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"Entia non sunt multiplicanda praeter necessitatem" (Ockam,
W.)

"Dios no juega a los dados con el Universo� (Einstein, Albert)
"Te doy gracias, Padre, porque has ocultado estas cosas a los

sabios y entendidos y se las has revelado a la gente sencilla� (Mt
11,25)

Abstract

In this brief paper it is proved that, for some positive integer n and

some prime number q < n such that gcd (q, n) = 1, it holds that the set

S = {x : 0 ≤ x ≤ n, gcd (x, qn) = 1} has no less than
ϕ(qn)
2q

elements.
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1 Theorem

Let ϕ (n) = n
∏
p|n

(
p−1
p

)
denote the Euler's totient function, which counts the

number of elements of the set {x : 0 ≤ x ≤ n, gcd (x, n) = 1}. In this paper it
is proved the following

Theorem. Let it be some positive integer n, and some prime number q < n such
that gcd (q, n) = 1. Then, it holds that S = {x : 0 ≤ x ≤ n, gcd (x, qn) = 1}
has no less than ϕ(qn)

2q elements.

1.1 Proof for n being some prime number

If n = p, where p is some prime number, applying the multiplicative proper-
ties of ϕ (n) and taking into account that gcd (q, n) = 1, then we have that

ϕ (qn)

2q
=

ϕ (n)ϕ (q)

2q
=

ϕ (n)

2

(
q − 1

q

)
=

ϕ (n)

2

(
1− 1

q

)
Other hand, if p is some prime number and q < p, then bpq c numbers less than
p are relatively prime to p and not relatively prime to qp; thus, we have that

| S |= ϕ (n)− bn
q
c

Therefore, and noting that

bn
q
c < n

q

We can a�rm that

| S |> ϕ (n)− n

q

Operating, we have that

n

q
=

n

qϕ (n)
ϕ (n)

ϕ (n)− n

q
= ϕ (n)

(
1− n

qϕ (n)

)

ϕ (n)

(
1− n

qϕ (n)

)
=

ϕ (n)

2

(
2− 2n

qϕ (n)

)
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Thus, for proving the theorem for n being some prime number it su�ces to show
that

ϕ (n)

2

(
2− 2n

qϕ (n)

)
>

ϕ (n)

2

(
1− 1

q

)
Operating,

ϕ (n)

2

(
2− 2n

qϕ (n)

)
− ϕ (n)

2

(
1− 1

q

)
> 0

ϕ (n)

2

((
2− 2n

qϕ (n)

)
−
(
1− 1

q

))
> 0

As ϕ(n)2 > 0, then it follows that ϕ(n)2

((
2− 2n

qϕ(n)

)
−
(
1− 1

q

))
> 0 when

(
2− 2n

qϕ(n)

)
−(

1− 1
q

)
> 0; subsequently, we need to evaluate only this last expression.

Operating,(
2− 2n

qϕ (n)

)
−
(
1− 1

q

)
=

q + 1

q
− 2n

qϕ (n)
=

(
q + 1− 2n

ϕ(n)

q

)

As q > 0, then it follows that
q+1− 2n

ϕ(n)

q > 0 when q+1− 2n
ϕ(n) > 0; subsequently,

we need to evaluate only this last expression.

As the minimum value of q is q = 2, we could a�rm that q + 1 − 2n
ϕ(n) > 0 for

every value of q and n if 2n
ϕ(n) < 3.

As

2n

ϕ (n)
=

2n

n− 1

And 2n
n−1 < 3 for every n prime number greater than 3, we can a�rm that, for

every prime number p > 3,

ϕ (pq)

2q
< ϕ (p)− p

q
<| S |

3



We can check manually that for p = 2 there exists no prime q < p (and therefore,
the theorem is not applicable); and for p = 3 there exists only one prime q < p
(q = 2). It could be checked that

ϕ (6)

4
=

1

2

ϕ (3)− b3
2
c = 1

ϕ (6)

4
< ϕ (3)− b3

2
c =| S |

Subsequently, for every prime number p ≤ 3, the theorem holds.

Therefore, for n being some prime number,

| S |> ϕ (qn)

2q

And the theorem is proved for this particular case.

1.2 Proof for n being some composite number

If n is some composite number, then less than bnq c numbers less than n are rela-
tively prime to n and not relatively prime to qn; concretely,

| S |= ϕ (n)− bn
q
c+

∑
p|n

(
b n
qp
c
)

Therefore, and noting that

bn
q
c < n

q

∑
p|n

(
b n
qp
c
)

>
∑
p|n

(
n

qp

)
− ω (n)

We can a�rm that

| S |> ϕ (n)− n

q
− ω (n) +

∑
p|n

(
n

qp

)
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Where each n
qp counts the common multiples of q and each prime factor of n,

which are double excluded by ϕ (n) and n
q , and therefore need to be added

once; and ω (n) counts the number of distinct prime divisors of n, which need to
be substracted when transforming b nqpc into

n
qp to avoid overestimation of the

minimum value of | S |.

Operating, we get that

| S |> ϕ (n)− n

q

1−
∑
p|n

(
1

p

)− ω (n)

For ω (n) > 1, it is easy to show that∏
p|n

(
p− 1

p

)
> 1−

∑
p|n

(
1

p

)

Therefore,

| S |> ϕ (n)− n

q

∏
p|n

(
p− 1

p

)− ω (n)

As ϕ (n) = n
∏
p|n

(
p−1
p

)
, we have that

| S |> ϕ (n)− ϕ (n)

q
− ω (n)

| S |> ϕ (n)

(
1− 1

q

)
− ω (n)

As before, we have that

ϕ (qn)

2q
=

ϕ (n)

2

(
1− 1

q

)
Thus, for proving the theorem for n being some composite number it su�ces to
show that

ϕ (n)

(
1− 1

q

)
− ω (n) >

ϕ (n)

2

(
1− 1

q

)
Operating,

ϕ (n)

(
1− 1

q

)
− ω (n)− ϕ (n)

2

(
1− 1

q

)
> 0

ϕ (n)

2

(
1− 1

q

)
− ω (n) > 0
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As ϕ(qn)2q = ϕ(n)
2

(
1− 1

q

)
, subtituting,

ϕ (qn)

2q
− ω (n) > 0

ϕ (qn)

2q
> ω (n)

By the de�nition of ϕ (n), and as gcd (q, n) = 1, we have that

ϕ (qn)

2q
=

ϕ (n)ϕ (q)

2q
= n

∏
p|n

(
p− 1

p

)(q − 1

2q

)

If n is composite, then n = pα1
1 pα2

2 ...pαn
n . Thus, we can a�rm that

ϕ (qn)

2q
=
(
pα1−1
1 pα2−1

2 ...pαn−1
n

)∏
p|n

(p− 1)

(q − 1

2q

)

It can bee seen that an increase of one unit in ω (n) implies an increase of

pαk

k (p− 1) in ϕ(qn)
2q .

Thus, as pαk

k (p− 1) > 1 for every prime number, it follows that the rate of

growth of ω (n) is much lesser than the rate of growth of ϕ(qn)2q .

Looking for the minimum values of ω (n) and ϕ(qn)
2q for n composite, we �nd

only two cases where the inequality ϕ(qn)
2q > ω (n) does not hold:

• n = 6 and q = 5, as ϕ(30)
10 < ω (6)

• n = 15 and q = 2, as ϕ(30)
4 = ω (15)

However, checking manually, we �nd that

ϕ (30)

4
= 2

ϕ (6)− b6
5
c+

∑
p|6

(
b 6
2p
c
)

= 3

ϕ (15)− b15
2
c+

∑
p|15

(
b15
2p
c
)

= 4
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Subsequently,

ϕ (30)

4
< ϕ (6)− b6

5
c+

∑
p|6

(
b 6
2p
c
)

=| S |

ϕ (30)

4
< ϕ (15)− b15

2
c+

∑
p|15

=| S |

Therefore, for this two particular cases the theorem holds.

As the rate of growth of ω (n) is much lesser than the rate of growth of ϕ(qn)2q ,

then we can a�rm that the inequality ϕ(qn)
2q > ω (n) holds in the rest of the

cases.

Therefore, for n being some composite number,

| S |> ϕ (qn)

2q

And the theorem is proved.
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