Energy and the tessellated 3 -sphere

S. Halayka - sjhalayka@gmail.com

March 5, 2020

Abstract

The tessellation of space is considered for both the 2 -sphere and the 3 -sphere. As hypothesized in an earlier work, it is found that there is an energy associated with the 3 -sphere.

1 Curvature and energy

For a method of calculating the curvature of triangle meshes and tetrahedron meshes, please see [1]. Unlike in [1], the tessellations in this paper will rely on pseudorandomly placed vertices, rather than the vertices placed by Marching Cubes and Marching Hypercubes. Also unlike in [1], we will not be compensating for the variation in simplex extent (e.g. do nothing special even where there are sliver simplices). The vertex count is N. Note that the Planck energy $E_{P}=1.0$, and so the fundamental constants $c=G=\hbar=1.0$ as well.

On one hand, it is found that for a tessellated 2 -sphere, the local curvature vanishes when the tessellation is made up of finer and finer triangles. That is, the more vertices N used in the tessellation, the less the local curvature is:

$$
\begin{equation*}
\lim _{N \rightarrow \infty} K(N)=0.0 \tag{1}
\end{equation*}
$$

On the other hand, it is found that for a tessellated 3-sphere, the local curvature does not vanish when the tessellation is made up of finer and finer tetrahedra. The curvature settles around

$$
\begin{equation*}
\lim _{N \rightarrow \infty} K(N)=0.284 \tag{2}
\end{equation*}
$$

Unexpectedly, this is in line with the matter density measure Ω_{M} used in the x CDM models $[2,3]$ - it is unknown if this is merely a coincidence. If it is not just a coincidence, then this is direct evidence of the discrete nature of space, based on a few simple, first principles. Note that curvature is proportional to energy:

$$
\begin{equation*}
K \propto E . \tag{3}
\end{equation*}
$$

See Fig. 1 for a 3 -sphere edge length histogram, where vertex count $N=1,000,000$. Also see Table 1 for a list of properties of the histograms where the vertex count N is variable. A C ++ code for generating the tessellated 3 -sphere can be found at [4]. The code requires the qhull executables for mesh generation, the OpenCV library for plotting histograms, and the OpenGL / GLUT library for visualizing the vertices.

Figure 1: 3-sphere edge length histogram, where vertex count $N=1,000,000 . \operatorname{Max}=$ 0.0565194 , mode $=0.012455$. curvature $\mathrm{K}=0.28452$.

N	K	Max	Mode	Max / Mode
1,000	0.29473	0.405105	0.132555	3.05612
10,000	0.28821	0.215664	0.0619268	3.48256
100,000	0.28413	0.113452	0.0268951	4.21831
$1,000,000$	0.28452	0.0565194	0.012455	4.53788

Table 1: Properties of the histograms where vertex count N is variable.

References

[1] Halayka S. (2020) "The curvature and dimension of a closed surface" https://vixra.org/abs/1812.0423
[2] Abbott TMC., et al. (2018) "Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing" Phys. Rev. D 98, 043526 https://journals.aps.org/prd/abstract/10.1103/PhysRevD. 98.043526
[3] Capozziello S., et al. (2006) "A fluid of strings as a viable candidate to the dark side of the universe" arXiv:astro-ph/0601266 https://arxiv.org/abs/astro-ph/0601266
[4] Halayka S. (2020) "3-sphere Universe C++ code" https://github.com/sjhalayka/4d_universe

