n) = 1, we have that

o 05 (5

pln

If n is composite, then n = p'ps?...p%". Thus, we can affirm that
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It can bee seen that an increase of one unit in w(n) implies an increase of
Pt (p— 1) in 242,

Thus, as pp* (p —1) > 1 for every prime number, it follows that the rate of

growth of w (n) is much lesser than the rate of growth of @.
q

Looking for the minimum values of w (n) and “"(;q") for n composite, we find
only two cases where the inequality %q") > w (n) does not hold:

e n=06and ¢=>5, as “0(1%0)<w(6)

e n=15and ¢ =2, as 220 =, (15)

However, checking manually, we find that



Subsequently,
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Therefore, for this two particular cases the theorem holds.
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then we can affirm that the inequality %q”) > w(n) holds in the rest of the
cases.

As the rate of growth of w (n) is much lesser than the rate of growth of

Therefore, for n being some composite number,
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And the theorem is proved.



