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1 Abstract

The Riemann Zeta function is defined as the Analytic Continuation
of the Dirichlet series

ζ(s) =
∑∞

n=1 1/ns, Re(s)>1

The Riemann Zeta function is holomorphic in the complex plane except for a
simple pole at s = 1

The non trivial zeroes(i.e those not at negative even integers) of the

Riemann Zeta function lie in the critical strip

0 ≤ Re(s) ≤ 1

Riemann′s Xi function is defined as[4, p.1],

ε(s) = s(s− 1)π−s/2Γ(s/2)ζ(s)/2

The zero of (s−1) cancels the pole of ζ(s) , and the real zeroes of s ζ(s) are cancelled by the

simple poles of Γ(s/2) which never vanishes.

Thus, ε(s) is an entire function whose zeroes are the non trivial zeroes of ζ(s)(see[1, p.80])

Further, ε(s) satisfies the functional equation

ε(1− s) = ε(s)
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2 Statement of the Riemann Hypothesis

The Riemann Hypothesis states that all the non trivial zeroes of the

Riemann Zeta function lie on the critical line Re(s)=1/2

3 Proof

The Riemann Xi function [2, p.37, Theorem 2.11] is defined as

For all s∈C we have,

ε(s) =ε(0)
∏

ρ(1−
s
ρ
) ... (1)

where ρ ranges over all the roots ρ of ε(ρ) = 0 and if we combine the factors

(1− s
ρ
) and (1− s

(1−ρ)), the product converges absolutely and uniformly on

compact subsets of C

Also, ε(0) = 1/2

Let, ε(s) = 0, 0 ≤ Re(s) ≤ 1 ... (∗)

Since, ε(s) satisfies the functional equation

ε(1− s) = ε(s)

ε(1− s) = ε(s) = 0.

F rom(1),

ε(1− s) = ε(0)
∏

ρ(1−
1−s
ρ

)= 0

ε(1− s) = ε(0)
∏

ρ(
ρ+s−1
ρ

)= 0
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ε(0) = 1/2 [2, p.37 , Theorem 2.11]

ε(1− s) = 1/2
∏

ρ(
ρ+s−1
ρ

)= 0

1/2
∏

ρ(
ρ+s−1
ρ

)= 0∏
ρ(
ρ+s−1
ρ

)= 0 ... (2)

Let, s = σ + it 0 ≤ σ ≤ 1

and let, ρ = a+ ib

Since, ε(ρ) = 0,

Thus, 0 ≤ Re(ρ) ≤ 1.(Since ε(s) is zero free in Re(s) < 0

and Re(s) > 1.)

Thus, ρ = a+ ib, 0 , 0 ≤ a ≤ 1.

F rom (2),∏
ρ(
ρ+s−1
ρ

)= 0

Since, ε(s) = 1/2
∏

ρ(1−
s
ρ
)

ε(1− ρ) = ε(ρ) = 0.

Thus, ε(s) = 1/2
∏

ρ(1−
s
ρ
)(1− s

1−ρ)

| ε(s) |=| 1/2
∏

ρ(1−
s
ρ
)(1− s

1−ρ)|

| ε(s) |<∞ [ 2, p.37 , Theorem 2.11].

| ε(1− s) |=| ε(s) |<∞

ε(1−s) is absolutely convergent infinite product, thus it is a convergent infinite product.
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Since, ε(1− s) is convergent infinite product

The value of convergent infinite product is zero

if and only if atleast one of the factors is zero .[5, p.287]

So, ε(1− s) = 0⇒
∏

ρ(
ρ+s−1
ρ

)= 0

(ρ0+s−1
ρ0

)= 0, for some ρ0 ∈C

ρ0 + s− 1 = 0.

Putting, s = σ + it, 0 ≤ σ ≤ 1

and putting ρ0 = a0 + ib0, 0 ≤ a0 ≤ 1.

a0 + ib0 + σ + it− 1 = 0.

(a0 + σ − 1) + i(b0 + t) = 0

| (a0 + σ − 1) + i(b0 + t) |2= 0

(a0 + σ − 1)2 + (b0 + t)2 = 0

(a0 + σ − 1)2 = 0 and (b0 + t)2 = 0.

(a0 − σ + 2σ − 1)2 = 0 and b0 = −t.

(a0 − σ)2 + (2σ − 1)2 + 2(a0 − σ)(2σ − 1) = 0

(a0 − σ)2 + (2σ − 1)(2σ − 1 + 2a0 − 2σ) = 0

(a0 − σ)2 + (2σ − 1)(2a0 − 1) = 0 ... (3)
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Since , the critical strip is 0 ≤ Re(s) ≤ 1

s = σ + it; 0 ≤ σ ≤ 1.

We discuss 2 cases 0 ≤ σ ≤ 1/2 and 1/2 ≤ σ ≤ 1.

Case 1 : 0 ≤ σ ≤ 1/2

ρ = a+ ib, 0 ≤ a ≤ 1

Claim : 0 ≤ a ≤ 1/2.

We prove the claim by contradiction.

Let, a /∈ [0, 1/2]

Since 0 ≤ a ≤ 1⇒ 1/2 < a ≤ 1.

F rom (1),

ε(σ + it) =ε(0)
∏

ρ(1−
σ+it
a+ib

)

ε(σ + it) =ε(0)
∏

ρ
(a−σ)+i(b−t)

a+ib
)

Since, 1/2 < a ≤ 1 ... (4)

Since, 0 ≤ σ ≤ 1/2

Thus,−1/2 ≤ −σ ≤ 0 ... (5)

Adding (4) and (5), we have

0 < a− σ ≤ 1

⇒ a− σ 6= 0 ∀ a ∈ (1/2, 1].

⇒ (a− σ) + i(b− t) 6= 0 ∀ a ∈ (1/2, 1] and ∀ b ∈R.

⇒ (a−σ)+i(b−t)
a+ib

6= 0 ∀ a ∈ (1/2, 1] and ∀ b ∈R.
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Since ε(s) is a convergent infinite product.

So, value of a convergent infinite product is zero

if and only if atleast one of the factors are zero.

Since all the factors (a−σ)+i(b−t)
a+ib

are non zero ∀a ∈ (1/2, 1] and ∀ b ∈R.

⇒ ε(0)
∏

ρ
(a−σ)+i(b−t)

a+ib
6= 0.

ε(s) 6= 0.

But in (∗) , we have assumed that ε(s) = 0. So we get a contradiction.

So, our assumption that a /∈ [0, 1/2] is wrong.

Thus, a ∈ [0, 1/2]

0 ≤ a ≤ 1/2

From (3),

(a0 − σ)2 + (2σ − 1)(2a0 − 1) = 0

Since, 0 ≤ σ ≤ 1/2⇒ 1− 2σ ≥ 0 ... (6)

Since, 0 ≤ a ≤ 1/2⇒ 1− 2a ≥ 0⇒ (1− 2a0) ≥ 0) ... (7)

From (6) and (7) , (1− 2σ)(1− 2a0) ≥ 0

⇒ (2σ − 1)(2a0 − 1) ≥ 0. ... (8)

Using (8) in (a0 − σ)2 + (2σ − 1)(2a0 − 1) = 0

(a0 − σ)2 = 0 and (2σ − 1)(2a0 − 1) = 0

a0 = σ and (2σ − 1)(2a0 − 1) = 0
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Putting a0 = σ in (2σ − 1)(2a0 − 1) = 0

(2σ − 1)(2σ − 1) = 0

(2σ − 1)2 = 0

⇒ σ = 1/2.

Case 2: 1/2 ≤ σ ≤ 1

ρ = a+ ib, 0 ≤ a ≤ 1

Claim : 1/2 ≤ a ≤ 1.

We prove the claim by contradiction.

Let, a /∈ [1/2, 1]

Since, 0 ≤ a ≤ 1⇒ 0 ≤ a < 1/2.

F rom (1),

ε(σ + it) =ε(0)
∏

ρ(1−
σ+it
a+ib

)

ε(σ + it) =ε(0)
∏

ρ
(a−σ)+i(b−t)

a+ib
)

Since, 0 ≤ a < 1/2 ... (9)

Since, 1/2 ≤ σ ≤ 1

Thus,−1 ≤ −σ ≤ −1/2 ... (10)

Adding (9) and (10) , we have

− 1 ≤ a− σ < 0

⇒ a− σ 6= 0 ∀ a ∈ [0, 1/2).
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⇒ (a− σ) + i(b− t) 6= 0 ∀ a ∈ [0, 1/2) and ∀ b ∈R.

⇒ (a−σ)+i(b−t)
a+ib

6= 0 ∀ a ∈ [0, 1/2) and ∀ b ∈R.

Since ε(s) is a convergent infinite product.

So, value of a convergent infinite product is zero

if and only if atleast one of the factors are zero.

Since all the factors (a−σ)+i(b−t)
a+ib

are non zero ∀ a ∈ [0, 1/2) and ∀ b ∈R.

⇒ ε(0)
∏

ρ
(a−σ)+i(b−t)

a+ib
6= 0.

ε(s) 6= 0.

But , we have assumed that ε(s) = 0. So we get a contradiction.

So, our assumption that a /∈ [1/2, 1] is wrong.

Thus, a ∈ [1/2, 1]

From (2),

Since, ε(s) = 1/2
∏

ρ(1−
s
ρ
)

ε(1− ρ) = ε(ρ) = 0.

Thus, ε(s) = 1/2
∏

ρ(1−
s
ρ
)(1− s

1−ρ)

| ε(s) |=| 1/2
∏

ρ(1−
s
ρ
)(1− s

1−ρ)|

| ε(s) |<∞ [ 2, p.37 , Theorem 2.11].

| ε(1− s) |=| ε(s) |<∞

ε(1−s) is absolutely convergent infinite product, thus it is a convergent infinite product.
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Since, ε(1− s) is convergent infinite product

The value of convergent infinite product is zero

if and only if atleast one of the factors is zero .[5, p.287]

So, ε(1− s) = 0⇒
∏

ρ(
ρ+s−1
ρ

)= 0

(ρ1+s−1
ρ1

)= 0, for some ρ1 ∈C

ρ1 + s− 1 = 0.

Putting, s = σ + it, 0 ≤ σ ≤ 1

and putting ρ1 = a1 + ib1, 0 ≤ a1 ≤ 1.

a1 + ib1 + σ + it− 1 = 0.

(a1 + σ − 1) + i(b1 + t) = 0

| (a1 + σ − 1) + i(b1 + t) |2= 0

(a1 + σ − 1)2 + (b1 + t)2 = 0

(a1 + σ − 1)2 = 0 and (b1 + t)2 = 0.

(a1 − σ + 2σ − 1)2 = 0 and b1 = −t.

(a1 − σ)2 + (2σ − 1)2 + 2(a1 − σ)(2σ − 1) = 0

(a1 − σ)2 + (2σ − 1)(2σ − 1 + 2a1 − 2σ) = 0

(a1 − σ)2 + (2σ − 1)(2a1 − 1) = 0

(a1 − σ)2 + (2σ − 1)(2a1 − 1) = 0

Since, 1/2 ≤ σ ≤ 1⇒ 2σ − 1 ≥ 0 ... (11)
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Since, 1/2 ≤ a ≤ 1⇒ 2a− 1 ≥ 0⇒ 2a1 − 1 ≥ 0) ... (12)

From (11) and (12) , (2σ − 1)(2a1 − 1) ≥ 0. ... (13)

Using (13) in (a1 − σ)2 + (2σ − 1)(2a1 − 1) = 0

(a1 − σ)2 = 0 and (2σ − 1)(2a1 − 1) = 0

a1 = σ and (2σ − 1)(2a1 − 1) = 0

Putting a1 = σ in (2σ − 1)(2a1 − 1) = 0

(2σ − 1)(2σ − 1) = 0

(2σ − 1)2 = 0

⇒ σ = 1/2.

So, in both the cases σ = 1/2.

⇒ Re(s) = 1/2. This proves the Riemann Hypothesis.
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