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Abstract. In this paper, using the method of compression, we recover the

lower bound for the Erdős unit distance problem and provide an alternative
proof to the distinct distance conjecture. In particular, in Rk for all k ≥ 2, we

have

#

{
|| ~xj − ~xt|| : || ~xj − ~xt|| = 1, 1 ≤ t, j ≤ n, ~xj , ~xt ∈ Rk

}
�k

√
k

2
n1+o(1).

We also show that

#

{
dj : dj = || ~xs − ~yt||, dj 6= di, 1 ≤ s, t ≤ n

}
�k

√
k

2
n

2
k
−o(1).

These lower bounds generalizes the lower bounds of the Erdős unit distance
and the distinct distance problem to higher dimensions.

1. Introduction

The Erdős distinct distance conjecture is the assertion that

Conjecture 1.1. The number of distinct distances that can be formed from n
points in the plane should at least be n1−o(1).

Progress on this conjecture has developed overtime. Let us denote g(n) the
counting function for such construction. Then the first lower bound of the form

g(n)� n
2
3

was given in [3], which improves on an earlier version of Erdős. This was eventually
improved to

g(n)� n
4
5

log n

in [2] and

g(n)� n
6
7

in [4]. The best currently known lower bound can be found in [1], which essentially
solves the problem. In this paper by using the method of compression and its
accompanied estimates, we provide an alternative solution to the conjecture in the
following result:
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Theorem 1.1.

#

{
dj : dj = || ~xs − ~yt||, dj 6= di, 1 ≤ s, t ≤ n, ~x, ~y ∈ Rk

}
�k

√
k

2
n

2
k−o(1).

Using this method, we provide a lower bound for the Erdős unit distance problem,
that takes into consideration the dimension of the space in which the points reside
in the form:

Theorem 1.2. Let I =

{
|| ~xj − ~xt|| : || ~xj − ~xt|| = 1, 1 ≤ t, j ≤ n, ~xj , ~xt ∈ Rk,

}
,

then we have

#I �k

√
k

2
n1+o(1).

1.1. Notations and conventions. Through out this paper, we will assume that
n is sufficiently large for any number of n points in the euclidean plane. We write
f(s) � g(s) if there there exists a constant c > 0 such that f(s) ≥ c|g(s)| for
all s sufficiently large. If the constant depends of some variable, say t, then we
denote the inequality by f(s) �t g(s). We write f(s) = o(g(s)) if the limits holds

lim
s−→∞

f(s)
g(s) = 0. In particular, f(s) = o(1) implies that f(s) −→ 0 as s −→∞.

2. Compression

In this section we launch the notion of compression of points in space. We study
the mass of compression and its accompanied estimates. These estimates turn out
to be useful for estimating the gap of compression, which we will launch in the
sequel.

Definition 2.1. By the compression of scale 0 < m ≤ 1 on Rn, we mean the map
V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= 0 for all i = 1, . . . , n.

Remark 2.2. The notion of compression is in some way the process of rescaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression roughly
speaking pushes points very close to the origin away from the origin by certain scale
and similarly draws points away from the origin close to the origin. Intuitively,
compression induces some kind of motion on points in the Euclidean space.

Proposition 2.1. A compression of scale 0 < m ≤ 1 with Vm : Rn −→ Rn is a
bijective map. In particular the compression Vm : Rn −→ Rn is a bijective map of
order 2.

Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition
of the map. Thus the map is bijective. The latter claim follows by noting that
V2
m[~x] = ~x. �
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2.1. The mass of compression estimates. In this section we study the mass of
a compression in a given scale. We use the upper and lower estimates of the mass of
compression to establish corresponding estimates for the gap of compression. These
estimates will form an essential tool for establishing the main result of this paper.

Definition 2.3. By the mass of a compression of scale 0 < m ≤ 1 we mean the
map M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

Lemma 2.4. We have ∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
where γ = 0.5772 · · · .

Remark 2.5. Next we prove upper and lower bounding the mass of the compression
of scale 0 < m ≤ 1.

Proposition 2.2 (The mass of compression estimates). Let (x1, x2, . . . , xn) ∈ Rn
with xi 6= xj for 1 ≤ i, j ≤ n with i 6= j with xi 6= 0 for all 1 ≤ i ≤ n, then the
estimates holds

m log

(
1− n− 1

sup(xj)

)−1
�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 and xi 6= xj (i 6= j) with xi 6= 0 for all
1 ≤ i ≤ n. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum by appealing to Lemma
2.4. The lower estimate also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�

It is important to notice that the condition xi 6= xj for (x1, x2, . . . , xn) ∈ Rn is
not only a quantifier but a requirement; otherwise, the statement for the mass of
compression will be flawed completely. To wit, suppose we take x1 = x2 = · · · = xn,
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then it will follows that Inf(xj) = Sup(xj), in which case the mass of compression
of scale m satisfies

m

n−1∑
k=0

1

Inf(xj)− k
≤M(Vm[(x1, x2, . . . , xn)]) ≤ m

n−1∑
k=0

1

Inf(xj) + k

and it is easy to notice that this inequality is absurd. By extension one could
also try to equalize the sub-sequence on the bases of assigning the supremum and
the infimum and obtain an estimate but that would also contradict the mass of
compression inequality after a slight reassignment of the sub-sequence. Thus it
is important for the estimate to make any good sense to ensure that any tuple
(x1, x2, . . . , xn) ∈ Rn must satisfy xi 6= xj for all 1 ≤ i, j ≤ n. Hence in this paper
this condition will be highly extolled. In situations where it is not mentioned,
it will be assumed that the tuple (x1, x2, . . . , xn) ∈ Rn is such that xi 6= xj for
1 ≤ i, j ≤ n.

2.2. Compression gap estimates. In this section we recall the notion of the gap
of compression and its various estimates. We prove upper and lower bounding the
gap of a point under compression of any scale.

Definition 2.6. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n.
Then by the gap of compression of scale m for the compression Vm, denoted G ◦
Vm[(x1, x2, . . . , xn)], we mean the quantity

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 − m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
Proposition 2.3. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0 for j = 1, . . . , n,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
+m2M◦ V1[(x21, . . . , x

2
n)]− 2mn.

In particular, if each xi > 1 for 1 ≤ i ≤ n, we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
− 2mn+O

(
m2M◦ V1[(x21, . . . , x

2
n)]

)
with m := m(n) = o(1) as n −→∞.

Proposition 2.3 offers us an extremely useful identity. It allows us to pass from
the gap of compression on points to the relative distance to the origin. It tells us
that points under compression with a large gap must be far away from the origin
than points with a relatively smaller gap under compression. That is to say, the
inequality

G ◦ Vm[~x] < G ◦ Vm[~y]

with m := m(n) = o(1) as n −→ ∞ if and only if ||~x|| < ||~y|| for ~x, ~y ∈ Rn with
each xi, yi ≥ 1 for all 1 ≤ i ≤ n. This important transference principle will be
mostly put to use in obtaining our results.

Lemma 2.7 (Compression gap estimates). Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2
with xj 6= xi for j 6= i and xi, xj ≥ 1 for each 1 ≤ i, j ≤ n. If m := m(n) = o(1) as
n −→∞, then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2j ) +m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn
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and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2j ) +m2 log

(
1− n− 1

sup(x2j )

)−1
− 2mn.

Proof. The estimates follows by leveraging the estimates in Proposition 2.2 and
noting that

nInf(x2j )�M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
� nsup(x2j ).

�

In this paper, when we say points are concentrated around the origin; In partic-
ular, if a set of n points in Rk are concentrated around the origin, we mean

inf(xji)
k
i=1 = sup(xji)

k
i=1 = no(1)

for 1 ≤ j ≤ n.

3. Application to the Erdős unit distance and distinct distance
conjecture

In this section we leverage the estimate of the gap of compression to study the
problem of determining the number of unit distances that can be formed from n
points. We state our main theorem that takes into consideration the dimension of
the space in which the points reside.

Theorem 3.1. Let I =

{
|| ~xj − ~xt|| : || ~xj − ~xt|| = 1, 1 ≤ t, j ≤ n, ~xj , ~xt ∈ Rk,

}
,

then we have

#I �k

√
k

2
n1+o(1).

Proof. First, we set m := m(k) = o(1) as k −→ ∞ and carefully choose n points
~xj for 1 ≤ j ≤ n in Rk such that bn2 c of these points also has their image points
under compression. In particular, we choose n points such that bn2 c of those points

~xj satisfies inf(xji)
k
i=1 = sup(xji)

k
i=1 = no(1) and for each of these points we also

include their image points under compression Vm[~xj ]. This ensures that ||~xj −
Vm[~xj ] = 1 for all n sufficiently large. Consequently, we have

#I = #

{
|| ~xj − ~xt|| : || ~xj − ~xt|| = 1, 1 ≤ t, j ≤ n, ~xj , ~xt ∈ Rk

}
≥ #

{
|| ~xj − ~xt|| : || ~xj − ~xt|| = 1, 1 ≤ t, j ≤ n, ~xj , ~xt ∈ Rk,

min{Inf(xjs)}1≤j≤n
2

1≤s≤k
= no(1)

}
≥ #

{
|| ~xj − ~xt|| : ~xj ∈ Rk, || ~xj − ~xt|| = 1, 1 ≤ j ≤ n

2
, V1[ ~xj ] = ~xt,

min{Inf(xjs)}1≤j≤n
2

1≤s≤k
= no(1)

}
.



6 T. AGAMA

It is important to note that the quantity above cannot be zero, since the condition

min{Inf(xjs)}1≤j≤n
2

1≤s≤k
= no(1)

is required for || ~xj − ~xt|| = 1 with V1[ ~xj ] = ~xt and the configuration exists by
construction. This follows from the requirement of the construction that the chosen
set of points in Rk has bn2 c of the points concentrated around the origin, which mean

inf(xji)
k
i=1 = sup(xji)

k
i=1 = no(1)

for 1 ≤ j ≤ n
2 . The right-hand side is basically the sum∑

G◦Vm[ ~xj ]=1
1≤j≤n

2

min{Inf(xjs )}1≤j≤n
2

1≤s≤k
=no(1)

1 =
∑

1≤j≤n
2

min{Inf(xjs )}1≤j≤n
2

1≤s≤k
=no(1)

G ◦ Vm[ ~xj ]

By taking m := m(k) = o(1) as k −→ ∞, in particular, if we choose m = O( 1
log k )

then we have the lower bound for the right hand side∑
1≤j≤n

2

min{Inf(xjs )}1≤j≤n
2

1≤s≤k
=no(1)

G ◦ Vm[ ~xj ]�k

∑
1≤j≤n

2

min{Inf(xjs )}1≤j≤n
2

1≤s≤k
=no(1)

Inf(xjs)1≤s≤k
√
k

�k
n
√
k

2
min{Inf(xjs)}1≤j≤n

2
1≤s≤k

=

√
k

2
n1+o(1)

by an application of Lemma 2.7 which establishes the claimed lower bound for the
construction. �

It is important to point out that the lower estimate for the construction provided
in Theorem 3.1 was achieved by counting not all possible unit distances but only
unit distance that correspond to compression gaps of unit length. We state the
second theorem as an application.

Theorem 3.2. We have

#{dj : dj = || ~xs − ~yt||, dj 6= di, 1 ≤ s, t ≤ n, ~x, ~y ∈ Rk} �k

√
k

2
n

2
k−o(1).

Proof. First, we set m := m(k) = o(1) as k −→∞ and carefully choose n points ~xj
for 1 ≤ j ≤ n in Rk such that bn2 c of these points also has their image points under
compression. That is, for each ~xj we also include Vm[~xj ]. Next for bn2 c of those

points we make the assignment sup(xji) = n1−
2
k+ε for any small ε := ε(i) > 0 and

inf(xji) ≥ 1. This ensures that

max1≤j≤nG ◦ Vm[ ~xj ] = n1−
2
k+ε
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for any small ε := ε(i) > 0. Now, we let {dj : dj = || ~xs − ~yt||, dj 6= di, 1 ≤ s, t ≤
n, ~x, ~y ∈ Rk} = R, then we notice that

#R ≥ #

{
dj : dj = || ~xs − ~yt||, dj 6= di, i 6= j, 1 ≤ s, t ≤ n, ~x, ~y ∈ Rk, sup(dj) = n1−

2
k+o(1)

}
≥ #

{
dj : dj = G ◦ Vm[ ~xj ], dj 6= di, 1 ≤ j ≤ n

2
, sup(dj) = n1−

2
k+o(1), ~xj ∈ Rk, xjs (1 ≤ s ≤ k)

≥ 1, V[ ~xj ] = ~xt

}
=

∑
dj=G◦Vm[ ~xj ]

1≤j≤n
2

sup(dj)=n
1− 2

k
+o(1)

~xj∈Rk

di 6=dj
i 6=j

1

=
∑

1≤j≤n
2

sup(dj)=n
1− 2

k
+o(1)

~xj∈Rk

di 6=dj
i 6=j

G ◦ Vm[ ~xj ]

dj

�k

√
k

∑
1≤j≤n

2

sup(dj)=n
1− 2

k
+o(1)

~xj∈Rk

di 6=dj
i6=j

Inf(xjs)1≤s≤k
dj

≥
√
k

∑
1≤j≤n

2

sup(dj)=n
1− 2

k
+o(1)

di 6=dj
i 6=j

1

dj

�k

∑
sup(dj)=n

1− 2
k

+o(1)

√
k

n
2

sup(dj) 1≤j≤n
2

�k

√
k

2
n

2
k−o(1)

and the claimed lower bound follows by Lemma 2.7 for this construction. �

It needs to be said that the result in Theorem 3.2 can be viewed as providing an
alternate solution to the Erdős distinct distance problem, that takes into considera-
tion the dimension of the space in which the points reside. The lower bound of this
type, it has to be said, exists in the literature (See [1]). But the method employed
is completely different from the one we have used here. Theorem 3.1 and Theorem
3.2 can be considered as a generalization of the solution to both versions of the
Erdős distance problem to any euclidean space of dimension k ≥ 2. In particular
we have the following theorems as consequences of the main results of this paper.
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Theorem 3.3. The number of distinct distances that can be formed from n points
in a euclidean space Rn for n ≥ 2 is at least

� n
2
n+ 1

2−o(1)

2
.

Theorem 3.4. The number of distinct distances that can be formed from n points
in any euclidean space R2n for n ≥ 2 is at least

�
√

2

2
n

1
n+ 1

2−o(1).

Theorem 3.5. The number of distinct distances that can be formed from n points
in a euclidean space of dimension n2 for n ≥ 2 is at least

� n
2
n2 +1−o(1)

2
.

1.
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