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The importance of finding the upper bounds for prime gaps in order to 

solve the twin primes conjecture and the Goldbach’s conjecture 

Andrea Berdondini 

ABSTRACT.  In this article we present a point of view that highlights the importance of finding the upper 

bounds for prime gaps, in order to solve the twin primes conjecture and the Goldbach’s conjecture. For this 

purpose, we present a procedure for the determination of the upper bounds for prime gaps different from the 

most famous and known approaches. The proposed method analyzes the distribution of prime numbers using 

the set of relative integers ℤ. Using negative numbers too, it becomes intuitive to understand that that the 

arrangement of 2P+1 consecutive numbers that goes -P to P, is the only arrangement that minimizes the 

distance between two powers having the same absolute value of the base D, with |𝐷| ≤ 𝑃. This arrangement 

is considered important because by increasing the number of powers of the prime numbers within a range of 

consecutive numbers, it is presumed to decrease the overlap between the prime numbers considered. 

Consequently, by reducing these overlaps, we suppose to obtain an arrangement, in which the prime numbers 

less than and equal to P and their multiples occupy the greatest possible number of positions within a range of 

2P+1 consecutive numbers. If this result could be demonstrated, would imply not only the resolution of the 

Legendre’s conjecture, but also a step forward in the resolution of the twin primes conjecture and the 

Goldbach’s conjecture. 

Introduction 

In this article, we will see the importance of finding the upper bounds for prime gaps or 

demonstrating the Legendre’s conjecture [1] in order to solve the twin primes conjecture [2] and 

the Goldbach’s conjecture [3]. The first step we must do is to reformulate the conjecture on the 

twin primes and the Goldbach’s conjecture, so that they represent a problem very similar to that of 

finding the upper bound about the gap between two successive prime numbers. The conjecture of 

twin primes can be reformulated as follows: there are infinite twin prime numbers if for each 

number 𝑃𝑛1 = 6𝑛1 ± 1 (𝑛1 ∈ ℕ, 𝑛1 > 0), the maximum numbers of consecutive natural numbers 

that can be written with this equation:  

 

𝑷𝒏𝟐𝒏𝒑 ± 𝒏𝟐, 𝒇𝒐𝒓 𝒏𝒑 ∈ ℕ, 𝒏𝒑 ≥ 𝒏𝟐 𝒂𝒏𝒅 𝑷𝒏𝟐 = 𝟔𝒏𝟐 ± 𝟏, 𝒇𝒐𝒓 𝒏𝟐 ∈ ℕ, 𝟎 < 𝒏𝟐 ≤ 𝒏𝟏 

 

is less than 𝑃𝑛1 + 2𝑛1 + 3. Instead, Goldbach's conjecture can be reformulated as follows: each 

even number greater than two can be written as the sum of two primes if for each even number  𝑃𝑎 

greater than 2 the maximum number of natural numbers greater than or equal to 2 and less or equal 

to  𝑃𝑎 − 2, which can be written with these two equations: 

 

𝑷𝒏, 𝒇𝒐𝒓 𝒏 ∈ ℕ, 𝒏 > 𝟏 𝒂𝒏𝒅  𝟐 ≤ 𝑷 𝒑𝒓𝒊𝒎𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 < √ 𝑷𝒂 

 𝑷𝒂 − 𝑷𝒏, 𝒇𝒐𝒓 𝒏 ∈ ℕ, 𝒏 > 𝟏 𝒂𝒏𝒅  𝟑 ≤ 𝑷 𝒑𝒓𝒊𝒎𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 < √ 𝑷𝒂 

 

is less than or equal to 𝑃𝑎 − 4. In this way, the twin prime conjecture and the Goldbach’s 

conjecture are very similar to the Legendre’s conjecture. In practice all three conjectures are related 

to each other respect to the following problem: given a prime number P, what is the maximum 

number of consecutive positions that can occupy the prime numbers less than and equal to P and 

their multiples. This problem is fundamental in defining the upper bounds for prime gaps. Being 

able to solve this problem would most likely imply the resolution of the Legendre conjecture and 
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a significant progress in solving the conjecture on the twin primes and the Goldbach’s conjecture. 

Indeed, as can be seen, from the equations reported, the main difference between the Legendre’s 

conjecture and that on the twin primes and that of Goldbach is that in the last two conjecture the 

prime numbers are translated by a constant. 

Assuming that the arrangement of the prime numbers and their multiples, in which the greatest 

number of consecutive positions are occupied, is the arrangement where the prime numbers 

considered overlap each other as little as possible; we will analyze the arrangement that minimizes 

the distance between two powers having the same absolute value of the base D, with |𝐷| ≤ 𝑃. This 

type of analysis is done using the set of relative integers ℤ. We can use the set of relative integers 

because we exploit the fact that, given prime number P, the prime numbers less than and equal to 

P create a pattern, in which all the possible arrangements of the considered prime numbers are 

present, which is repeated with a frequency F = 2 ∙ 3 ∙… .P obtained by multiplying P by the prime 

numbers less than P. Therefore given a prime number P, the frequency F will never be infinite, so 

we can develop a modular arithmetic of modulus F, in which the first terms are consecutive to the 

last terms. In practice the first 10 terms of this pattern go from 1 to 10, instead the last 10 terms go 

from -9 to 0. So the number zero represents F the last term of this pattern, in which all the prime 

numbers considered overlap. In this way we can pass from the set of natural numbers ℕ to the set 

of relative integers ℤ. Consequently, the minimum distance between two powers, having the same 

absolute value of the base D, is not D − D2 but 2D (the distance between –D and D). So the 

arrangement of 2P+1 consecutive numbers in which two powers, having the same absolute value 

of the base D with |𝐷| ≤ 𝑃, are at the minimum distance is the one that goes from –P to P. The 

sequence going from –P to P is particularly interesting because it also contains the -1 and 1, two 

numbers that are not multiples of any prime number. So be able to prove that the arrangement in 

which there is the minimum distance between two powers, having the same absolute value of the 

base D with |𝐷| ≤ 𝑃, is also the arrangement where the prime numbers, less than and equal to P 

and their multiples, occupy the maximum number of positions on an interval containing 2P+1 

consecutive numbers, would imply not only the resolution of the Legendre’s conjecture, but also a 

step forward in the resolution of the twin primes conjecture and the Goldbach’s conjecture. 

Reformulation of the twin primes conjecture 

We start by ordering the odd numbers using the arithmetic progressions  6𝑛 − 1 e 6𝑛 + 1 with 

n ∈ ℕ. These two arithmetic progression generate all pairs of twin prime numbers outside the pair 

formed by 3 and 5. 

 

6𝑛 − 1, 𝑓𝑜𝑟 𝑛 ∈ ℕ, 𝑛 > 0                                                                                                                         (1) 

6𝑛 + 1, 𝑓𝑜𝑟 𝑛 ∈ ℕ, 𝑛 > 0                                                                                                                            (2) 

  

                       6𝑛 − 1      6𝑛 + 1 

   𝑛 = 1               5                 7                    

   𝑛 = 2            11              13                

   𝒏 = ⋯           ….                ….      
 

If we want to remove all the composite numbers within the sequences (1) and (2), we must 

calculate the following three products: 
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(6𝑛1 − 1)(6𝑛2 + 1)                                                                                                                        (3)  

(6𝑛1 − 1)(6𝑛2 − 1)                                                                                                                         (4) 

(6𝑛1 + 1)(6𝑛2 + 1)                                                                                                                            (5) 

 

Let us start with the product (3) by setting 𝑛2 = 𝑛1. 

 

(6𝑛1 − 1)(6𝑛1 + 1) = 6(6𝑛1
2) − 1 

 

We note that from the product between two numbers belonging one to the sequence (1) and the 

other to the sequence (2) we obtain a number that falls into the sequence (1). Now we analyze the 

term 6𝑛1
2, which determines the value of n in the sequence (1). 

 

6𝑛1
2 = (6𝑛1 − 1 + 1)𝑛1 

 

Defining 𝑃𝑛1 = 6𝑛1 − 1  we have: 

 

(𝑃𝑛1 + 1)𝑛1 = 𝑃𝑛1𝑛1 + 𝑛1 

 

Being the common difference of the arithmetic progressions (1) and (2) obtained by the product 

between the prime numbers 2 and 3, this value will never be divisible by the other prime numbers 

greater than 3, therefore all the other products are at a distance 6𝑃𝑛1. 

At this point we can deduce the formula that defines the values of n in the sequence (1), in which 

there is a composite number obtained by multiplying 𝑃𝑛1 by a number  𝑃𝑛2 > 𝑃𝑛1 generated by the 

sequence different from that which generates 𝑃𝑛1. 

 

𝑛 = 𝑃𝑛1𝑛𝑝 + 𝑛1, 𝑓𝑜𝑟 𝑛𝑝 ∈ ℕ, 𝑛𝑝  ≥ 𝑛1 𝑎𝑛𝑑 𝑃𝑛1 = 6𝑛1 ± 1, 𝑓𝑜𝑟 𝑛1 ∈ ℕ, 𝑛1 > 0                        (6)                            

 

Now let us consider the product (4) by setting 𝑛2 = 𝑛1. 

 

(6𝑛1 − 1)(6𝑛1 − 1) = 1 − 12𝑛1 + 36𝑛1
2 = 6(−2𝑛1 + 6𝑛1

2) + 1 

 

The value generated by this product falls in the sequence (2), therefore we analyze the 

term−2𝑛1 + 6𝑛1
2 , which determines the value of n in the sequence (2). 

 

−2𝑛1 + 6𝑛1
2 = 𝑛1(−2 + 6𝑛1) 

𝑛1(−2 + 6𝑛1) = 𝑛1(−1 + 6𝑛1 − 1) 

 

Defining 𝑃𝑛1 = 6𝑛1 − 1  we have: 

 

𝑛1(−1 + 6𝑛1 − 1) = 𝑛1(𝑃𝑛1 − 1) 

𝑛1(𝑃𝑛1 − 1) = 𝑃𝑛1𝑛1 − 𝑛1 

 

We have shown that every square of every number generated by the sequence (1)  is on the 

sequence 6𝑛 + 1 where 𝑛 = 𝑃𝑛1𝑛1 − 𝑛1. 

Knowing that all the other products are at a distance 6𝑃𝑛1, we can deduce the formula that 

defines the values of n in the sequence (2), in which there is a composite number obtained by 

multiplying 𝑃𝑛1 = 6𝑛1 − 1  by another number 𝑃𝑛2 = 6𝑛2 − 1 with 𝑃𝑛2 ≥ 𝑃𝑛1. 
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𝑛 = 𝑃𝑛1𝑛𝑝 − 𝑛1, 𝑓𝑜𝑟 𝑛𝑝 ∈ ℕ, 𝑛𝑝 ≥ 𝑛1 𝑎𝑛𝑑 𝑃𝑛1 = 6𝑛1 − 1, 𝑓𝑜𝑟 𝑛1 ∈ ℕ, 𝑛1 > 0                     (7)                           

     

Now let us consider the product (5) by setting 𝑛2 = 𝑛1. 

 

(6𝑛1 + 1)(6𝑛1 + 1) = 1 + 12𝑛1 + 36𝑛1
2 = 6(2𝑛1 + 6𝑛1

2) + 1 

 

The value generated by this product falls in the sequence (2), therefore we analyze the 

term 2𝑛1 + 6𝑛1
2 , which determines the value of n in the sequence (2). 

 

2𝑛1 + 6𝑛1
2 = 𝑛1(2 + 6𝑛1) 

𝑛1(2 + 6𝑛1) = 𝑛1(1 + 6𝑛1 + 1) 

 

Defining 𝑃𝑛1 = 6𝑛1 + 1  we have: 

 

𝑛1(1 + 6𝑛1 + 1) = 𝑛1(𝑃𝑛1 + 1) 

𝑛1(𝑃𝑛1 + 1) = 𝑃𝑛1𝑛1 + 𝑛1 

 

We have shown that every square of every number generated by the sequence (2)  is on the 

sequence 6𝑛 + 1 where 𝑛 = 𝑃𝑛1𝑛1 + 𝑛1. 

Knowing that all the other products are at a distance 6𝑃𝑛1, we can deduce the formula that 

defines the values of n in the sequence (2), in which there is a composite number obtained by 

multiplying 𝑃𝑛1 = 6𝑛1 + 1  by another number 𝑃𝑛2 = 6𝑛2 + 1 with 𝑃𝑛2 ≥ 𝑃𝑛1. 

 

𝑛 = 𝑃𝑛1𝑛𝑝 + 𝑛1, 𝑓𝑜𝑟 𝑛𝑝 ∈ ℕ, 𝑛𝑝  ≥ 𝑛1 𝑎𝑛𝑑 𝑃𝑛1 = 6𝑛1 + 1, 𝑓𝑜𝑟 𝑛1 ∈ ℕ, 𝑛1 > 0                     (8)                                 

 

Taking into consideration each prime number 𝑃𝑛1 greater than 3 we can determine, using the 

formulas obtained, the position of each composite number present in the sequences (1) and (2). 

At this point we have found the formulas that determine the values of n, in which there will be 

at least an odd non-prime number generated by one of the two arithmetic progressions 6𝑛 − 1  and 

6𝑛 + 1. So the values of n in which there are no pairs of twin prime numbers are described by the 

formulas (6) (7) and (8), which can be grouped in the following formula: 

 

𝑛 = 𝑃𝑛1𝑛𝑝 ± 𝑛1, 𝑓𝑜𝑟 𝑛𝑝 ∈ ℕ, 𝑛𝑝 ≥ 𝑛1 𝑎𝑛𝑑 𝑃𝑛1 = 6𝑛1 ± 1, 𝑓𝑜𝑟 𝑛1 ∈ ℕ, 𝑛1 > 0                    (9)   

                       

So all the values of the sequence of natural numbers that cannot be written with the previous 

formula, will indicate a value of n where the odd numbers generated by arithmetic progressions 

6𝑛 − 1 and 6𝑛 + 1 are prime and create a pair of twin prime numbers. 

Analyzing the formula (9) we notice that every time we consider a greater number of the 

previous ones, the first value generated is 𝑃𝑛1𝑛1 + 𝑛1 or 𝑃𝑛1𝑛1 − 𝑛1. Consequently, since the 

arithmetic progressions (1) and (2) consist of infinite values, there will be infinite intervals in which 

only multiples of the numbers from 5 to 𝑃𝑛1 will be present. At this point if we could prove that 

there is always at least one number n, that we cannot write with equation (9), within these intervals, 

which we know to be infinite, we can prove that there are infinite twin prime numbers.  

In sequences (1) and (2) the minimum distance between two prime numbers can be 2 if we 

consider the pair 6𝑛 − 1 and 6𝑛 + 1 or 4 if we consider the pair 6𝑛 + 1 and 6(𝑛 + 1) − 1. Taking 

into account the second pair, so as to have the longest interval, we can calculate the length of this 
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interval by making the difference between the first two numbers that are generated by equation (9), 

when considering the numbers 𝑃𝑛1 = 6𝑛1 + 1 and 𝑃𝑛2 = 6(𝑛1 + 1) − 1. 

 

𝑃𝑛2(𝑛1 + 1) − 𝑛1 − 1 − 𝑃𝑛1𝑛1 − 𝑛1 

 

Knowing that 𝑃𝑛2 = 𝑃𝑛1 + 4  we have: 

 

(𝑃𝑛1 + 4) (𝑛1 + 1) − 𝑛1 − 1 − 𝑃𝑛1𝑛1 − 𝑛1 

𝑃𝑛1 + 2𝑛1 + 3 

 

Then given a value of 𝑃𝑛1 = 6𝑛1 + 1, if it is possible to demonstrate that the maximum number 

of the positions occupied consecutively by the values generated by equation (9), considering the 

prime numbers P greater than 3 and less than and equal to 𝑃𝑛1, is less than 𝑃𝑛1 + 2𝑛1 + 3, knowing 

that there are infinitely many intervals of length 𝑃𝑛1 + 2𝑛1 + 3 , we can prove the conjecture on 

twin primes numbers. 

As can be seen, the problem thus formulated is very similar to the Legendre’s conjecture; indeed 

it is a matter of finding the maximum length of the sequence of consecutive values generated by 

equation (9). This formula represents nothing more than a translation of the prime numbers and 

their multiples. 

Reformulation of the Goldbach’s conjecture 

Let us now consider the Goldbach’s conjecture, also in this case we use a procedure similar to 

that used for the twin prime conjecture. In practice, given an even number 𝑃𝑎, we analyze the values 

belonging to ℕ ranging from 2 to 𝑃𝑎 − 2. 

 

2     

3       

…  

𝑃𝑎 − 2 

 

We remove from this sequence all the numbers that can be written with these two equations: 

 

𝑃𝑛, 𝑓𝑜𝑟 𝑛 ∈ ℕ, 𝑛 > 1 𝑎𝑛𝑑  2 ≤ 𝑃 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 < √ 𝑃𝑎                                                            (10)                                       

𝑃𝑎 − 𝑃𝑛, 𝑓𝑜𝑟 𝑛 ∈ ℕ, 𝑛 > 1 𝑎𝑛𝑑  3 ≤ 𝑃 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 < √ 𝑃𝑎                                                  (11)   

                                  

With the formula (10) we  remove all the numbers that are not prime. With the formula (11) we 

do the same, but with the only difference that in this case we start from 𝑃𝑎. In practice, formula 

(11) translates the values generated by formula (10). Consequently, a number N belonging to ℕ in 

the range from 2 to 𝑃𝑎 − 2, which cannot be written with equations (10) and (11) implies the 

existence of two prime numbers whose sum from 𝑃𝑎. 

 

𝑁 = 𝑃1 

𝑁 = 𝑃𝑎 − 𝑃2 

𝑃1 = 𝑃𝑎 − 𝑃2 

𝑃𝑎 = 𝑃1 + 𝑃2 
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So if it is possible to proof that, for every even number 𝑃𝑎 greater than 2, the maximum number 

of values belonging to ℕ greater than or equal to 2 and less than or equal to 𝑃𝑎 − 2, which can be 

written with equations (10) and (11 ) is less than or equal to 𝑃𝑎 − 4, we can prove Goldbach's 

conjecture. 

Consequently, we arrive at a situation analogous to the twin primes conjecture and the 

Legendre’s conjecture. In this case the problem to be solved is to find the arrangement where the 

multiples of the prime numbers and their translations occupy the greatest number of positions 

consecutively within the range from 2 to 𝑃𝑎 − 2. 

Analysis of the distribution of prime numbers using the set of relative integers  

As anticipated in the introduction, the prime numbers less than and equal to P generate a pattern, 

in which are present all the possible arrangements of the considered prime numbers, which is 

repeated with frequency F = 2 * 3 * ....... P obtained by multiplying P by the prime numbers less 

than P. This pattern is fundamental because it also contains the arrangement, in which the prime 

numbers less than and equal to P and their multiples occupy the maximum number of consecutive 

positions. 

Since the frequency F is not infinite, we can develop a modular arithmetic of modulus F, in 

which the first terms are consecutive to the last ones. The first 10 terms of this pattern go from 1 to 

10, instead the last 10 terms go from -9 to 0. It is interesting to note that the number zero represents 

F the last term of this pattern, in which all the prime numbers considered overlap. Therefore we 

consider relevant to study the distribution of prime numbers using the set of relative integers ℤ. 

Using also negative numbers we can define the following sequence. 

 

−𝑃 … … … … … … . . −1 0 1 … … … … … … . . 𝑃                                                                               (12) 

 

In which it is intuitive to understand how this sequence minimizes the distance between two 

powers having the same absolute value of the base D, with |𝐷| ≤ 𝑃. 

In this arrangement the minimum distance between two powers, having the same absolute value 

of the base D with |𝐷| ≤ 𝑃, is not D − D2 but 2D. Indeed –D and D are two powers that have the 

same absolute value of the base, therefore their distance is 2D, the least possible. The study of the 

distribution of powers is very important, because we want to find the arrangement in which the 

numbers less than or equal to P overlap each other as little as possible.  

So the next step is to try to demonstrate that the arrangement (12) is also the arrangement, in 

which the prime numbers, less than and equal to P, occupy the maximum number of positions in 

an interval that contains 2P+1 consecutive numbers. In order to solve this important problem we 

will present a procedure that we believe is very promising. 

Let us start by changing the arrangement (12) considering only the odd numbers. We thus obtain 

the following arrangement of P+1 odd consecutive numbers. 

 

−𝑃 … … … … … … . . −1  1 … … … … … … . . 𝑃                                                                                 (13) 

 

We define two groups of odd numbers: 𝐷𝑚𝑎 and 𝐷𝑚. 

 

𝑃/2 < 𝐷𝑚𝑎 ≤ 𝑃 
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        1 < 𝐷𝑚 < 𝑃/2 

 

Now we only consider the odd numbers 𝐷𝑚𝑎, these numbers can at most be present twice inside 

the arrangement (13), which we know contain P+1 odd consecutive numbers. 

Taking into consideration only the odd numbers 𝐷𝑚𝑎 we try to find the arrangement, in a range 

consisting of P+1 odd consecutive numbers, in which the greatest possible number of positions are 

occupied. The arrangement that solves this problem is the arrangement (13). 

The reason is that this arrangement is the only arrangement, in which all the odd numbers 

considered occupy two positions. Indeed, the prime number P, in order to occupy two positions 

within a range consisting of P+1 odd consecutive numbers, must occupy the first and last positions. 

Consequently, the odd number equal to P-1, must occupy the second and penultimate positions. 

Continuing iteratively for the other odd numbers, it is shown that the arrangement (13) is the 

arrangement of P+1 odd consecutive numbers, in which the largest number of positions are 

occupied considering the odd numbers less than or equal to P and greater than P/2 . 

Now we take into consideration the odd numbers 𝐷𝑚, in this case different arrangements can 

exist compared to (13), in which these numbers occupy an extra position. Therefore, we try to 

understand what happens when we translate an odd number 𝐷𝑚 so that it occupies an extra position. 

In this case, there will always be a position occupied in the range from 𝐷𝑚⌊𝑃/𝐷𝑚⌋ to P or in the 

range from −𝐷𝑚⌊𝑃/𝐷𝑚⌋ to -P. The reason is that the arrangement that goes from −𝐷𝑚⌊𝑃/𝐷𝑚⌋ to 

𝐷𝑚⌊𝑃/𝐷𝑚⌋ is the arrangement of 𝐷𝑚 + 1 odd consecutive numbers, where 𝐷𝑚 occupies the 

maximum number of positions. Therefore, the extra position occupied must be in the range from 

𝐷𝑚⌊𝑃/𝐷𝑚⌋ to P or in the range from −𝐷𝑚⌊𝑃/𝐷𝑚⌋ to -P. Since the value 𝐷𝑚⌊𝑃/𝐷𝑚⌋ always greater 

than P/2, this implies that the extra position occupied by an odd number 𝐷𝑚 overlaps with an odd 

number 𝐷𝑚𝑎. At this point, in order to keep the gain of the extra position, we will have to move the 

odd number 𝐷𝑚𝑎, however, as shown above, there is only one arrangement in which each odd 

number 𝐷𝑚𝑎 occupies two positions. Consequently, moving the odd number 𝐷𝑚 implies that the 

new arrangement, of the odd numbers  𝐷𝑚𝑎, occupies one position less than the case of the 

arrangement (13).  

So a 𝐷𝑚 number in order to occupy an additional position must necessarily occupy at least one 

position occupied by a 𝐷𝑚𝑎 number, consequently the length calculated by the ends not occupied 

in the arrangement (13) is reduced, therefore a 𝐷𝑚𝑎 number will occupy one position less. The 

reason is that the 𝐷𝑚𝑎 numbers cannot occupy two positions if the distance, between the 

unoccupied ends in a range of odd consecutive numbers, is less than 2𝐷𝑚𝑎. 

We report the following example: if the last three positions in the arrangement (13) are occupied 

by the translation of the numbers 𝐷𝑚, the numbers: P, P-1 and P-2 will never occupy two positions, 

so we will lose three positions. Consequently, the translation of the numbers 𝐷𝑚  has as final result 

an arrangement where an equal or lesser number of positions will be occupied with respect to the 

sequence (13).  

The argument just made applies to every odd number 𝐷𝑚, therefore we can presume that there 

is no other arrangement, of P+1 odd consecutive numbers, in which the odd numbers less than or 

equal to P occupy one position more than the arrangement (13). 

Consequences of the proof of the Legendre’s conjecture on the twin primes conjecture        

and on the Goldbach’s conjecture  

If the sequence (12) represents the sequence in which the prime numbers, less than or equal to 
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P, and their multiples occupy the greatest number of positions in a range of 2P+1 successive 

numbers, it means that given a number N there is always a prime number P greater than N and less 

than 𝑁 + 2√𝑁 + 1, therefore the Legendre’s conjecture is true. Now let us see the implications of 

this result on the twin primes conjecture and on the Goldbach’s conjecture. 

We start by considering the conjecture on twin prime numbers. The equation (9) does nothing 

but translate prime numbers greater than 3, which we can write in this way 𝑃𝑛 = 6𝑛 ± 1 (𝑛1 ∈
ℕ, 𝑛1 > 0), of a constant equal to n. At this point just take the arrangement (13) and, given a prime 

number 𝑃𝑛, apply the translations to all odd numbers greater than 3 and less than or equal to 𝑃𝑛. 

The new arrangement contains 𝑃𝑛 + 2𝑛 + 1  consecutive values, the reason is that 𝑃𝑛 is translated 

by n, and therefore to be contained twice, it needs an interval that contains no less than  𝑃𝑛 + 2𝑛 +
1 odd consecutive numbers.  

In order to understand the procedure used, we can overlap the arrangement (13) with the 

arrangement obtained by translating the numbers 𝑃𝑛 = 6𝑛 ± 1 of ± n positions (𝑃𝑛, ±𝑛). Taking as 

an example 𝑃𝑛 = 7 we have: 

 

             −9            − 7             − 5            − 3      − 1    1         3                5                7                9 

−(7, +1)  − (5, +1)  − (7, −1) − (5, −1) − 1    1   ( 5, −1 )   (7, −1)    (5, +1)    (7, +1) 

 

In practice we translate the numbers 𝑃𝑛 = 6𝑛 ± 1, along the set of relative odd integers, by a 

number of positions equal to n. So for example: in the case of 5 n is equal to 1, so we must translate 

it by one position forward +n and one position back -n. When it is moved forward, the 5 occupies 

the position occupied by the value 7 in the arrangement (13). On the other hand, when it is moved 

backwards, the 5 occupies the position occupied by the value 3 in the arrangement (13). So the 

number 5 will occupy two positions, corresponding to the two translations +n and –n. 

The translated arrangement which has been compared with the arrangement (13) is that which, 

given a prime number 𝑃𝑛 = 6𝑛 ± 1 and F = 5 ∙ 7… . 𝑃𝑛 (F is obtained by multiplying 𝑃𝑛 by the 

prime numbers greater than 3 and less than 𝑃𝑛), goes from (F-𝑃𝑛) / 2-n to (F+𝑃𝑛) / 2+n, hence an 

arrangement containing 𝑃𝑛 + 2𝑛 + 1  consecutive numbers. 

 
𝐹−𝑃𝑛

2
− 𝑛 … … … … … … . .

𝐹−1

2
  

𝐹+1

2
… … … … … … .

𝐹+𝑃𝑛

2
+ 𝑛                                                    (14) 

 

In the case of P = 7 we have: 

 

13        14         15        16         17          18           19          20           21           22 

 

The central values of the shifted arrangement are (F-1)/2 and (F+1)/2 which are equivalent to -

1 and 1 in the arrangement (13). These values will never be occupied by any value generated by 

equation (9). Consequently if the arrangement (14) is the arrangement where the values generated 

by the equation (9), considering the prime numbers from 5 to 𝑃𝑛, occupy the greatest number of 

positions on a range of 𝑃𝑛 + 2𝑛 + 1 consecutive numbers, we proof the conjecture on twin prime 

numbers. Indeed we know, as demonstrated previously, that there are an infinite number of distinct 

intervals of  𝑃𝑛 + 2𝑛 + 3  consecutive numbers, in which there are only the values generated by 

equation (9) when considering the prime numbers from 5 to 𝑃𝑛 . 

Now let us take Goldbach's conjecture into consideration, in this case we have a slightly more 

complex situation, because the value of the translations depends on the even number 𝑃𝑎. Given an 

even number 𝑃𝑎, equation (11) can be rewritten in this way: 
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𝑃𝑛 − (𝑃 (⌊
𝑃𝑎

𝑃
⌋ + 1) − 𝑃𝑎  ) 𝑓𝑜𝑟 𝑛 ∈ ℕ,    0 < 𝑛 < ⌊

𝑃𝑎

𝑃
⌋  𝑎𝑛𝑑 3 ≤ 𝑃 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑒𝑏𝑟 < √𝑃𝑎 (15)    

                                

At this point, in order to simplify the discussion, and to obtain a situation very similar to that 

just described with respect to the twin primes conjecture , we can remove the 3 and all its multiples 

and its relative translations calculated with equation (15), in which we also eliminates the value for 

𝑛 = ⌊𝑃𝑎/𝑃⌋. In this way we remove 1/3 of all numbers between 2 and  𝑃𝑎 − 2, obtaining a sequence 

of values spaced 3 from each other. From this range of values we must remove all multiples of the 

prime numbers greater than 3 and less than √𝑃𝑎 and the relative translations. The values that need 

to be removed are generated by the following two equations: 

 

𝑃𝑛 𝑓𝑜𝑟 𝑛 ∈ ℕ,   𝑛 > 1 𝑎𝑛𝑑  3 < 𝑃 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑒𝑏𝑟 < √𝑃𝑎                                                               

𝑃𝑛 − (𝑃 (⌊
𝑃𝑎

𝑃
⌋ + 1) − 𝑃𝑎  ) 𝑓𝑜𝑟 𝑛 ∈ ℕ,    0 < 𝑛 < ⌊

𝑃𝑎

𝑃
⌋  𝑎𝑛𝑑 3 < 𝑃 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 < √𝑃𝑎  

            

In this way we obtain a situation very similar to that just described, where for each prime number 

 𝑃𝑛 = 6𝑛 ± 1, the translations +n and –n are replaced by 0 and  −(𝑃(⌊𝑃𝑎/𝑃⌋ + 1) − 𝑃𝑎  ). In order 

to obtain this analogy, very restrictive conditions have been imposed, in which we remove more 

values than those defined by equations (10) and (11). 

This was done because the purpose of this discussion is not to give a mathematical proof of the 

conjecture, but only to bring attention to how easy it is to use this procedure also for problems other 

than the Legendre’s conjecture. Consequently, if it were possible to proof that the arrangement (12) 

is the arrangement where the prime numbers, less than and equal to P, and their multiples occupy 

the maximum number of positions on an interval that contains 2P+1 consecutive numbers, it would 

be easy to apply this method on the twin primes conjecture and on the Goldbach’s conjecture. 

Conclusion 

In this article, we have exposed a point of view that highlights the importance of finding the 

upper bounds for prime gaps and therefore solving the Legendre’s conjecture, in order to solve the 

twin primes conjecture and the Goldbach’s conjecture. 

We have also analyzed a procedure for the determination of the upper bounds for prime gaps 

different from the more famous and known approaches [4], [5] and [6]. The proposed method 

analyzes the distribution of prime numbers using the set of relative integers ℤ. Using negative 

numbers, it becomes intuitive to understand that the arrangement (12) is the only arrangement, of 

2P+1 consecutive numbers, which minimizes the distance between two powers having the same 

absolute value of the base D, with |𝐷| ≤ 𝑃. 

The arrangement (12) is considered important because by increasing the number of powers of 

the prime numbers within a range of consecutive numbers, it is presumed to decrease the overlap 

between the prime numbers considered. Consequently, by reducing these overlaps, we suppose to 

obtain an arrangement, in which the prime numbers less than and equal to P and their multiples 

occupy the greatest possible number of positions within a range of 2P+1 consecutive numbers. This 

result, as explained in the previous chapters, is fundamental not only for solving the Legendre’s 

conjecture but also for the twin primes conjecture and the Goldbach’s conjecture. 
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