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Abstract

In this paper we will prove a relationship for sums of powers of re-
cursive integer sequences. Also, we will give a possible path to discovery.
As corollaries of the main result we will derive relationships for familiar
integer sequences like the Fibonacci, Lucas, and Pell numbers. Last, we
will discuss some applications and look at related work.

1 Introduction
Let (Wn)n=1 be a recursive integer sequence with initial values of

a = W1 5 W2 = b,

where a > 0, and, for n = 2, a general term of

Wn−1 + p ·Wn = Wn+1,

where p is a positive integer. Then we have the following result:

Proposition 1. Given (Wn)n=1,

n∑
k=1

Wm+1
k +

n∑
k=1

(Wk+1 −Wk)

k∑
l=1

Wm
l = Wn+1

n∑
k=1

Wm
k ,

where n = 1 and m is a positive integer.

In this paper we will prove this result rigorously. But, before we do that, we
will give a possible scenario for how someone might discover it.
∗This work is licensed under the CC BY 4.0, a Creative Commons Attribution License.
†Updated on 12 March 2020. The main result was condensed into a single case, related

work was discussed, and some minor changes were made.
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2 Discovery
In order to illustrate how someone might discover such a result, and to offer a
concrete case to be kept in mind for later material, we discuss an example from
the Fibonacci numbers.

Let (Fn)n=1 be the sequence of Fibonacci numbers with initial values of

1 = F1 = F2

and, for n = 2, a general term of

Fn−1 + Fn = Fn+1.

There is an argument from antiquity [5, section 2], using little more than a
simple diagram, which leads to the fundamental result of

1 + 2 + · · ·+ n =
n (n+ 1)

2
.

We modify it for our present purpose.
Let us start with

4∑
k=1

F 5
k = F 5

1 + F 5
2 + F 5

3 + F 5
4 = F1F

4
1 + F2F

4
2 + F3F

4
3 + F4F

4
4

= F 4
1 + F 4

2 + 2F 4
3 + 3F 4

4 .

We place it in a table as follows:

F 4
1 F 4

2 F 4
3 F 4

4

F 4
3 F 4

4

F 4
4

In order to fill in the table we write

F 4
1 F 4

2

F 4
1 F 4

2 F 4
3

F 4
1 F 4

2 F 4
3 F 4

4

F 4
1 F 4

2 F 4
3 F 4

4

This sum is equal to

(2− 1)
(
F 4
1 + F 4

2

)
+ (3− 2)

(
F 4
1 + F 4

2 + F 4
3

)
+ (5− 3)

(
F 4
1 + F 4

2 + F 4
3 + F 4

4

)
= (F3 − F2)

(
F 4
1 + F 4

2

)
+ (F4 − F3)

(
F 4
1 + F 4

2 + F 4
3

)
+ (F5 − F4)

(
F 4
1 + F 4

2 + F 4
3 + F 4

4

)
,
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which is
3∑

k=1

(Fk+2 − Fk+1)

k+1∑
l=1

F 4
l .

For the entire table

F 4
1 F 4

2 F 4
3 F 4

4

F 4
1 F 4

2 F 4
3 F 4

4

F 4
1 F 4

2 F 4
3 F 4

4

F 4
1 F 4

2 F 4
3 F 4

4

F 4
1 F 4

2 F 4
3 F 4

4

we write the sum in a different way:

5

4∑
k=1

F 4
k = F5

4∑
k=1

F 4
k .

Together we have

4∑
k=1

F 5
k +

3∑
k=1

(Fk+2 − Fk+1)

k+1∑
l=1

F 4
l = F5

4∑
k=1

F 4
k .

Concerning the uneven indices, if we add

(1− 1)
(
F 4
1

)
= (F2 − F1)

(
F 4
1

)
= 0

to both sides then we get

4∑
k=1

F 5
k +

4∑
k=1

(Fk+1 − Fk)

k∑
l=1

F 4
l = F5

4∑
k=1

F 4
k .

This suggests the general case will be

n∑
k=1

Fm+1
k +

n∑
k=1

(Fk+1 − Fk)

k∑
l=1

Fm
l = Fn+1

n∑
k=1

Fm
k , (1)

where n = 1 and m is a positive integer.

3 Main Result and Corollaries
Now we prove the main result of the paper.
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Proof of Proposition 1
Proof. we proceed by mathematical induction. Again, the relationship we want
to establish is

n∑
k=1

Wm+1
k +

n∑
k=1

(Wk+1 −Wk)

k∑
l=1

Wm
l = Wn+1

n∑
k=1

Wm
k . (2)

For the base case of n = 1,
1∑

k=1

Wm+1
k +

1∑
k=1

(Wk+1 −Wk)

k∑
l=1

Wm
l = Wm+1

1 + (W2 −W1)W
m
1 .

W1 = W2 or W1 < W2. If W1 = W2 then

Wm+1
1 + (W2 −W1)W

m
1 = Wm+1

1 = W1W
m
1 = W2W

m
1 = W2

1∑
k=1

Wm
k .

If W1 < W2 then

Wm+1
1 + (W2 −W1)W

m
1 = Wm+1

1 +W2W
m
1 −Wm+1

1 = W2

1∑
k=1

Wm
k .

For the inductive step, assume that (2) is true for some n = 1. Then
n+1∑
k=1

Wm+1
k +

n+1∑
k=1

(Wk+1 −Wk)

k∑
l=1

Wm
l =

n∑
k=1

Wm+1
k +Wm+1

n+1

+

n∑
k=1

(Wk+1 −Wk)

k∑
l=1

Wm
l + (Wn+2 −Wn+1)

n+1∑
l=1

Wm
l

=

n∑
k=1

Wm+1
k +

n∑
k=1

(Wk+1 −Wk)

k∑
l=1

Wm
l

+Wn+1W
m
n+1 + (Wn+2 −Wn+1)

n+1∑
l=1

Wm
l

= Wn+1

n∑
k=1

Wm
k +Wn+1W

m
n+1 + (Wn+2 −Wn+1)

n+1∑
l=1

Wm
l

= Wn+1

n+1∑
k=1

Wm
k + (Wn+2 −Wn+1)

n+1∑
l=1

Wm
l .

Notice that
∑n+1

k=1 W
m
k =

∑n+1
l=1 Wm

l . The same sum is expressed in two different
notations. Therefore

(Wn+1 +Wn+2 −Wn+1)

n+1∑
k=1

Wm
k = Wn+2

n+1∑
k=1

Wm
k .
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Corollaries
Now we state the main result in terms of more familiar integer sequences like the
Fibonacci, Lucas, and Pell numbers. ([1, 2] contain background information on
these sequences.) For the Fibonacci numbers this will establish the conjecture
of the previous section.

For the Fibonacci numbers, Fk+1−Fk = Fk−1. If we set F0 = 0 then we get

Corollary 1. Given (Fn)n=1,

n∑
k=1

Fm+1
k +

n∑
k=1

Fk−1

k∑
l=1

Fm
l = Fn+1

n∑
k=1

Fm
k ,

where n = 1 and m is a positive integer.

The Lucas numbers (Ln)n=1 are defined identically as the Fibonacci num-
bers,

Ln−1 + Ln = Ln+1,

where n = 2, but with the different initial values of

L1 = 1 and L2 = 3.

Also, it is common to set L0 = 2. Since Lk+1 − Lk = Lk−1, we have

Corollary 2. Given (Ln)n=1,

n∑
k=1

Lm+1
k +

n∑
k=1

Lk−1

k∑
l=1

Lm
l = Ln+1

n∑
k=1

Lm
k ,

where n = 1 and m is a positive integer.

For the Pell numbers (Pn)n=1 we remind ourselves that

P1 = 1 and P2 = 2

and, for n = 2,
Pn−1 + 2Pn = Pn+1.

Also, we set P0 = 0. Since Pk+1 − Pk = Pk−1 + Pk, we have

Corollary 3. Given (Pn)n=1,

n∑
k=1

Pm+1
k +

n∑
k=1

(Pk−1 + Pk)

k∑
l=1

Pm
l = Pn+1

n∑
k=1

Pm
k ,

where n = 1 and m is a positive integer.

5



4 Applications and Related Work
Now we discuss some applications of our result and look at related work.

Subsequences
It is quite natural to apply these ideas to subsequences of recursive integer
sequences. For example, suppose we look at Fibonacci numbers of even and
odd indices, F2k and F2k−1. For even indices we have

n∑
k=1

Fm+1
2k +

n∑
k=1

(
F2(k+1) − F2k

) k∑
l=1

Fm
2l = F2(n+1)

n∑
k=1

Fm
2k.

Since F2k+2 − F2k = F2k+1, we can write it also as

n∑
k=1

Fm+1
2k +

n∑
k=1

F2k+1

k∑
l=1

Fm
2l = F2(n+1)

n∑
k=1

Fm
2k. (3)

For odd indices we have

n∑
k=1

Fm+1
2k−1 +

n∑
k=1

(
F2(k+1)−1 − F2k−1

) k∑
l=1

Fm
2l−1 = F2(n+1)−1

n∑
k=1

Fm
2k−1.

Since F2k+1 − F2k−1 = F2k, we can write it also as

n∑
k=1

Fm+1
2k−1 +

n∑
k=1

F2k

k∑
l=1

Fm
2l−1 = F2(n+1)−1

n∑
k=1

Fm
2k−1. (4)

For the Lucas and Pell numbers and other recursive integer sequences we
can do the same thing.

Partial Summation Formula
Proposition 1 is not the only result of its kind. [3] contains what is called the
“partial summation formula.” We state it as follows:

Proposition 2. Given two sets of positive integers, {a1, a2, . . . , an} and {b1, b2, . . . , bn},
which are monotone increasing,

n∑
k=1

akbk = Anbn −
n−1∑
k=1

Ak (bk+1 − bk) , (5)

where Ak =
∑k

l=1 al and n = 2.
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This result implies our main result. We rewrite it as follows:
n∑

k=1

akbk = bn

n∑
l=1

al −
n−1∑
k=1

(bk+1 − bk)

k∑
l=1

al,

or
n∑

k=1

akbk +

n−1∑
k=1

(bk+1 − bk)

k∑
l=1

al = bn

n∑
l=1

al.

If we add (bn+1 − bn)
∑n

l=1 al to both sides then we get

n∑
k=1

akbk +

n∑
k=1

(bk+1 − bk)

k∑
l=1

al = bn+1

n∑
l=1

al.

Now we choose ak = Wm
k and bk = Wk.

(It makes little sense to mention proving the converse. Our result concerns
a more specialized problem.)

An important distinction is that our approach is method-based and this
approach is result-based. For example, suppose we want to evaluate

n∑
k=1

(−1)k+1
F 5
k ,

a sum we have not considered so far. By our approach, we apply the method of
Section 2 and arrive at

n∑
k=1

(−1)k+1
F 5
k +

n∑
k=1

(Fk+1 − Fk)

k∑
l=1

(−1)l+1
F 4
l = Fn+1

n∑
k=1

(−1)k+1
F 4
k .

By this approach, we set ak = (−1)k+1
F 4
k and bk = Fk, substitute them into

(5), and arrive at an analogous expression.
Of course, we can make other substitutions. ak = (−1)k+1

Fk and bk = F 4
k

lead to
n∑

k=1

(−1)k+1
F 5
k = F 4

n

n∑
l=1

(−1)l+1
Fl −

n−1∑
k=1

(
F 4
k+1 − F 4

k

) k∑
l=1

(−1)l+1
Fl.

Perhaps this makes the calculation easier, perhaps it makes it harder. For our
approach, however, to proceed this way would be awkward.

Generating Sums of Powers
The title of the paper contains the word “generator.” Up until now we have not
said anything about that. It should go without saying that the positive integers,

1, 2, 3, 4, . . . ,

are the prototypical recursive integer sequence. The initial term is 1 and we
derive all subsequent terms by adding 1 to the preceding term. Looking at our
main result, we have the following:
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Corollary 4. Given Z,

n∑
k=1

km+1 +

n∑
k=1

k∑
l=1

lm = (n+ 1)

n∑
k=1

km, (6)

where n = 1 and m is a positive integer.

In [5] the author discovered and proved this relationship, and without any
consideration of a more general setting. (At a later time he learned al-Haytham
might have gotten there 1,000 years earlier ([4, A000537]).) His purpose was
the following. Suppose we start with

n∑
k=1

k = 1 + 2 + · · ·+ n =
n (n+ 1)

2
=

n2 + n

2
.

We can “feed” this result into (6) to “generate” an explicit expression for
∑n

k=1 k
2.

Then we can use the new result for
∑n

k=1 k
2 to generate an expression for the

next case of
∑n

k=1 k
3. We can do this for as many powers as we please.

It is tempting to try to derive sums of powers using the more general results of
Propositions 1 and 2. Unfortunately, simplifying the intermediate sums requires
knowing intricate relationships for the underlying sequences. Therefore we will
leave such a matter for another time.
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