An interesting property of Euler's totient function

Moreno Borrallo, Juan
March 3, 2020
e-mail: juan.morenoborrallo@gmail.com
"Entia non sunt multiplicanda praeter necessitatem" (Ockam, W.)
"Dios no juega a los dados con el Universo" (Einstein, Albert)
"Te doy gracias, Padre, porque has ocultado estas cosas a los sabios y entendidos y se las has revelado a la gente sencilla" (Mt 11,25)

Abstract

In this brief paper it is proved that, for some positive integer n and some prime number $q<n$ such that $\operatorname{gcd}(q, n)=1$, it holds that the set $S=\{x: 0 \leq x \leq n, \operatorname{gcd}(x, q n)=1\}$ has no less than $\frac{\varphi(q n)}{2 q}$ elements.

2010MSC: 11A99

1 Theorem

Let $\varphi(n)=n \prod_{p \mid n}\left(\frac{p-1}{p}\right)$ denote the Euler's totient function, which counts the number of elements of the set $\{x: 0 \leq x \leq n, \operatorname{gcd}(x, n)=1\}$. In this paper it is proved the following

Theorem. Let it be some positive integer n, and some prime number $q<n$ such that $\operatorname{gcd}(q, n)=1$. Then, it holds that $S=\{x: 0 \leq x \leq n, \operatorname{gcd}(x, q n)=1\}$ has no less than $\frac{\varphi(q n)}{2 q}$ elements.

1.1 Proof for n being some prime number

If $n=p$, where p is some prime number, applying the multiplicative properties of $\varphi(n)$ and taking into account that $\operatorname{gcd}(q, n)=1$, then we have that

$$
\frac{\varphi(q n)}{2 q}=\frac{\varphi(n) \varphi(q)}{2 q}=\frac{\varphi(n)}{2}\left(\frac{q-1}{q}\right)=\frac{\varphi(n)}{2}\left(1-\frac{1}{q}\right)
$$

Other hand, if p is some prime number and $q<p$, then $\left\lfloor\frac{p}{q}\right\rfloor$ numbers less than p are relatively prime to p and not relatively prime to $q p$; thus, we have that

$$
|S|=\varphi(n)-\left\lfloor\frac{n}{q}\right\rfloor
$$

Therefore, and noting that

$$
\left\lfloor\frac{n}{q}\right\rfloor<\frac{n}{q}
$$

We can affirm that

$$
|S|>\varphi(n)-\frac{n}{q}
$$

Operating, we have that

$$
\begin{gathered}
\frac{n}{q}=\frac{n}{q \varphi(n)} \varphi(n) \\
\varphi(n)-\frac{n}{q}=\varphi(n)\left(1-\frac{n}{q \varphi(n)}\right) \\
\varphi(n)\left(1-\frac{n}{q \varphi(n)}\right)=\frac{\varphi(n)}{2}\left(2-\frac{2 n}{q \varphi(n)}\right)
\end{gathered}
$$

Thus, for proving the theorem for n being some prime number it suffices to show that

$$
\frac{\varphi(n)}{2}\left(2-\frac{2 n}{q \varphi(n)}\right)>\frac{\varphi(n)}{2}\left(1-\frac{1}{q}\right)
$$

Operating,

$$
\begin{aligned}
& \frac{\varphi(n)}{2}\left(2-\frac{2 n}{q \varphi(n)}\right)-\frac{\varphi(n)}{2}\left(1-\frac{1}{q}\right)>0 \\
& \frac{\varphi(n)}{2}\left(\left(2-\frac{2 n}{q \varphi(n)}\right)-\left(1-\frac{1}{q}\right)\right)>0
\end{aligned}
$$

As $\frac{\varphi(n)}{2}>0$, then it follows that $\frac{\varphi(n)}{2}\left(\left(2-\frac{2 n}{q \varphi(n)}\right)-\left(1-\frac{1}{q}\right)\right)>0$ when $\left(2-\frac{2 n}{q \varphi(n)}\right)-$ $\left(1-\frac{1}{q}\right)>0$; subsequently, we need to evaluate only this last expression.

Operating,

$$
\left(2-\frac{2 n}{q \varphi(n)}\right)-\left(1-\frac{1}{q}\right)=\frac{q+1}{q}-\frac{2 n}{q \varphi(n)}=\left(\frac{q+1-\frac{2 n}{\varphi(n)}}{q}\right)
$$

As $q>0$, then it follows that $\frac{q+1-\frac{2 n}{\varphi(n)}}{q}>0$ when $q+1-\frac{2 n}{\varphi(n)}>0$; subsequently, we need to evaluate only this last expression.

As the minimum value of q is $q=2$, we could affirm that $q+1-\frac{2 n}{\varphi(n)}>0$ for every value of q and n if $\frac{2 n}{\varphi(n)}<3$.

As

$$
\frac{2 n}{\varphi(n)}=\frac{2 n}{n-1}
$$

And $\frac{2 n}{n-1}<3$ for every n prime number greater than 3 , we can affirm that, for every prime number $p>3$,

$$
\frac{\varphi(p q)}{2 q}<\varphi(p)-\frac{p}{q}<|S|
$$

We can check manually that for $p=2$ there exists no prime $q<p$ (and therefore, the theorem is not applicable); and for $p=3$ there exists only one prime $q<p$ ($q=2$). It could be checked that

$$
\begin{gathered}
\frac{\varphi(6)}{4}=\frac{1}{2} \\
\varphi(3)-\left\lfloor\frac{3}{2}\right\rfloor=1 \\
\frac{\varphi(6)}{4}<\varphi(3)-\left\lfloor\frac{3}{2}\right\rfloor=|S|
\end{gathered}
$$

Subsequently, for every prime number $p \leq 3$, the theorem holds.
Therefore, for n being some prime number,

$$
|S|>\frac{\varphi(q n)}{2 q}
$$

And the theorem is proved for this particular case.

1.2 Proof for n being some composite number

If n is some composite number, then less than $\left\lfloor\frac{n}{q}\right\rfloor$ numbers less than n are relatively prime to n and not relatively prime to $q n$; concretely,

$$
|S|=\varphi(n)-\left\lfloor\frac{n}{q}\right\rfloor+\sum_{p \mid n}\left(\left\lfloor\frac{n}{q p}\right\rfloor\right)
$$

Therefore, and noting that

$$
\begin{gathered}
\left\lfloor\frac{n}{q}\right\rfloor<\frac{n}{q} \\
\sum_{p \mid n}\left(\left\lfloor\frac{n}{q p}\right\rfloor\right)>\sum_{p \mid n}\left(\frac{n}{q p}\right)-\omega(n)
\end{gathered}
$$

We can affirm that

$$
|S|>\varphi(n)-\frac{n}{q}-\omega(n)+\sum_{p \mid n}\left(\frac{n}{q p}\right)
$$

Where each $\frac{n}{q p}$ counts the common multiples of q and each prime factor of n, which are double excluded by $\varphi(n)$ and $\frac{n}{q}$, and therefore need to be added once; and $\omega(n)$ counts the number of distinct prime divisors of n, which need to be substracted when transforming $\left\lfloor\frac{n}{q p}\right\rfloor$ into $\frac{n}{q p}$ to avoid overestimation of the minimum value of $|S|$.

Operating, we get that

$$
|S|>\varphi(n)-\frac{n}{q}\left(1-\sum_{p \mid n}\left(\frac{1}{p}\right)\right)-\omega(n)
$$

For $\omega(n)>1$, it is easy to show that

$$
\prod_{p \mid n}\left(\frac{p-1}{p}\right)>1-\sum_{p \mid n}\left(\frac{1}{p}\right)
$$

Therefore,

$$
|S|>\varphi(n)-\frac{n}{q}\left(\prod_{p \mid n}\left(\frac{p-1}{p}\right)\right)-\omega(n)
$$

As $\varphi(n)=n \prod_{p \mid n}\left(\frac{p-1}{p}\right)$, we have that

$$
\begin{aligned}
& |S|>\varphi(n)-\frac{\varphi(n)}{q}-\omega(n) \\
& |S|>\varphi(n)\left(1-\frac{1}{q}\right)-\omega(n)
\end{aligned}
$$

As before, we have that

$$
\frac{\varphi(q n)}{2 q}=\frac{\varphi(n)}{2}\left(1-\frac{1}{q}\right)
$$

Thus, for proving the theorem for n being some composite number it suffices to show that

$$
\varphi(n)\left(1-\frac{1}{q}\right)-\omega(n)>\frac{\varphi(n)}{2}\left(1-\frac{1}{q}\right)
$$

Operating,

$$
\begin{gathered}
\varphi(n)\left(1-\frac{1}{q}\right)-\omega(n)-\frac{\varphi(n)}{2}\left(1-\frac{1}{q}\right)>0 \\
\frac{\varphi(n)}{2}\left(1-\frac{1}{q}\right)-\omega(n)>0
\end{gathered}
$$

As $\frac{\varphi(q n)}{2 q}=\frac{\varphi(n)}{2}\left(1-\frac{1}{q}\right)$, subtituting,

$$
\begin{gathered}
\frac{\varphi(q n)}{2 q}-\omega(n)>0 \\
\frac{\varphi(q n)}{2 q}>\omega(n)
\end{gathered}
$$

By the definition of $\varphi(n)$, and as $\operatorname{gcd}(q, n)=1$, we have that

$$
\frac{\varphi(q n)}{2 q}=\frac{\varphi(n) \varphi(q)}{2 q}=n\left(\prod_{p \mid n}\left(\frac{p-1}{p}\right)\right)\left(\frac{q-1}{2 q}\right)
$$

If n is composite, then $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{n}^{\alpha_{n}}$. Thus, we can affirm that

$$
\frac{\varphi(q n)}{2 q}=\left(p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \ldots p_{n}^{\alpha_{n}-1}\right)\left(\prod_{p \mid n}(p-1)\right)\left(\frac{q-1}{2 q}\right)
$$

It can bee seen that an increase of one unit in $\omega(n)$ implies an increase of $p_{k}^{\alpha_{k}}(p-1)$ in $\frac{\varphi(q n)}{2 q}$.

Thus, as $p_{k}^{\alpha_{k}}(p-1)>1$ for every prime number, it follows that the rate of growth of $\omega(n)$ is much lesser than the rate of growth of $\frac{\varphi(q n)}{2 q}$.

Looking for the minimum values of $\omega(n)$ and $\frac{\varphi(q n)}{2 q}$ for n composite, we find only two cases where the inequality $\frac{\varphi(q n)}{2 q}>\omega(n)$ does not hold:

- $n=6$ and $q=5$, as $\frac{\varphi(30)}{10}<\omega(6)$
- $n=15$ and $q=2$, as $\frac{\varphi(30)}{4}=\omega(15)$

However, checking manually, we find that

$$
\begin{gathered}
\frac{\varphi(30)}{4}=2 \\
\varphi(6)-\left\lfloor\frac{6}{5}\right\rfloor+\sum_{p \mid 6}\left(\left\lfloor\frac{6}{2 p}\right\rfloor\right)=3 \\
\varphi(15)-\left\lfloor\frac{15}{2}\right\rfloor+\sum_{p \mid 15}\left(\left\lfloor\frac{15}{2 p}\right\rfloor\right)=4
\end{gathered}
$$

Subsequently,

$$
\begin{gathered}
\frac{\varphi(30)}{4}<\varphi(6)-\left\lfloor\frac{6}{5}\right\rfloor+\sum_{p \mid 6}\left(\left\lfloor\frac{6}{2 p}\right\rfloor\right)=|S| \\
\frac{\varphi(30)}{4}<\varphi(15)-\left\lfloor\frac{15}{2}\right\rfloor+\sum_{p \mid 15}=|S|
\end{gathered}
$$

Therefore, for this two particular cases the theorem holds.
As the rate of growth of $\omega(n)$ is much lesser than the rate of growth of $\frac{\varphi(q n)}{2 q}$, then we can affirm that the inequality $\frac{\varphi(q n)}{2 q}>\omega(n)$ holds in the rest of the cases.

Therefore, for n being some composite number,

$$
|S|>\frac{\varphi(q n)}{2 q}
$$

And the theorem is proved.

