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Abstract 
Machine Learning is an important sub-field of the Artificial Intelligence and it has been become 

a very critical task to train Machine Learning techniques via effective method or techniques. Recently, 
researchers try to use alternative techniques to improve ability of Machine Learning techniques. Moving 
from the explanations, objective of this study is to introduce a novel SVM-CoDOA (Cognitive 
Development Optimization Algorithm trained Support Vector Machines) system for general medical 
diagnosis. In detail, the system consists of a SVM, which is trained by CoDOA, a newly developed 
optimization algorithm. As it is known, use of optimization algorithms is an essential task to train and 
improve Machine Learning techniques. In this sense, the study has provided a medical diagnosis 
oriented problem scope in order to show effectiveness of the SVM-CoDOA hybrid formation. 
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Machine Learning, Artificial Intelligence, Medical Diagnosis. 

 
1. Introduction 
Artificial Intelligence has taken many steps since its first introduction to the scientific 

community. Including many different problem and application types like classification, recognition, 
control, diagnosis, and prediction (Russell, 2016; Ertel, 2018; Nabiyev, 2005), Artificial Intelligence has 
become an important scientific field for our life. Because of its successful outputs in different fields, it 
has already become a multidisciplinary science and a remarkable research interest in this manner has 
risen accordingly. Today, we can see the associated literature of Artificial Intelligence is very powerful 
and two important sub-fields: Machine Learning, and intelligent optimization have the most reputable 
role in this manner. Both these sub-fields form the exact learning intelligent system infrastructure via 
different solution approaches logically and mathematically advanced and inspired from especially the 
nature or swarms in the real life (Michalski et. al., 2013; Alpaydin, 2009; Eberhart et. al., 2001; Yang, 
2010). While Machine Learning has an active role in the core of the Artificial Intelligence field, with its 
mechanism to learn from samples or experiences for a trained intelligent system, intelligent optimization 
just uses certain algorithms – techniques to deal with optimization tasks. But before training of Machine 
Learning techniques is a typical optimization, intelligent optimization algorithms – techniques are 
widely used for training Machine Learning techniques. In this way, different types of hybrid systems are 
developed for better solution approaches (Hojjat, 2018; Bahrami et. al., 2017; Akbal, 2018; Kumar et. 
al., 2018; Frazzon et. al., 2018). 

Artificial Intelligence and the recent research interest: using hybrid system are widely 
applied in research studies within different fields. The more the objective research becomes 
important, the more use of hybrid system has become popular. As associated with that, an important 
application scope of hybrid systems has become medical diagnosis. Because it is a vital factor to 
have accurate diagnosis results for certain diseases, researchers are currently focused on developing 
alternative and effective intelligent solutions for medical diagnosis. In the associated literature, it is 
possible to see many different examples of using Artificial Intelligence and even hybrid systems for 
medical diagnosis purposes (Kononenko, 2001; Dilsizian & Siegel, 2014; Amato et. al., 2013; Choi 
et. al., 2017; Malav et. al., 2017; Hassanien et. al., 2014; Kumar et. al., 2015; Vasant, 2018; 
Cankaya et. al., 2018; Karakoc, 2018). Since the future is connected with the technological 
advantages of Artificial Intelligence, it becomes a remarkable research tasks to search for 
alternative systems performing good diagnosis performances for medical data. 
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Moving from the explanations so far, objective of this study is to introduce a novel SVM-
CoDOA (Cognitive Development Optimization Algorithm trained Support Vector Machines) 
system for general medical diagnosis. In detail, the system consists of a SVM, which is trained by 
CoDOA, a newly developed optimization algorithm. As it is known, use of optimization algorithms 
is an essential task to train and improve Machine Learning techniques. In this sense, the work 
provides a medical diagnosis oriented problem scope in order to show effectiveness of the SVM-
CoDOA hybrid formation.  

This study is a general research report for the performed study. So, it is aimed firstly to 
express some about the employed techniques for the whole SVM-CoDOA hybrid system, which 
was applied in the scope of medical diagnosis topic. In detail, it is also important to have 
information about how the SVM is trained by the CoDOA so that the necessary explanations are 
provided accordingly. The system developed in this study was used for some known medical data in 
order to have accurate information about its performance and diagnosis ability. 

 
2. Methods and the Problem Solution 
It is important to have information about what is lying behind the hybrid system considered 

here and how the objective medical diagnosis problem has been solved in this context. The 
following sub-sections are devoted to that. The techniques – algorithms utilized in the study have 
been: SVM, CoDOA, Genetic Algorithm (GA), Differential Evolution algorithm (DE), Clonal 
Selection Algorithm (CSA), and Particle Swarm Optimization algorithm (PSO) respectively. These 
techniques are briefly described below. 
 

2.1. Support Vector Machines (SVM) 
As introduced in 1979 by Vapnik and Lerner, Support Vector Machines (SVM) is used for 

especially classification and regression tasks (Comak et. al., 2007; Vapnik et. al., 1997; Santhanam, 
2015). It briefly focuses on finding the optimally separating hyper-plane classifying the target data. 
In this context, the margin(s) regarding the classes-groups are tried to be maximized, which means a 
typical optimization task. Support vectors are called here as typical subset of data instances 
associated with the term: hyper-plane and the distance between nearest support vector and the 
hyper-plane is a margin. In detail, SVM actually deals with both regression and classification 
problems by using its two typical variations: linear SVM and non-linear SVM. Linear one is for 
separating the data with linear decision boundary (especially for two classes-groups) and the non-
linear one is for separating the data thanks to nonlinear decision boundary (Santhanam, 2015; 
Tamura & Tanno, 2009). Objective of a SVM is to find the optimum separating hyper-plane, which 
can classify data points and divide them with classification points. SVM in this manner aims to 
determine the state in which the distance between different (generally two) classes is at the 
maximum level. Figure 1 shows an example for support vectors and the maximum / optimum 
separating margin hyper-plane (Hepworth et. al., 2012). 

 

 
Figure 1. SVM and the related components (Hepworth et. al., 2012) 

 

Linear SVM corresponds to classifying the data points with two classes. But in many 
applications, the objective data is indistinguishable with a linear way so that issue is solved thanks 
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to a higher dimensional space approach. The solution approach here is based on that the non-linear 
support vector regarding the original input space is adjusted in a higher dimensional feature space, 
which can be divided into the training data. As called as non-linear SVM, that type of the technique 
benefits from kernel function in order to transform m-dimensional data into a new data set, which 
corresponds to a higher dimension classification, which is still linear. At this point, choosing the 
appropriate kernel function is important because it is connected with the exact performance shown. 
Some widely used kernel functions in non-linear SVM are as follows (Cankaya et. al., 2018): 

 
Linear function: 𝐾 𝑥 , 𝑥 = 𝑥 𝑥          (1) 

Polynomial function: 𝐾 𝑥 , 𝑥 = 1 + 𝑥 𝑥        (2) 

Gaussian (RBF) function: 𝐾 𝑥 , 𝑥 = 𝑒       
 (3) 
 

2.2. A Recent Optimization Technique: Cognitive Development Optimization 
Algorithm 
Cognitive Development Optimization Algorithm (CoDOA) is an Artificial Intelligence 

based optimization technique, which can be used for optimization tasks. That optimization 
algorithm is briefly inspired from the Piaget’s Theory on Cognitive Development. In detail, the 
cognitive development corresponds to our natural development as expressed by Piaget and we 
experience some typical process like social interaction, maturation, or balancing during learning 
something in this manner (Kose, 2017; Piaget, 1964; Piaget, 1973; Singer & Revenson, 1997). 
Similarly, the CoDOA includes some certain solution stages as: Starting, Socialization, Maturation, 
Rationalizing, and Balancing. The stages include mathematical and logical operations around N 
particles taking role in the objective optimization solution space (Kose, 2017). 

The steps of the CoDOA are briefly as follows (Kose, 2017): 
 1st Step (Starting): Adjust initial parameters like N: number of particles, ir: initial interactivity rate, 

r: rationality rate, ml: maturity limit, ex: experience for each particle, max. and min. value for ir.  

 2nd Step: Spread particles randomly to the solution space. Calculate fitness. Renew ir of the best 
particle with the following equation and increase its ex value by 1 (b is for the best, p is for the 
particle): 

b_p_ir_(new) = b_p_ir_(current) + (rand. * b_p_ir_(current))     (4) 

 3rd Step: Repeat the following steps till the stop criterion is met: 

3.1st Step (Socialization): Decrease ex the particles, whose fitness is equal to or above average 
fitness by 1 (considering the problem is minimization). In addition, increase ex of the particles in 
contrast situation, by 1. (Consideration the problem is minimization). Also, renew ir of these 
particles via the following: 

pj_ir_(new) = pj_ir_(current) + (rand. * pj_ir_(current))     (5) 

3.2nd Step: Renew ir of all particles via: 

pi_ir_(new) = rand. * pi_ir_(current)        (6) 

3.3th  Step 3.3: Renew position of each particle (except from the best one) via the following: 

pi_pos._(new) = pi_pos._(current) + (rand. * (pi_ir_(current) * (global_best_pos. – 
pi_pos._(current))))         (7) 

3.4th Step: Calculate fitness. Renew ir of the best particle with a random value and increase its 
ex by 1: 

b_p_ir_(new) = b_p_ir_(current) + (rand. * b_p_ir_(current))    (8) 
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3.5th Step (Maturation): Renew ir of the particle, whose ex is equal to or under the ml, with the 
following: 

pj_ir_(new) = pj_ir_(current) + (rand. * pj_ir_(current))     (9) 

Calculate fitness and update ir of the best particle and increase its ex by 1: 

b_p_ir_(new) = b_p_ir_(current) + (rand. * b_p_ir_(current))    (10) 

3.6th Step (Rationalizing): Renew ir and positions of the particles, whose ex is under 0: 

pj_ir_(new) = pj_ir_(current) + (rand. * (b_p_ir_(current) / pj_ir_(current)))     (11) 

pi_pos._(new) = pi_pos._(current) + (rand. * (pi_ir_(current) * (global_best_pos. – 
pi_pos._(current))))         (12) 

Renew ir of the particles, whose ex is equal to or above 0, and repeat that r times, via the 
following: 

pj_ir_(new) = pj_ir_(current) + (rand. * (b_p_ir_(current) / pj_ir_(current)))   (13) 

3.7th Step 3.7 (Balancing): Renew ir of all particles by using the following: 

pi_ir_(new) = rand. * pi_ir_(current)        (14) 

Calculate fitness. Renew ir of the best particle, increase its ex by 1 and realize in-system 
optimization for advanced problems: 

b_p_ir_(new) = b_p_ir_(current) + (rand. * b_p_ir_(current))    (15) 

Return to the 3.1st Step, if the stopping criteria is not met yet. 

 4th Step: End of the optimization process. The result(s) are the best / optimum value(s). 

By following the related algorithmic steps, the CoDOA is able to deal with optimization 
tasks. In this context, that mechanism was used for training purposes of SVM, as explained under 
the following paragraphs. 

 
2.3. Genetic Algorithm (GA)  
GA is the first artificial intelligence technique inspired by basic elements and phenomena of 

the Theory of Evolution. GA is generally based on subjecting a variety of genetic manipulations 
according to the fitness values of individuals which are represented as chromosomes. In other 
definition, GA determines the fitness value of each individual, randomly selects a number of pairs 
of individuals, generates two new individuals (offspring solutions) from each selected pair of parent 
solutions, and uses a two-point crossover operator for this. That is, according to the results of the 
initial population, processes such as crossing and mutation are carried out. New individuals are 
obtained through relatively better individuals. The process required to create each new generation 
continues until the desired result is obtained or a certain stop criterion is reached.  In summary, GAs 
produce resolutions to optimization problems utilizing methods of natural evolution (inheritance, 
mutation, selection, and crossover) (Kramer, 2017; Holand, 1992; Calp & Akcayol, 2018; John & 
Krishnakumar, 2017; Kadri & Boctor, 2018; Dener & Calp, 2018). In Table 1, general framework 
of GA was given. 

 

Table 1. The Framework of GA 

Step 1: Creation of population (with n individuals, according to target problem). 
               Iterative steps for each individual and each purpose function size: 
Step 2: Calculation of fitness function value. 
Step 3: Selection of individuals who will enter reproductive process. 
Step 4: Crossing of selected individuals. 
Step 5: Mutation of some individuals. 
Step 6: Obtaining of optimal solution (It is the global best position and value(s) at end of the iterative 
process). 
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2.4. Differential Evolution Algorithm (DE)  
Differential Evolution (DE) is a parallel direct search method. The DE algorithm is a 

population-based algorithm using similar with genetic algorithms operators; crossover, mutation 
and selection. The initial vector populations chosen randomly and should cover the entire parameter 
space. The main difference in constructing better solutions is that genetic algorithms rely on 
crossover while DE relies on mutation operation. The algorithm uses mutation operation as a search 
mechanism and selection operation to direct the search toward the prospective regions in the search 
space. The DE algorithm also uses a non-uniform crossover that can take child vector parameters 
from one parent more often than it does from others. By using the components of the existing 
population members to construct trial vectors, the recombination (crossover) operator efficiently 
shuffles information about successful combinations, enabling the search for a better solution space 
(Storn & Price, 1997; Fleetwodd, 2004; Karaboga & Okdem, 2004; Mallipeddi et. al., 2011). In 
Table 2, general framework of DE was given. 
 

Table 2. The Framework of DE 

Step 1: Initialization (Randomly initialize the population of an individual) 
Step 2: Evaluation (Evaluation of the objective values of all individuals) 
               Repeat Until termination criteria are met 
Step 3: Mutation (Generating of a donor vector) 
Step 4: Recombination (crossover) 
Step 5: Evaluation (Evaluating of the objective values of the trial vectors) 
Step 6: Selection (Performing of a selection operation between each individual and its corresponding 
trial vector in order to generate the new individual for the next generation) 

 
2.5. Clonal Selection Algorithm (CSA)  
CSA is a class of algorithms inspired by the clonal selection of acquired immunity. These 

algorithms focus on the Darwinian attributes of the theory, where selection is inspired by the 
affinity of antigen–antibody interactions, reproduction is inspired by cell division, and variation is 
inspired by somatic hyper-mutation. CSA was modeled by being inspired by the principle of 
biological clonal selection. The purpose of the clonal selection principle is to provide the antibody 
diversity that can fight against the antigens. Whenever a new antigen is encountered, the immune 
network is updated according to these antigens, thereby increasing the identifiability of the antigens 
(Xu et. al., 2018; Bernardino et. al., 2011; Yavuz et. al., 2018; Ulutas & Kulturel-Konak, 2011). In 
Table 3, general framework of CSA was given. 

 

Table 3. The Framework of CSA 

Step 1: Initialization (Randomly initialize a population N of antibodies) 
               Repeat steps 2–5 until termination criterion is met 
Step 2: Evaluation (Determine the affinity of each antibody) 
Step 3: Selection and Cloning (Select a number (n) of the highest affinity antibodies and generate clones 
independently and proportionally to their affinities) 
Step 4: Hyper-Mutation (Generating matured clones. The higher the affinity, the smaller the mutation rate)  
Step 5: Clone Evaluation and Reselection (Determine the affinity of the matured clones in relation to antigen. 
Select the antibody with the highest affinity from the matured clones and form the new population N.)  

 
2.6. Particle Swarm Optimization Algorithm (PSO)  
Particle Swarm Optimization (PSO) is one of the most fundamental of intelligent optimization 

algorithms. In the algorithm, iterative steps are taken in order to find the optimum of the N particles 
scattered in the solution space and at this point parameters such as position and velocity are the 
determinants of general movements. The particle positions obtained as a result of the movements are 
used to calculate the fitness function (s) of the problem within the scope of the variables they correspond 
to. The best personal position (optimal value) obtained by each particle so far during position changes 
and the global position value (position that provides the global optimum value) so far in the solution 
process are taken into account. The particles are trying to reach a solution by following the particle 
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which provides the global optimum under the influence of these values. In other words and summary, 
PSO is an algorithm developed in general by looking for food search movements in flocks of animals 
such as birds and fish in nature. The PSO algorithm operates on a population (swarm) of candidate 
solutions (particles). The algorithm begins with particles initialized to random positions. Each iteration 
updates every particle’s velocity. After all particles are updated, the global best is updated from the 
swarm’s current set of personal bests (Kennedy, 2011; Clerc, 2010; Butcher et. al., 2018; Eberhart & 
Kennedy, 1995; Shi & Eberhart, 1998). In Table 4, general framework of CSA was given. 

 

Table 4. The Framework of PSO 

Step 1: Setup: Randomly dispense the N particle in the solution space and set the initial Speed (v: velocity) value 
for each particle. Make the starting position of each particle at the same time the best personal position. Assign 
the values of the algorithm parameters. Make arrangements for the problem to be solved. 
                 Iterative steps (for each particle and each fitness function size): 
Step 2: Calculating of the fitness function value according to the position of the particle. 
Step 3: Updating of position of the particle (if the location of the snippet is better than your personal best 
location so far). 
Step 4: Updating of speed of the particle. 
Step 5: Updating of location of the particle with the current speed. 
Step 6: Obtaining of optimum solution (At the end of the iterative process, the optimum solution is the global 
best position and value (s)). 

 
2.7. Medical Diagnosis with the Novel SVM-CoDOA 
In this study, it is aimed to perform medical diagnosis by using the appropriate data, which 

is suitable to be used for classification purposes. In detail, the SVM is trained with the CoDOA in 
order to achieve the appropriate, trained SVM, which can classify the newly encountered data for 
the accurate diagnosis. In detail, some remarkable points of the introduced problem solution for the 
medical diagnosis are as follows (Figure 2): 

1. The main objective is to find the optimum sigma (σ) parameter of the Gaussian (RBF) 
kernel function of the non-linear SVM. 

2. In order to find the optimum sigma (σ), each particle of the CoDOA corresponds to that 
parameter so that they can move through the optimization process in order to find the 
optimum value. 

3. For an objective medical diagnosis problem, CoDOA is run according to a specific iteration 
number (stopping criterion). In each iteration turn, the determined sigma (σ) values are used 
for the diagnosis over the training data. In this context, the following diagnosis accuracy 
calculation is used to determine the best particle in the related iteration and renew the 
particle – algorithm parameters by considering it: 

100 ∗
 

  
          (16) 

4. At the end of the optimization process regarding the CoDOA, the best particle has the 
optimum sigma (σ) value allowing the non-linear SVM to perform the best classification – 
diagnosis for the objective medical diagnosis problem. 

 
Figure 2. SVM-CoDOA system for medical diagnosis 
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3. Medical Diagnosis Applications 
In order to see its performance on medical data, SVM-CoDOA system was applied in three 

different medical data obtained from the UCI Repository (UCI, 2018). As the Thyroid data set, the 
first set includes 2800 training data, and 972 test data respectively with 21 attributes considered. 
The second data set: Hepatitis data set includes 155 data (as separated into 100 training data, 55 test 
data in this study), with 19 attributes. Finally, the third data set: Chronic Kidney Disease data set 
includes 400 data (as separated into 295 training data, 105 test data in this study), with 25 attributes. 
For the CoDOA, default parameters were set as ir: 0.50, max. interactivity: 10, ml:3, and rationality 
rate: 2 with a total of 90 particles (N) run in a total of 5000 iterations, as suggested by (Kose et. al., 
2016). 

 
Considering the diagnosis accuracy calculation expressed in the Equation 16, Table 5 

provides findings obtained with the SVM-CoDOA system for three separate medical data sets. 
 

Table 5. Findings obtained with the SVM-CoDOA system for three separate medical data sets 
Data Set Test Data True Diagnosis False Diagnosis Accuracy (%) 

Thyroid Disease 972 939 33 96.60 

Hepatitis Disease 55 49 6 89.10 

Chronic Kidney Disease 105 91 14 86.67 

 
In addition to the self-performance evaluation, the SVM-CoDOA system was compared 

with also four alternative systems formed with different intelligent optimization techniques – 
algorithms (Genetic Algorithm (GA), Differential Evolution algorithm (DE), Clonal Selection 
Algorithm (CSA), and Particle Swarm Optimization algorithm (PSO)) but same Gaussian (RBF) 
kernel function based non-linear SVM. Default parameters of these algorithms from were used for 
running same 5000-iteration optimization process with 90 particles. For accurate findings, the 
whole systems including SVM-CoDOA were run 50 times and average accuracy values for three 
medical diagnosis data sets were considered. Table 6 provides findings of true and false diagnosis 
for all systems and the objective data sets (Best values are in bold). 
 

Table 6. Average findings obtained with all alternative hybrid systems, after 50 independent runs 

Data Set 
SVM-CoDOA SVM-GA SVM-DE SVM-CSA SVM-PSO 

TD* FD* TD* FD* TD* FD* TD* FD* TD* FD* 

Thyroid Disease 934 38 860 112 906 66 883 89 897 75 

Hepatitis Disease 47 8 39 16 49 6 44 11 43 12 

Chronic Kidney Disease 88 17 79 26 84 21 85 20 81 24 

* TD: True Diagnosis / FD: False Diagnosis / Best values are in bold. 

 
Considering the findings, Figure 3 shows graphics of average accuracy values for each 

system and the objective medical diagnosis data set. 
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Figure 3. Average accuracy of different SVM based hybrid systems for objective medical diagnosis data sets 
 

As it can be seen from the findings, the SVM-CoDOA system developed in this study is 
successful enough to perform accurate medical diagnosis for even different diseases. In detail, the 
system is not only successful in its own solution approach but also better in general than some other 
alternative SVM based hybrid systems formed with different intelligent optimization techniques – 
algorithms. Although the SVM-DE is the best performing for the Hepatitis disease data set, SVM-
CoDOA provides very near results to SVM-DE in terms of diagnosis. 
 

4. Conclusions and Future Work 
In this study, a SVM-CoDOA system was introduced for medical diagnosis problem. In 

detail, a recent intelligent optimization (Artificial Intelligence based optimization) algorithm: 
Cognitive Development Optimization Algorithm (CoDOA) was used for training a non-linear 
Support Vector Machines (SVM) for better classification, which means also better diagnosis. 
Briefly, CoDOA particles were employed for finding the optimum sigma (σ) parameter of the 
Gaussian kernel function of the SVM so that it can perform an accurate diagnosis over the objective 
medical data. In the application works, the developed SVM-CoDOA was applied in some different 
medical data and the obtained results showed that the system is effective enough in diagnosis 
operations. Further, the formed system is also better than four different SVM based systems formed 
via alternative intelligent optimization techniques – algorithms. 

In addition to the performed research, there are also some alternative future works planned 
by the author. Briefly, the system will be used for alternative medical data and the effect of different 
parameters will be evaluated. Finally, there will also some efforts to use CoDOA for different 
parameter optimization of the non-linear SVM. 
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