Riemann Hypothesis

Shekhar Suman

February 27, 2020

1 Abstract

The Riemann Zeta function is defined as the Analytic Continuation of the Dirichlet series
$\zeta(s)=\sum_{n=1}^{\infty} 1 / n^{s}, \operatorname{Re}(s)>1$
The Riemann Zeta function is holomorphic in the complex plane except for a simple pole at $s=1$

The non trivial zeroes(i.e those not at negative even integers) of the
Riemann Zeta function lie in the critical strip
$0 \leq \operatorname{Re}(s) \leq 1$
Riemann's Xi function is defined as[4, p.1],
$\epsilon(s)=s(s-1) \pi^{-s / 2} \Gamma(s / 2) \zeta(s) / 2$
The zero of $(s-1)$ cancels the pole of $\zeta(s)$, and the real zeroes of $s \zeta(s)$ are cancelled by the simple poles of $\Gamma(s / 2)$ which never vanishes.

Thus, $\epsilon(s)$ is an entire function whose zeroes are the non trivial zeroes of $\zeta(s)(s e e[1, p .80])$ Further, $\epsilon(s)$ satisfies the functional equation
$\epsilon(1-s)=\epsilon(s)$

2 Statement of the Riemann Hypothesis

The Riemann Hypothesis states that all the non trivial zeroes of the Riemann Zeta function lie on the critical line $\operatorname{Re}(s)=1 / 2$

3 Proof

The Riemann Xi function [2, p.37, Theorem 2.11] is defined as

For all $\mathrm{s} \in \mathbb{C}$ we have,
$\epsilon(s)=\epsilon(0) \prod_{\rho}\left(1-\frac{s}{\rho}\right) \quad \ldots$
where ρ ranges over all the roots ρ of $\epsilon(\rho)=0$ and if we combine the factors $\left(1-\frac{s}{\rho}\right)$ and $\left(1-\frac{s}{(1-\rho)}\right)$, the product converges absolutely and uniformly on compact subsets of \mathbb{C}

Also, $\epsilon(0)=1 / 2$
Let, $\epsilon(s)=0,0 \leq \operatorname{Re}(s) \leq 1 \quad \ldots$
Since, $\epsilon(s)$ satisfies the functional equation
$\epsilon(1-s)=\epsilon(s)$
$\epsilon(1-s)=\epsilon(s)=0$.
From(1),
$\epsilon(1-s)=\epsilon(0) \prod_{\rho}\left(1-\frac{1-s}{\rho}\right)=0$
$\epsilon(1-s)=\epsilon(0) \prod_{\rho}\left(\frac{\rho+s-1}{\rho}\right)=0$
$\epsilon(0)=1 / 2[2$, p. 37, Theorem 2.11]
$\epsilon(1-s)=1 / 2 \prod_{\rho}\left(\frac{\rho+s-1}{\rho}\right)=0$
$1 / 2 \prod_{\rho}\left(\frac{\rho+s-1}{\rho}\right)=0$
$\prod_{\rho}\left(\frac{\rho+s-1}{\rho}\right)=0 \quad .$.
Let, $s=\sigma+i t 0 \leq \sigma \leq 1$
and let, $\rho=a+i b$

Since, $\epsilon(\rho)=0$,
Thus, $0 \leq \operatorname{Re}(\rho) \leq 1$. (Since $\epsilon(s)$ is zero free in $\operatorname{Re}(s)<0$
and $\operatorname{Re}(s)>1$.)
Thus, $\rho=a+i b, 0,0 \leq a \leq 1$.

From (2),
$\prod_{\rho}\left(\frac{\rho+s-1}{\rho}\right)=0$
Since, $\epsilon(s)=1 / 2 \prod_{\rho}\left(1-\frac{s}{\rho}\right)$
$\epsilon(1-\rho)=\epsilon(\rho)=0$.
Thus, $\epsilon(s)=1 / 2 \prod_{\rho}\left(1-\frac{s}{\rho}\right)\left(1-\frac{s}{1-\rho}\right)$
$|\epsilon(s)|=\left|1 / 2 \prod_{\rho}\left(1-\frac{s}{\rho}\right)\left(1-\frac{s}{1-\rho}\right)\right|$
$|\epsilon(s)|<\infty[2, p .37$, Theorem 2.11].
$|\epsilon(1-s)|=|\epsilon(s)|<\infty$
$\epsilon(1-s)$ is absolutely convergent infinite product, thus it is a convergent infinite product.

Since, $\epsilon(1-s)$ is convergent infinite product
The value of convergent infinite product is zero
if and only if atleast one of the factors is zero .[5, p.287]
$S o, \epsilon(1-s)=0 \Rightarrow \prod_{\rho}\left(\frac{\rho+s-1}{\rho}\right)=0$
$\left(\frac{\rho_{0}+s-1}{\rho_{0}}\right)=0$, for some $\rho_{0} \in \mathbb{C}$
$\rho_{0}+s-1=0$.
Putting, $s=\sigma+i t, 0 \leq \sigma \leq 1$
and putting $\quad \rho_{0}=a_{0}+i b_{0}, 0 \leq a_{0} \leq 1$.
$a_{0}+i b_{0}+\sigma+i t-1=0$.
$\left(a_{0}+\sigma-1\right)+i\left(b_{0}+t\right)=0$
$\left|\left(a_{0}+\sigma-1\right)+i\left(b_{0}+t\right)\right|^{2}=0$
$\left(a_{0}+\sigma-1\right)^{2}+\left(b_{0}+t\right)^{2}=0$
$\left(a_{0}+\sigma-1\right)^{2}=0$ and $\left(b_{0}+t\right)^{2}=0$.
$\left(a_{0}-\sigma+2 \sigma-1\right)^{2}=0$ and $b_{0}=-t$.
$\left(a_{0}-\sigma\right)^{2}+(2 \sigma-1)^{2}+2\left(a_{0}-\sigma\right)(2 \sigma-1)=0$
$\left(a_{0}-\sigma\right)^{2}+(2 \sigma-1)\left(2 \sigma-1+2 a_{0}-2 \sigma\right)=0$
$\left(a_{0}-\sigma\right)^{2}+(2 \sigma-1)\left(2 a_{0}-1\right)=0 \quad \ldots$

Since , the critical strip is $0 \leq \operatorname{Re}(s) \leq 1$
$s=\sigma+i t ; 0 \leq \sigma \leq 1$.
We discuss 2 cases $0 \leq \sigma \leq 1 / 2$ and $1 / 2 \leq \sigma \leq 1$.
Case 1: $0 \leq \sigma \leq 1 / 2$
$\rho=a+i b, 0 \leq a \leq 1$
Claim : $0 \leq a \leq 1 / 2$.
We prove the claim by contradiction.
Let, $a \notin[0,1 / 2]$
Since $0 \leq a \leq 1 \Rightarrow 1 / 2<a \leq 1$.
From (1),
$\epsilon(\sigma+i t)=\epsilon(0) \prod_{\rho}\left(1-\frac{\sigma+i t}{a+i b}\right)$
$\left.\epsilon(\sigma+i t)=\epsilon(0) \prod_{\rho} \frac{(a-\sigma)+i(b-t)}{a+i b}\right)$
Since, $1 / 2<a \leq 1 \quad$..
Since, $0 \leq \sigma \leq 1 / 2$
Thus, $-1 / 2 \leq-\sigma \leq 0$
Adding (4) and (5), we have
$0<a-\sigma \leq 1$
$\Rightarrow a-\sigma \neq 0 \forall a \in(1 / 2,1]$.
$\Rightarrow(a-\sigma)+i(b-t) \neq 0 \forall a \in(1 / 2,1]$ and $\forall b \in \mathbb{R}$.
$\Rightarrow \frac{(a-\sigma)+i(b-t)}{a+i b} \neq 0 \forall a \in(1 / 2,1]$ and $\forall b \in \mathbb{R}$.

Since $\epsilon(s)$ is a convergent infinite product.
So, value of a convergent infinite product is zero
if and only if atleast one of the factors are zero.
Since all the factors $\frac{(a-\sigma)+i(b-t)}{a+i b}$ are non zero $\forall a \in(1 / 2,1]$ and $\forall b \in \mathbb{R}$.
$\Rightarrow \epsilon(0) \prod_{\rho} \frac{(a-\sigma)+i(b-t)}{a+i b} \neq 0$.
$\epsilon(s) \neq 0$.
But in $(*)$, we have assumed that $\epsilon(s)=0$. So we get a contradiction.
So, our assumption that $a \notin[0,1 / 2]$ is wrong.
Thus, $a \in[0,1 / 2]$
$0 \leq a \leq 1 / 2$
From (3),
$\left(a_{0}-\sigma\right)^{2}+(2 \sigma-1)\left(2 a_{0}-1\right)=0$
Since, $0 \leq \sigma \leq 1 / 2 \Rightarrow 1-2 \sigma \geq 0 \quad \ldots$
Since, $\left.0 \leq a \leq 1 / 2 \Rightarrow 1-2 a \geq 0 \Rightarrow\left(1-2 a_{0}\right) \geq 0\right) \quad \ldots$
From (6) and (7), $(1-2 \sigma)\left(1-2 a_{0}\right) \geq 0$
$\Rightarrow(2 \sigma-1)\left(2 a_{0}-1\right) \geq 0 . \quad \ldots$
$U \operatorname{sing}(8)$ in $\left(a_{0}-\sigma\right)^{2}+(2 \sigma-1)\left(2 a_{0}-1\right)=0$
$\left(a_{0}-\sigma\right)^{2}=0$ and $(2 \sigma-1)\left(2 a_{0}-1\right)=0$
$a_{0}=\sigma$ and $(2 \sigma-1)\left(2 a_{0}-1\right)=0$

Putting $a_{0}=\sigma$ in $(2 \sigma-1)\left(2 a_{0}-1\right)=0$
$(2 \sigma-1)(2 \sigma-1)=0$
$(2 \sigma-1)^{2}=0$
$\Rightarrow \sigma=1 / 2$.

Case $2: 1 / 2 \leq \sigma \leq 1$
$\rho=a+i b, 0 \leq a \leq 1$
Claim : $1 / 2 \leq a \leq 1$.
We prove the claim by contradiction.
Let, $a \notin[1 / 2,1]$
Since, $0 \leq a \leq 1 \Rightarrow 0 \leq a<1 / 2$.
From (1),
$\epsilon(\sigma+i t)=\epsilon(0) \prod_{\rho}\left(1-\frac{\sigma+i t}{a+i b}\right)$
$\left.\epsilon(\sigma+i t)=\epsilon(0) \prod_{\rho} \frac{(a-\sigma)+i(b-t)}{a+i b}\right)$
Since, $0 \leq a<1 / 2 \quad \ldots$
Since, $1 / 2 \leq \sigma \leq 1$
Thus, $-1 \leq-\sigma \leq-1 / 2 \quad$...
Adding (9) and (10), we have
$-1 \leq a-\sigma<0$
$\Rightarrow a-\sigma \neq 0 \forall a \in[0,1 / 2)$.
$\Rightarrow(a-\sigma)+i(b-t) \neq 0 \forall a \in[0,1 / 2)$ and $\forall b \in \mathbb{R}$.
$\Rightarrow \frac{(a-\sigma)+i(b-t)}{a+i b} \neq 0 \forall a \in[0,1 / 2)$ and $\forall b \in \mathbb{R}$.
Since $\epsilon(s)$ is a convergent infinite product.
So, value of a convergent infinite product is zero
if and only if atleast one of the factors are zero.
Since all the factors $\frac{(a-\sigma)+i(b-t)}{a+i b}$ are non zero $\forall a \in[0,1 / 2)$ and $\forall b \in \mathbb{R}$.
$\Rightarrow \epsilon(0) \prod_{\rho} \frac{(a-\sigma)+i(b-t)}{a+i b} \neq 0$.
$\epsilon(s) \neq 0$.

But, we have assumed that $\epsilon(s)=0$. So we get a contradiction.
So, our assumption that $a \notin[1 / 2,1]$ is wrong.
Thus, $a \in[1 / 2,1]$

From (2),
Since, $\epsilon(s)=1 / 2 \prod_{\rho}\left(1-\frac{s}{\rho}\right)$
$\epsilon(1-\rho)=\epsilon(\rho)=0$.
Thus, $\epsilon(s)=1 / 2 \prod_{\rho}\left(1-\frac{s}{\rho}\right)\left(1-\frac{s}{1-\rho}\right)$
$|\epsilon(s)|=\left|1 / 2 \prod_{\rho}\left(1-\frac{s}{\rho}\right)\left(1-\frac{s}{1-\rho}\right)\right|$
$|\epsilon(s)|<\infty[2, p .37$, Theorem 2.11].
$|\epsilon(1-s)|=|\epsilon(s)|<\infty$
$\epsilon(1-s)$ is absolutely convergent infinite product, thus it is a convergent infinite product.

Since, $\epsilon(1-s)$ is convergent infinite product
The value of convergent infinite product is zero
if and only if atleast one of the factors is zero .[5, p.287]
So, $\epsilon(1-s)=0 \Rightarrow \prod_{\rho}\left(\frac{\rho+s-1}{\rho}\right)=0$
$\left(\frac{\rho_{1}+s-1}{\rho_{1}}\right)=0$, for some $\rho_{1} \in \mathbb{C}$
$\rho_{1}+s-1=0$.
Putting, $s=\sigma+i t, 0 \leq \sigma \leq 1$
and putting $\rho_{1}=a_{1}+i b_{1}, 0 \leq a_{1} \leq 1$.
$a_{1}+i b_{1}+\sigma+i t-1=0$.
$\left(a_{1}+\sigma-1\right)+i\left(b_{1}+t\right)=0$
$\left|\left(a_{1}+\sigma-1\right)+i\left(b_{1}+t\right)\right|^{2}=0$
$\left(a_{1}+\sigma-1\right)^{2}+\left(b_{1}+t\right)^{2}=0$
$\left(a_{1}+\sigma-1\right)^{2}=0$ and $\left(b_{1}+t\right)^{2}=0$.
$\left(a_{1}-\sigma+2 \sigma-1\right)^{2}=0$ and $b_{1}=-t$.
$\left(a_{1}-\sigma\right)^{2}+(2 \sigma-1)^{2}+2\left(a_{1}-\sigma\right)(2 \sigma-1)=0$
$\left(a_{1}-\sigma\right)^{2}+(2 \sigma-1)\left(2 \sigma-1+2 a_{1}-2 \sigma\right)=0$
$\left(a_{1}-\sigma\right)^{2}+(2 \sigma-1)\left(2 a_{1}-1\right)=0$
$\left(a_{1}-\sigma\right)^{2}+(2 \sigma-1)\left(2 a_{1}-1\right)=0$
Since, $1 / 2 \leq \sigma \leq 1 \Rightarrow 2 \sigma-1 \geq 0$

Since, $\left.1 / 2 \leq a \leq 1 \Rightarrow 2 a-1 \geq 0 \Rightarrow 2 a_{1}-1 \geq 0\right) \quad .$.
From (11) and (12), $(2 \sigma-1)\left(2 a_{1}-1\right) \geq 0$.
$U \operatorname{sing}(13)$ in $\left(a_{1}-\sigma\right)^{2}+(2 \sigma-1)\left(2 a_{1}-1\right)=0$
$\left(a_{1}-\sigma\right)^{2}=0$ and $(2 \sigma-1)\left(2 a_{1}-1\right)=0$
$a_{1}=\sigma$ and $(2 \sigma-1)\left(2 a_{1}-1\right)=0$
Putting $a_{1}=\sigma$ in $(2 \sigma-1)\left(2 a_{1}-1\right)=0$
$(2 \sigma-1)(2 \sigma-1)=0$
$(2 \sigma-1)^{2}=0$
$\Rightarrow \sigma=1 / 2$.

So, in both the cases $\sigma=1 / 2$.
$\Rightarrow \operatorname{Re}(s)=1 / 2$. This proves the Riemann Hypothesis.

4 References:-

1. E. C. Titchmarsh, D. R. Heath-Brown - The theory of the Riemann Zeta function [2nd ed] Clarendon Press; Oxford University Press (1986).
2. Kevin Broughan - Equivalents of the Riemann Hypothesis : Arithmetic Equivalents Cambridge University Press (2017) .
3. A Monotonicity of Riemann's Xi function and a reformulation of the Riemann Hypothesis, Periodica Mathematica Hungarica - May 2010.
4. H.M Edwards - Riemann's Zeta function- Academic Press (1974).
5. Analytic Functions, 2nd Edition Hardcover - 1965 by Stanislaw Saks, Antoni Zygmund .
6. Tom M. Apostol - Introduction to Analytical Number Theory (1976).
7. https://www.claymath.org/millennium-problems/riemann-hypothesis.
8. A note on $\mathrm{S}(\mathrm{t})$ and the zeros of the Riemann zeta-function DA Goldston, SM Gonek.
9. 4. Lars Ahlfors - Complex analysis [3 ed.] McGraw -Hill (1979).
