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Abstract

The aim of this paper is to introduce the concepts of IFS α -open sets.
Also we discussed the relationship between this type of Open set and
other existing Open sets in Intuitionistic fuzzy topological spaces. Also
we introduce new class of closed sets namely IFS α -closed sets and its
properties are studied.
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1 Introduction

In 1963 Levine initiated semi open set and gave their properties. Mathemati-
cians gave in several papers interesting and different new types of sets. In 1965,
O. Njastad introduced α -closed sets and in 2014 A. Alex Francis Xavier intro-
duced Sα -closed sets in topological space.

2 Preliminaries

Throughout this paper (X, τ ) (or briefly X ) represent Intuitionistic fuzzy
topological spaces on which no separation axioms are assumed unless otherwise
mentioned.
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Definition 2.1. [1] An Intuitionistic fuzzy topology (IFT ) on a non empty
set X is a family τ of IFS in X satisfying the following
axioms
(T 1 ) 0 v , 1 v ∈ τ
(T 2 ) G 1∩ G 2 ∈ τ , for any G 1 , G 2 ∈ τ
(T 3 )

⋃
G i ∈ τ , for any arbitrary family {G i : G i ∈ τ , i ∈ I}

In this case the pari (X, τ ) is called an Intuitionistic Fuzzy Topological
Space and any IFS in τ is known as Intuitionistic Fuzzy Open Set in X.

Example 2.2. Let X = {a, b, c}
A = 〈 x, ( a0.5 ,

b
0.5 ,

c
0.4 ) , (

a
0.2 ,

b
0.4 ,

c
0.4 ) 〉

B = 〈 x, ( a0.4 ,
b
0.6 ,

c
0.2 ) ,

a
0.5 ,

b
0.3 ,

c
0.3 ) 〉

C = 〈 x, ( a0.5 ,
b
0.6 ,

c
0.4 ) , (

a
0.2 ,

b
0.3 ,

c
0.3 ) 〉

D = 〈 x, a
0.4 ,

b
0.5 ,

c
0.2 ) , (

a
0.5 ,

b
0.4 ,

c
0.4 〉 )

Then the family τ = {0 v , 1 v , A, B, C, D} of IFTs in X is an IFT on X.

Definition 2.3. An IFS A of an IFTS X is said to be

(1) IF-α -open [5] if A ⊆ IFInt (IFCl(IFInt(A)).

(2) IF-semi-open [3] ( IFSO ) if A ⊆ IFCl ( IFInt (A ) )

(3) IF-pre-open [2] ( IFPO ) if A ⊆ IFInt (IFCl(A)) .

The complement of an IFαO, IFβO, IFSO, IFPO is said to be IFαC, IFβC,
IFSC, IFPC.

Definition 2.4. [4]An IFTS X is said to be IF-locally indiscrete if every
IFOS of X is IFCS.

Definition 2.5. [4]An IFTS X is said to be IF-hyper-connected space if
every non empty IFOS of X is IF-dense in X.

Definition 2.6. [6]An IFS A in an IFTS X is said to be IF-dense if there
exists no IFCS B in X such that A < B < 1 v .

Definition 2.7. [2]An IFS A in an IFTS X is said to be IF-regular open ( IFRO )
if A = IFInt ( IFCl (A ) ) .

3 IFSα -Closed Sets

Definition 3.1. An IFSO A of an IFTS X is said to be IFSαO if for each x
∈ A, there exists an IFα -closed set F such that x∈F⊂A.
An IFS B of a IFTS X is IFSαC, if X \ B is IFSαO.

The family of IFS αO of X is denoted by IFS αO (X) .

Theorem 3.2. An IFS A of an IFTS X is IFS αO if and only if A is IFSO
and it is a union of IFα -closed.

Proof. Let A be an IFS αO. Then A is IFSO x ∈ A implies, there exists IFα -
closed set F x such that x ∈F x ⊂A. Hence ∪x∈A F x ⊂A. But x ∈A, x ∈F x
implies A⊂

⋃
x∈A F x . This completes one half of the proof.

Let A be IFSO and A =
⋃
i∈I F i , where each F i is a IFα -closed. Let

x ∈A. Then x ∈ some F i ⊂A. Hence A is IFS αO.
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The following result shows that any union of IFS αO is IFSαO.

Theorem 3.3. Let {Aα : α ∈ Δ} be a family of IFS αO in an IFTS X. Then⋃
α∈Δ Aα is an IFSαO.

Proof. WKT, The union of an arbitrary IFSO is IFSO. Suppose that x ∈⋃
α∈ΔAα . This implies that there exists α0 ∈ Δ such that x ∈ Aα0 and

as Aα0 is an IFSαO, there exists a IFαCS F in X such that x ∈F⊂Aα0 ⊂⋃
α∈ΔAα . Therefore

⋃
α∈ΔAα is a IFSαO.

From this theorem, it is clear that any intersection of IFS αC of a IFTS X
is IFSαC.

Theorem 3.4. An IFS G of the IFTS X is IFS αO if and only i for each x ∈
G, there exists an IFS αO H such that x ∈ H ⊂ G.

Proof. Let G be an IFS αO in X. Then for each x ∈ G, we have G is an IFS αO
such that x ∈ G ⊂ G.
Conversely, let for each x ∈ G, there exists an IFS αOH such that x ∈H⊂G.

Then G is a union of IFS αO, hence by Theorem 3.3, G is an IFS αO.

Theorem 3.5.

1. IF-Regular Closed set is IFS αO.

2. IF-Regular Open set is IFS αC.

Proof. (1) Let A be an IF-Regular closed in a IFTS X. A = IFCl(IFIntA). A is
IFSO. A is IFα -closed. x ∈ A implies x ∈ A ⊂ A. Hence A is IFS αO.
(2) Obivious.

Theorem 3.6. If an IFTS X is a IF-T 1 -space,
then IFSα (X) = IFSO(X) .

Proof. Clearly, IFS α (X) ⊂ IFSO(X). Let A ∈ IFSO(X). Let x ∈ A. Since X
is a IF-T 1 -space, {x} is IFCS. Every IFCS in X is a IFαC. Hence x ∈ {x} ⊂
A ∈ IFSαO(X). This completes the proof.

Theorem 3.7. If the family of all IFSO of an IFTS is a IFT on X, then the
family of IFS αO is also a IFT on X.

Proof. Obvious.

Theorem 3.8. If an IF-space X is IF-hyperconnected, then then only IFS αO
of X are ∅ and X.

Proof. Let A ⊂ X such that A is IFS αO in X. If A = X, there is nothing to
prove. If A 6= X, we have to prove that A = ∅ . Since A is IFS αO, for each x
∈ A, there exists a IFα -closed set F such that
x ∈ F ⊂ A. So X \ A ⊂ X \ F. X \ A is an IF-semi closed. There-
fore, IFInt(IFCl(X \ A) ⊂ X \ A. Since S is IF-hyper-connected, then IF-
SCl(IFInt(IFCl(X \ A))) = X ⊂ X \ A. Hence X \ A = X. So A= ∅ .

Theorem 3.9. If an IFTS X is IF-locally indiscrete, then every IFSO is IFS αO.
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Proof. Let A be an IFSO in X. Then A ⊂ IFCl(IFInt A). Since X is IF-locally
indiscrete, IFInt A is IFCS. Hence IFInt A = IFCl(IFIntA). So, IFCl(IFInt A)
= IFInt A ⊂ A. So A is IF-Regular closed. By Theorem 2.1.6, A is IFS αO.

Theorem 3.10. If an IFTS (X, τ ) is IF-T 1 or IF-locally indiscrete, then τ
⊂ IFSαO (X) .

Proof. Let (X, τ ) be IF-T 1 . As every IFOS is IFSO, τ ⊂ IFSO(X), IFSO(X)
= IFSαO(X). Thus, τ ⊂ IFSαO(X).
Let (X, τ ) be IF-locally indiscrete, then τ ⊂ IFSO(X) ⊂ IFSαO(X).

Theorem 3.11. If B is an IF-clopen subset of a IF-space X and A is IFS αO
in X, then A ∩ B ∈ IFSαO (X) .

Proof. Let A be an IFS αO. So A is IFSO. B is IFOS and IFCS in X. Then A∩ B
is IFSO in X. Let x ∈ A ∩ B. Then x ∈A and x ∈B. Since A is IFS αO, there
exists a IFα -closed set F such that x ∈F⊂A. B is IFCS and hence IFα -closed.
F ∩ B is IFα -closed. x ∈F∩B⊂A∩B. So A ∩ B is IFSαO.

Theorem 3.12. Let X be an IF-locally indiscrete and A⊂X, B⊂X. If A ∈
IFSαO (X) and B is IFOS, and then A ∩ B is IFSαO in X.

Proof. Follows from previous theorem.

Theorem 3.13. Let X be IF-extremely disconnected and A⊂X,B⊂X. If A ∈
IFSαO (X) and B ∈ IFRO (X) then A ∩ B is IFSαO in X.

Proof. Let A ∈ IFSαO(X) and B ∈ IFRO(X). Then A is IFSO. Hence, A∩B∈
IFSO(X). Let x ∈ A ∩ B. This implies x ∈ A and x ∈ B. As A is IFSαO,
there exists a IFα -closed set F such that x ∈F⊂A. X is IF-extremely discon-
nected, B is a IF-Regular closed set. This implies F ∩ B is IFα -closed. x ∈
F ∩ B ⊂ A ∩ B. So A∩B is IFSαO.

4 IFSα -Operations

Definition 4.1. An IFS N of a IFTS X is called IFSα -neighbourhood of
an IFS A of X, if there exists an IFS αO U such that A⊂U⊂N.
When A = {x} , we say N is a IFS α -neighbourhood of x.

Definition 4.2. An IF-point x ∈ X is said to be an IFSα -interior point of
A, if there exists an IFS αO U containing x such that x∈U⊂A. The set of all
IFSα -interior points of A is said to be IFS α -interior of A and it is denoted by
IFSα -Int A.

Theorem 4.3. Let A be any IFS of an IFTS X. If x is a IFS α -interior point
of A, then there exists a IF-semi closed set F of X containing x such that F ⊂
A.

Proof. Let x ∈ IFSα -Int A. Then there exists an IFS αO U containing x such
that U ⊂ A. Since U is an IFS αO, there exists a IFα -closed set F of X such
that x ∈ F ⊂ U ⊂ A.

Theorem 4.4. For any IFS A of an IFTS X, the statements are true.
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1. The IFSα -interior of A is the union of all IFS αO contained in A.

2. IFSα -Int A is the largest IFS αO contained in A.

3. A is IFS αO if and only if A = IFSα -Int A.

Proof. Obvious.

From 3, are see IFS α -Int(IFSα -Int A) = IFSα -Int A.

Theorem 4.5. If A and B are any IFS of a IFTS X. Then

1. IFSα -Int ∅ = ∅ and IFSα -Int X = X.

2. IFSα -Int A ⊂ A.

3. If A ⊂ B, then IFS α -Int A ⊂ IFSα -Int B.

4. IFSα -Int A ∪ IFSα -Int B ⊂ IFSα -Int (A∪B ) .

5. IFSα -Int (A∩ B) ⊂ IFSα -Int A ∩ IFSα -Int B.

6. IFSα -Int (A \ B ) ⊂ IFSα -Int A \ IFSα -Int B.

Proof. 1 - 5, Obvious.
(6) Let x ∈ IFSα -Int(A \ B). There exists IFS αO U such that x ∈ U

⊂ A \ B. That is U ⊂ A. U ∩ B = ∅ and x /∈ B. Hence x ∈ IFSα -Int
A, x /∈ IFSα -Int B. Hence x ∈ IFSα -IntA \ IFSα -IntB. This completes the
proof.

Definition 4.6. Intersection of IFS α -closed set containing F is called IFSα -
closure of F and is denoted by IFS α -Cl F.

Theorem 4.7. Let A be an IFS of an IFTS X. x ∈ X is in IFSα -closed of A
if and only if A ∩ U 6= ∅ , for every IFS αO U containing x.

Proof. To prove the theorem, let us prove contra positive.
x /∈ IFSαCl A ⇔ There exists an IFS αO U containing x that does not
intersect A. Let x /∈ IFSαCl A. X \ IFSαCl A is an IFS αO containing x
that does not intersect A. Let U be an IFS αO containing x that does not
intersect A. X \ U is an IFSα -closed set containing A.
IFSαCl A ⊂ X \ U. x /∈ X \ U ⇒ x /∈ IFSαCl A.

Theorem 4.8. Let A be any IFS of a IF-space X. A ∩ F 6= ∅ , for every IFα -
closed set F of X containing x, then the IF-point x is in the IFS α -closure of
A.

Proof. Let U be any IFS αO containing x . So, there exists an IFα -closed set
F such that x ∈ F ⊂ U. A ∩ F 6= ∅ implies A ∩ U 6= ∅ , for every IFS αO
U containing x . Hence x ∈ IFSαCl A, by previous theorem.

Theorem 4.9. For any IFS F of a IFTS X, the following are true.

1. IFSαCl F is the intersection of all IFS α -closed set in X containing F.

2. IFSαCl F is the smallest IFS α -closed set containing F.
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3. F is IFS α -closed if and only if F = IFSαCl F.

Proof. Obvious.

Theorem 4.10. If F and E are any IFS of a IFTS X, then

1. IFSαCl ∅ = ∅ and IFSαCl X = X.

2. For any IFS F of X, F ⊂ IFSαCl F.

3. If F ⊂ E, then IFS αCl F ⊂ IFSαCl E.

4. IFSαCl F ∪ IFSαCl E ⊂ IFSαCl (F ∪ E ) .

5. IFSαCl ( F ∩ E ) ⊂ IFSαCl F ∩ IFSαCl E.

Proof. Obvious.

Theorem 4.11. For any IFS A of an IFTS X. the following are true.

1. X \ IFSαCl A = IFSα -Int (X \ A ) .

2. X \ IFSα -Int A = IFSαCl A.

3. IFSαCl A = X \ IFSαCl A.

Proof. (1) X \ IFSαCl A is an IFSαO contained in X \ A. Hence, X \ IFSαCl
A ⊂ IFSα -Int X \A. If X \ IFSαCl A 6= IFSα -Int X \A is a IFSα -closed set
properly contained in IFS αCl , a contradiction. Hence, X \ IFSαCl A = IFSα -
Int X \A.
(2) and (3) follows from (1).
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