Riemann Hypothesis

Shekhar Suman

February 27, 2020

1 Abstract

The Riemann Zeta function is defined as the Analytic Continuation of the Dirichlet series

 $\zeta(s)=\sum_{n=1}^{\infty}1/n^s,\ Re(s){>}1$

The Riemann Zeta function is holomorphic in the complex plane except for a simple pole at s = 1

The non trivial zeroes (i.e those not at negative even integers) of the

Riemann Zeta function lie in the critical strip

 $0 \le Re(s) \le 1$

Riemann's Xi function is defined as[4, p.1],

 $\epsilon(s) = s(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s)/2$

The zero of (s-1) cancels the pole of $\zeta(s)$, and the real zeroes of $s \zeta(s)$ are cancelled by the simple poles of $\Gamma(s/2)$ which never vanishes.

Thus, $\epsilon(s)$ is an entire function whose zeroes are the non trivial zeroes of $\zeta(s)(see[1, p.80])$ Further, $\epsilon(s)$ satisfies the functional equation

 $\epsilon(1-s) = \epsilon(s)$

2 Statement of the Riemann Hypothesis

The Riemann Hypothesis states that all the non trivial zeroes of the Riemann Zeta function lie on the critical line Re(s)=1/2

3 Proof

The Riemann Xi function [2, p.37, Theorem 2.11] is defined as

For all $s \in \mathbb{C}$ we have,

 $\epsilon(s) = \epsilon(0) \prod_{\rho} (1 - \frac{s}{\rho}) \qquad \dots \qquad (1)$

where ρ ranges over all the roots ρ of $\epsilon(\rho) = 0$ and if we combine the factors $(1-\frac{s}{\rho})$ and $(1-\frac{s}{(1-\rho)})$, the product converges absolutely and uniformly on compact subsets of \mathbb{C}

Also,
$$\epsilon(0) = 1/2$$

Let, $\epsilon(s) = 0, \ 0 \le Re(s) \le 1$... (*)

Since, $\epsilon(s)$ satisfies the functional equation

 $\epsilon(1-s) = \epsilon(s)$

$$\epsilon(1-s) = \epsilon(s) = 0.$$

From(1),

$$\epsilon(1-s) = \epsilon(0) \prod_{\rho} (1 - \frac{1-s}{\rho}) = 0$$
$$\epsilon(1-s) = \epsilon(0) \prod_{\rho} (\frac{\rho+s-1}{\rho}) = 0$$

 $\epsilon(0) = 1/2 [2, p.37, Theorem 2.11]$ $\epsilon(1-s) = 1/2 \prod_{\rho} \left(\frac{\rho+s-1}{\rho}\right) = 0$ $1/2\prod_{\rho} \left(\frac{\rho+s-1}{\rho}\right) = 0$ $\prod_{\rho} \left(\frac{\rho + s - 1}{\rho} \right) = 0 \qquad \dots \qquad (2)$ Let, $s = \sigma + it \ 0 < \sigma < 1$ and let, $\rho = a + ib$ Since, $\epsilon(\rho) = 0$, Thus, $0 \leq Re(\rho) \leq 1.(Since \epsilon(s) \text{ is zero free in } Re(s) < 0$ and Re(s) > 1.) Thus, $\rho = a + ib$, $0, 0 \le a \le 1$. From (2), $\prod_{\rho} \left(\frac{\rho + s - 1}{\rho} \right) = 0$ Since, $\epsilon(s) = 1/2 \prod_{\rho} (1 - \frac{s}{\rho})$ $\epsilon(1-\rho) = \epsilon(\rho) = 0.$ Thus, $\epsilon(s) = 1/2 \prod_{\rho} (1 - \frac{s}{\rho})(1 - \frac{s}{1-\rho})$ $|\epsilon(s)| = |1/2 \prod_{\rho} (1 - \frac{s}{\rho})(1 - \frac{s}{1-\rho})|$ $|\epsilon(s)| < \infty [2, p.37, Theorem 2.11].$ $|\epsilon(1-s)| = |\epsilon(s)| < \infty$ $\epsilon(1-s)$ is absolutely convergent infinite product, thus it is a convergent infinite product.

3

Since, $\epsilon(1-s)$ is convergent infinite product The value of convergent infinite product is zero if and only if atleast one of the factors is zero [5, p.287] $So, \epsilon(1-s) = 0 \Rightarrow \prod_{\rho} (\frac{\rho+s-1}{\rho}) = 0$ $\left(\frac{\rho_0+s-1}{\rho_0}\right)=0, \text{ for some } \rho_0\in\mathbb{C}$ $\rho_0 + s - 1 = 0.$ Putting, $s = \sigma + it, \ 0 \le \sigma \le 1$ and putting $\rho_0 = a_0 + ib_0, \ 0 \le a_0 \le 1.$ $a_0 + ib_0 + \sigma + it - 1 = 0.$ $(a_0 + \sigma - 1) + i(b_0 + t) = 0$ $|(a_0 + \sigma - 1) + i(b_0 + t)|^2 = 0$ $(a_0 + \sigma - 1)^2 + (b_0 + t)^2 = 0$ $(a_0 + \sigma - 1)^2 = 0$ and $(b_0 + t)^2 = 0$. $(a_0 - \sigma + 2\sigma - 1)^2 = 0$ and $b_0 = -t$. $(a_0 - \sigma)^2 + (2\sigma - 1)^2 + 2(a_0 - \sigma)(2\sigma - 1) = 0$ $(a_0 - \sigma)^2 + (2\sigma - 1)(2\sigma - 1 + 2a_0 - 2\sigma) = 0$ $(a_0 - \sigma)^2 + (2\sigma - 1)(2a_0 - 1) = 0 \qquad \dots$ (3)

Since , the critical strip is $0 \le Re(s) \le 1$

 $s = \sigma + it; 0 \le \sigma \le 1.$

We discuss 2 cases 0 $\leq \sigma \leq 1/2$ and $1/2 \leq \sigma \leq 1$.

 $Case~1: 0 \leq \sigma \leq 1/2$

 $\rho = a + ib, \ 0 \le a \le 1$

 $Claim: 0 \le a \le 1/2.$

We prove the claim by contradiction.

Let, $a \notin [0, 1/2]$

Since $0 \le a \le 1 \Rightarrow 1/2 < a \le 1$.

From (1),

$$\begin{aligned} \epsilon(\sigma + it) = \epsilon(0) \prod_{\rho} (1 - \frac{\sigma + it}{a + ib}) \\ \epsilon(\sigma + it) = \epsilon(0) \prod_{\rho} \frac{(a - \sigma) + i(b - t)}{a + ib}) \\ Since, 1/2 < a \le 1 \qquad \dots \qquad (4) \end{aligned}$$

Since, $0 \le \sigma \le 1/2$

 $Thus, -1/2 \le -\sigma \le 0 \qquad \dots \qquad (5)$

Adding (4) and (5), we have

$$\begin{split} &0 < a - \sigma \leq 1 \\ &\Rightarrow a - \sigma \neq 0 \ \forall \ a \in (1/2, 1]. \\ &\Rightarrow (a - \sigma) + i(b - t) \neq 0 \ \forall \ a \in (1/2, 1] \ and \ \forall \ b \ \in \mathbb{R}. \\ &\Rightarrow \frac{(a - \sigma) + i(b - t)}{a + ib} \neq 0 \ \forall \ a \in (1/2, 1] \ and \ \forall \ b \ \in \mathbb{R}. \end{split}$$

Since
$$\epsilon(s)$$
 is a convergent infinite product.
So, value of a convergent infinite product is zero
if and only if atleast one of the factors are zero.
Since all the factors $\frac{(a-\sigma)+i(b-t)}{a+ib}$ are non zero $\forall a \in (1/2, 1]$ and $\forall b \in \mathbb{R}$.
 $\Rightarrow \epsilon(0) \prod_{p} \frac{(a-\sigma)+i(b-t)}{a+ib} \neq 0$.
 $\epsilon(s) \neq 0$.
But in (*), we have assumed that $\epsilon(s) = 0$. So we get a contradiction.
So, our assumption that $a \notin [0, 1/2]$ is wrong.
Thus, $a \in [0, 1/2]$
 $0 \leq a \leq 1/2$
From (3),
 $(a_0 - \sigma)^2 + (2\sigma - 1)(2a_0 - 1) = 0$
Since, $0 \leq \sigma \leq 1/2 \Rightarrow 1 - 2\sigma \geq 0$... (6)
Since, $0 \leq a \leq 1/2 \Rightarrow 1 - 2a \geq 0 \Rightarrow (1 - 2a_0) \geq 0$) ... (7)
From (6) and (7), $(1 - 2\sigma)(1 - 2a_0) \geq 0$
 $\Rightarrow (2\sigma - 1)(2a_0 - 1) \geq 0$ (8)
Using (8) in $(a_0 - \sigma)^2 + (2\sigma - 1)(2a_0 - 1) = 0$
 $(a_0 - \sigma)^2 = 0$ and $(2\sigma - 1)(2a_0 - 1) = 0$
 $a_0 = \sigma$ and $(2\sigma - 1)(2a_0 - 1) = 0$

Putting $a_0 = \sigma$ in $(2\sigma - 1)(2a_0 - 1) = 0$ $(2\sigma - 1)(2\sigma - 1) = 0$ $(2\sigma - 1)^2 = 0$ $\Rightarrow \sigma = 1/2.$

Case 2: $1/2 \le \sigma \le 1$

 $\rho=a+ib,\ 0\leq a\leq 1$

 $Claim: 1/2 \le a \le 1.$

We prove the claim by contradiction.

Let, $a \notin [1/2, 1]$ Since, $0 \le a \le 1 \Rightarrow 0 \le a < 1/2$. From (1), $\epsilon(\sigma + it) = \epsilon(0) \prod_{\rho} (1 - \frac{\sigma + it}{a + ib})$ $\epsilon(\sigma + it) = \epsilon(0) \prod_{\rho} \frac{(a - \sigma) + i(b - t)}{a + ib})$ Since, $0 \le a < 1/2$... (9) Since, $1/2 \le \sigma \le 1$ Thus, $-1 \le -\sigma \le -1/2$... (10) Adding (9) and (10), we have $-1 \le a - \sigma < 0$ $\Rightarrow a - \sigma \ne 0 \forall a \in [0, 1/2)$.

$$\Rightarrow (a - \sigma) + i(b - t) \neq 0 \ \forall \ a \in [0, 1/2) \ and \ \forall \ b \in \mathbb{R}.$$

$$\Rightarrow \frac{(a - \sigma) + i(b - t)}{a + ib} \neq 0 \ \forall \ a \in [0, 1/2) \ and \ \forall \ b \in \mathbb{R}.$$

Since $\epsilon(s)$ is a convergent infinite product.
So, value of a convergent infinite product is zero
if and only if atleast one of the factors are zero.
Since all the factors $\frac{(a - \sigma) + i(b - t)}{a + ib}$ are non zero $\forall \ a \in [0, 1/2)$ and $\forall \ b \in \mathbb{R}.$
 $\Rightarrow \epsilon(0) \prod_{\rho} \frac{(a - \sigma) + i(b - t)}{a + ib} \neq 0.$
 $\epsilon(s) \neq 0.$

But , we have assumed that $\epsilon(s)=0.$ So we get a contradiction. So, our assumption that $a\notin [1/2,1]$ is wrong. Thus, $a\in [1/2,1]$

From (2),

Since, $\epsilon(s) = 1/2 \prod_{\rho} (1 - \frac{s}{\rho})$ $\epsilon(1 - \rho) = \epsilon(\rho) = 0.$ Thus, $\epsilon(s) = 1/2 \prod_{\rho} (1 - \frac{s}{\rho})(1 - \frac{s}{1 - \rho})$ $|\epsilon(s)| = |1/2 \prod_{\rho} (1 - \frac{s}{\rho})(1 - \frac{s}{1 - \rho})|$ $|\epsilon(s)| < \infty [2, p.37, Theorem 2.11].$ $|\epsilon(1 - s)| = |\epsilon(s)| < \infty$ $\epsilon(1 - s) \text{ is absolutely convergent infinite product, thus it is a convergent infinite product.}$

Since, $\epsilon(1-s)$ is convergent infinite product The value of convergent infinite product is zero if and only if atleast one of the factors is zero .[5, p.287] $So, \epsilon(1-s) = 0 \Rightarrow \prod_{\rho} (\frac{\rho+s-1}{\rho}) = 0$ $\left(\frac{\rho_1+s-1}{\rho_1}\right)=0, \text{ for some } \rho_1\in\mathbb{C}$ $\rho_1 + s - 1 = 0.$ Putting, $s = \sigma + it$, $0 < \sigma < 1$ and putting $\rho_1 = a_1 + ib_1, \ 0 \le a_1 \le 1.$ $a_1 + ib_1 + \sigma + it - 1 = 0.$ $(a_1 + \sigma - 1) + i(b_1 + t) = 0$ $|(a_1 + \sigma - 1) + i(b_1 + t)|^2 = 0$ $(a_1 + \sigma - 1)^2 + (b_1 + t)^2 = 0$ $(a_1 + \sigma - 1)^2 = 0$ and $(b_1 + t)^2 = 0$. $(a_1 - \sigma + 2\sigma - 1)^2 = 0$ and $b_1 = -t$. $(a_1 - \sigma)^2 + (2\sigma - 1)^2 + 2(a_1 - \sigma)(2\sigma - 1) = 0$ $(a_1 - \sigma)^2 + (2\sigma - 1)(2\sigma - 1 + 2a_1 - 2\sigma) = 0$ $(a_1 - \sigma)^2 + (2\sigma - 1)(2a_1 - 1) = 0$ $(a_1 - \sigma)^2 + (2\sigma - 1)(2a_1 - 1) = 0$ Since, $1/2 < \sigma < 1 \Rightarrow 2\sigma - 1 > 0$... (11)

Since,
$$1/2 \le a \le 1 \Rightarrow 2a - 1 \ge 0 \Rightarrow 2a_1 - 1 \ge 0$$
 ... (12)
From (11) and (12), $(2\sigma - 1)(2a_1 - 1) \ge 0$ (13)
Using (13) in $(a_1 - \sigma)^2 + (2\sigma - 1)(2a_1 - 1) = 0$
 $(a_1 - \sigma)^2 = 0$ and $(2\sigma - 1)(2a_1 - 1) = 0$
 $a_1 = \sigma$ and $(2\sigma - 1)(2a_1 - 1) = 0$
Putting $a_1 = \sigma$ in $(2\sigma - 1)(2a_1 - 1) = 0$
 $(2\sigma - 1)(2\sigma - 1) = 0$
 $(2\sigma - 1)^2 = 0$
 $\Rightarrow \sigma = 1/2.$

So, in both the cases $\sigma = 1/2$. $\Rightarrow Re(s) = 1/2$. This proves the Riemann Hypothesis.

4 References:-

1. E. C. Titchmarsh, D. R. Heath-Brown - The theory of the Riemann Zeta function [2nd ed] Clarendon Press; Oxford University Press (1986).

2. Kevin Broughan - Equivalents of the Riemann Hypothesis : Arithmetic Equivalents Cambridge University Press (2017).

3. A Monotonicity of Riemann's Xi function and a reformulation of the Riemann Hypothesis, Periodica Mathematica Hungarica - May 2010.

4. H.M Edwards - Riemann's Zeta function- Academic Press (1974).

5. Analytic Functions, 2nd Edition Hardcover – 1965 by Stanislaw Saks, Antoni Zygmund .

5. Tom M. Apostol - Introduction to Analytical Number Theory (1976).

6. https://www.claymath.org/millennium-problems/riemann-hypothesis.

7. A note on S(t) and the zeros of the Riemann zeta-function - DA Goldston, SM Gonek.

8. 4. Lars Ahlfors - Complex analysis [3 ed.] McGraw -Hill (1979).