
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

TF-PSST : A Spatio-Temporal Scheduling
Approach for Multi-FPGA Parallel

Heterogeneous Architecture in High
Performance Computing
Aditya Das, Rishab Bhattacharyya and Pramit Ghosh

Abstract—This work is a proposed architectural prototype in the field of High Performance Computing (HPC). Intel Altera DE4 and
Altera DE5a - Net FPGA boards were used as functional processors in our designed system. We further explore Peripheral Component
Interconnect (PCI) Express communication and amalgamate the transfer of data through PCIe to two different kinds of FPGAs at the
same time using a proposed scheduling algorithm called TF-PSST : Time First Power Second Scheduling Technique. This significantly
improves efficiency of the system by reducing execution time and because of the heterogeneous nature of the architectural prototype,
we also found a way to increase the hardware resource utilisation.

Index Terms—High Performance Computing, FPGA, Heterogeneous Computing, Peripheral Component Interconnect.

F

1 INTRODUCTION

The need to increase the computational speed of process-
ing tasks along with saving power has become the need of
the hour in the field of Heterogeneous Systems and High
Performance Computing (HPC). In the last few years, inter-
est in High Performance Computing has increased substan-
tially across industries and academia [1], [2]. The emphasis
on concurrent processing has also increased the acceptabil-
ity of heterogeneous environments for developing HPCs [3].
The use of Field Programmable Gate Arrays (FPGAs) for
achieving high performance computing can deliver enor-
mous results [4]. Spatio-Temporal Scheduling Algorithms
aims at representing information both spatially(space) and
temporally(time) [5]. This can be used to an advantage es-
pecially when spatio-temporal scheduling have been known
to increase efficiency and provide optimized solutions when
it comes to computational speed, energy efficiency or data
storage [6]. In our work, we implemented an architectural
prototype that was executed in the host PC, for a user
to enter data for a particular task of his choice from a
predefined list of tasks. In a multi-FPGA system, in order
to improve the resource utilization of the system as much
as possible, it is necessary to reasonably allocate the avail-
able hardware resources and balance the utilization rate of
fine-grained hardware resources in the FPGA. The input
instruction and data of the selected task would be sent
to any of the FPGAs as specific processing elements in a
spatio-temporal approach. A newly proposed scheduling

• .
A.Das is from L’École nationale supérieure des mines de Saint-
Étienne, France. R. Bhattacharyya is from RWTH Aachen, Germany.
P. Ghosh is from RCC Institute of Information Technology, India.
Email(s): aditya.das@etu.emse.fr, rishab.bhattacharyya@rwth-aachen.de,
pramitghosh2002@yahoo.co.in

•
Manuscript received April 19, 2005; revised August 26, 2015.

approach (TF-PSST) has been used in order to transfer the
given data and tasks into any connected processing element.
Evaluation of the performance of our implemented proto-
type has shown significant decrease in processing time and
increased hardware resource utilisation of the system. The
overall contribution of the paper can be summed up in the
following way. Firstly, we have defined a hypothesis for the
scheduling and placements of tasks in a multi-FPGA system.
Secondly, we propose a scheduling approach to improve
resource utilisation by reducing execution time, decreasing
power consumption, improving hardware utilisation and
decreasing the latency. And finally, we extensively study
the impacts of our proposed scheduling approach.The main
novelty of this work lies in the domain of high performance
computing wherein we used a completely new approach of
allocating tasks into different kinds of FPGAs using spatio-
temporal scheduling approach through a PCIe bus.

2 RELATED WORKS

The authors in [7] implemented two algorithms from the
Rodinia benchmark to analyse power and speed of the
overall system. The authors claim that their work showed a
speed increase of about 5.3x. However, their overall system
had a reduction of just 21 W of power which is not a
significant reduction when we take energy efficiency of
the system into account. Similarly, the increase in speed
was also not significant. There has of course been various
traditional algorithms designed for task scheduling, such as
Min-Min [8], Max-Min [9] and first-in-first-out (FIFO) [10].
While Min-Min and Max-Min fail to utilise the available
resources properly thereby causing load imbalances, FIFO
performs the tasks in the order of their submissions. This
of course has several of its own drawbacks with regards
to proper utilisation of time as a resource. If a submitted



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

task would be taking a long time to be performed, the
tasks submitted after that would all be on hold, thereby
potentially paralysing the system. Exhaustive-search-based
task-to-FPGA mapping is nearly impossible. This is because
the complexity of the algorithm would grow exponentially
with the increase of tasks. Therefore, determining the type
of scheduling approach to be used for our work is important
to establish an efficient system.

3 PROBLEM DESCRIPTION

3.1 System Model
The system model provides us with an illustrative idea be-
hind the working mechanism of the proposed architectural
prototype. There are multiple FPGAs connected to the host
PC through a 16 lane PCIe.

Fig. 1: The basic System Model of our designed architecture

The host server employs a Graphical User Interface
(GUI) in order to interact with the user. The prototype here
works in six specific layers. Firstly, the user interacts with
the system through a designed GUI. The user selects the
tasks of his choice from a predefined task list and also
enters the data into the system which goes through the
second layer, where the supplied data and instructions are
recognised, and into the third layer wherein segregation
of instructions and the data takes place. The fourth layer
is where specific encoding of the data and instructions
takes place in accordance with PCIe protocols. The fifth
layer is where our spatio-temporal scheduling algorithm
decides on which hardware the task will be processed in
for the greatest efficiency, based on its computation time
and power consumption. The objective of TF-PS scheduling
technique is to maximize hardware resource utilisation with
minimum execution time. In the sixth and final layer, the
specific hardware is targeted to execute the instructions for
the supplied data.

3.2 Scheduling Problem Model
Here, TAc is defined as the set of c tasks defined in the
system. Each of these tasks can be submitted by the user
simultaneously. When a task is executed, it must first be
configured in the logical resources available in the FPGAs.
This process leads to a certain reconfiguration overhead.
However, if another user executes the same task and it is
executed in the same reconfigurable region, there would
be no reconfigurable overhead in the system [11]. Hence,
our objective primarily is to minimise the task makespan of
the system by designing an efficient algorithm for task-to-
FPGA placement, while taking into consideration, the time,
hardware resource constraints, overhead configuration time
and power consumption.

4 DESIGN IMPLEMENTATION

In the protoptype implementation of the System Model, we
used Intel Altera DE4 and Intel Altera DE5a-Net as two
FPGA models which were directly connected to the ”host
PC’s” motherboard through a PCIe bus. PCIe is a serial
point-to-point connection, it is faster than its parallel pre-
decessor and currently offers the speed of 34 GB/seconds
[12]. The use of the newly proposed TF-PSS approach also
further increased hardware resource utilisation of the over-
all system, apart from a significant speed-up. The use of
two different kinds of FPGAs from two different families
as two parallel processors increases the heterogeneity of the
system.

4.1 TFPS Scheduling Approach: An Example
In this scheduling strategy we schedule the task by prioritiz-
ing Time first and Power second. Let us assume, User 1 enters
multiple Tasks through the GUI. We will then compare
the execution time of Task 1 in Device 1(First Processing
element) with the execution time of Task 1 in the Device
2 (Next processing element). If the waiting queue(P) does
not contain the device where the execution time is less, we
will allocate the task to that particular device and place the
device in the waiting queue. If the waiting queue already
contains the Device where the execution time is less we will
allocate the task to the next best processing element where
the execution time of the task is the least and subsequently
place the device in the waiting queue.If the execution time of
a task is same in two processing elements, we will do same
comparison on the basis of power consumed. If there are no
available processing elements left for a particular task to be
mapped into, we store that task in a task queue. Then we
check if the summation of the wait time and execution time
is less than the deadline or not . If less than the deadline we
map the task to processing element where the least time is
consumed, if the processing element is free, else we map it to
the next best processing element where time is optimized.
If the summation of the wait time and execution time is
greater than the deadline we scale the frequency of the best
available processing element by 2X.

5 EXPERIMENT AND RESULT

5.1 Execution Time Comparison
ISCAS Benchmarks 85 (C6288 and C7552) and the Near-
est Neighbour Algorithm and Lava MD from the Rodinia



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Algorithm 1: TFPS Scheduling Strategy for Processing
Element mapping

Input: Users Ua, Db Devices, TAc Tasks, Po Power of Devices, T is
Time, Task Queue Tq , Time Sorted Td, Device Sorted Dd,
Waiting Queue P

Output: Task to Processing Element (PE) mapping
1 Initialize Waiting Queue and Task Queue = ;
2 for (each a in Users) do
3 for (each b in Devices) do
4 for (each c in Tasks) do
5 for (each d in Time Sorted) do
6 if (Time of Devices(Db, c, a) < Time of

Devices(Db+1, c, a) then
7 if (Waiting Queue(P) ! = Db) then
8 Map the task to Db;
9 else if (Waiting Queue(P) ! = Devices(Dd)) then

10 Map the task to Dd;
11 Waiting Queue = Dd;
12 else
13 Task Queue = Task(TAc);
14 if (Wait Time + Execution Time < Deadline) then
15 if (Waiting Queue(P) ! = Device(Db)) then
16 Map the task to Db;
17 else
18 Map the task to Dd;
19 end
20 else
21 Scale the frequency of the best

available device by 2X ;
22 end
23 end
24 end
25 if (Time of Devices(Db, c, a) > Time of

Devices(Db+1, c, a) then
26 if (Waiting Queue(P) ! = Db+1) then
27 Map the task to Db+1;
28 else if (Waiting Queue(P) ! = Devices(Dd)) then
29 Map the task to Dd;
30 Waiting Queue = Dd;
31 else
32 Task Queue = Task(TAc);
33 if (Wait Time + Execution Time < Deadline) then
34 if (Waiting Queue(P) ! = Device(Db+1)) then
35 Map the task to Db+1;
36 else
37 Map the task to Dd;
38 end
39 else
40 Scale the frequency of the best available

device by 2X ;
41 end
42 end
43 if (Time of Devices(Db, c, a) = Time of

Devices(Db+1, c, a and Power of Devices(Db, c, a)
< Power of Devices(Db+1, c, a) ) then

44 Repeat steps 8 to 22;
45 end
46 Repeat steps 26 to 42;
47 end
48 end

Benchmarks, along with a document classification algorithm
were implemented in the prototype.

Fig 2 shows the graphical representation of execution
time (which was measured using Quartus Time Analyser)
between [8] and our prototype for Nearest Neighbour (NN),
LAVA MD (LM) and Document Classification (DC). The
total execution time for each task for our prototype was
measured 10 times and the average of the results were
taken into account for comparison. The graphs clearly note
the increase in performance by reducing execution time
for the task at hand significantly. We implemented ISCAS
Benchmarks 85, C6288 and C7552 in our prototype and
compared the execution times with respect to the execu-
tion time of a normal PCIe-FPGA architecture, without the
scheduling algorithm. Our results show that all the tasks

TABLE 1: Comparison of Execution Time of different tasks
between [8] and the proposed FPGA-based PCIe (using TF-
PSS)

Task Model Device Execution Time(in seconds) % - Speed-up
N.N. Model Used in [8] 0.000444 -
N.N. Our Prototype 0.000139 68% 3.19X
L.M. Model Used in [8] 201.447555 -
L.M. Our Prototype 168.9014566 16% 1.19X
D.C. Model Used in [8] 7.273355 -
D.C. Our Prototype 6.8772555 5% 1.05X
c6288 Model used in [8] - -
c6288 Our Prototype 1.2673 -
c7552 Model used in [8] - -
c7552 Our Prototype 1.5369 -
FFT Model in [8] - -
FFT Our Prototype 3.6350 -

had a speed-up of 2.03X and 1.96X respectively. For Fast
Fourier Transform (FFT), we had a speed-up of 1.08X.

5.2 Hardware Utilisation

Hardware Utilisation of the system is reported in the fol-
lowing table. As it is noted, the highest utilisation occurs
in LAVA MD (L.M.), while the lowest overall utilisation of
hardware resources is noted in Fast Fourier Transform (FFT).
All the algorithms were manually optimised for overall
better performance of the system.

TABLE 2: Hardware Resource Utilisation of the system

D.C. L.M. N.N c6288 c7552 F.F.T.
Logic Utilisation 73% 83% 89% 77% 71% 69%
Dedicated Logic Reg. 36% 41% 39% 33% 31% 28%
Memory Blocks 79% 74% 66% 68% 70% 61%
DSP Blocks 16% 67% 61% 67% 61% 66%

5.3 Comparison with non-parallel Heterogeneous non-
High Performance Computing

If the FPGAs mentioned in the system model are connected
in a serial way, the scheduling approach as well the result
of the same would be significantly different than the one
presented above. In this case, only FPGA A would be
connected to the host PC through the PCI Express. FPGA B
would be connected to FPGA A and thereon until FPGA (n-
1). In this scenario, the FPGA would have to be reconfigured
after each time it receives the instructions to perform a task,
would of course increase the reconfigurable overhead. We
performed the same experiment by comparing a couple of
tasks being scheduled in a non-parallel way to our original
model. The algorithmic tasks implemented were once again
the Nearest Neighbour (N.N.), LAVA MD (L.M.), Document
Classification (D.C.), Fast Fourier Transfer (F.F.T.) and ISCAS
benchmarks c6288 and c7552. Table 3 shows the result we
received through this comparison.

5.4 Proof of Algorithmic Optimality of TF-PSST

The algorithm is always supposed to map a task (T) to a
device (D) based on the shortest execution time and lowest
power consumption. We prove the algorithm is optimal
through contradiction. Let us assume that the task N has the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 2: A graphical representation of execution time compar-
ison of the benchmarks implemented

TABLE 3: Comparison of Execution Time of different tasks
between Non-Parallel Architectural Scheduling (NAS) and
the proposed Multi-FPGA-based PCIe (using TF-PSS)

Task Device Model Execution Time(in seconds) % +
N.N. NAS 0.002363 1600 %
N.N. Our Prototype 0.000139
L.M. NAS 2195.713 1199.99 %
L.M. Our Prototype 168.9014566
D.C. NAS 130.6678 1799.882%
D.C. Our Prototype 6.8772555
c6288 NAS 51.95 3999.266%
c6288 Our Prototype 1.2673
c7552 NAS 50.717 3199.95%
c7552 Our Prototype 1.5369
FFT NAS 123.59 3300%
FFT Our Prototype 3.6350

shortest execution time and the lowest power consumption
in device D. Consider a solution S where N is not mapped to

D. Replace q, where q being mapped to D takes the longest
execution time. This gives us a new solution S’. Now T(N) <
T(q) (where T(N) is the execution time for N and T(q) is the
execution time for q), because T(q) is always more than T(x),
where x is a task mapped to D at the head of the waiting
queue (P). Also, T(N) < T(x), so we have the follows:∑

S′ <
∑

S (1)

Hence, we have a contradiction. We can conclude from the
above proof that the optimal solution must always map N
to D.

6 CONCLUSION AND FUTURE WORK

Our findings show that our proposed model of architecture
for HPC significantly improves the system’s performance
and also reduces the overall power consumption.This is
the first algorithmic, architectural prototype of its kind
using fully reconfigurable FPGA mode. We wish to further
decrease the latency and the execution time of the model
by studying the implications under partially reconfigurable
FPGA mode.

REFERENCES

[1] (2019) Hpcwire. [Online]. Available: http://www.hpcwire.com
[2] (2019) insidehpc. [Online]. Available: https://insidehpc.com
[3] E. Ilavarasan and P. Thambidurai, “Low complexity performance

effective task scheduling algorithm for heterogeneous computing
environments,” Journal of Computer sciences, vol. 3, no. 2, pp. 94–
103, 2007.

[4] M. C. Herbordt, T. VanCourt, Y. Gu, B. Sukhwani, A. Conti,
J. Model, and D. DiSabello, “Achieving high performance with
fpga-based computing,” Computer, vol. 40, no. 3, pp. 50–57, 2007.

[5] H. Yuan, J. Bi, and M. Zhou, “Spatio-temporal scheduling of
heterogeneous delay-constrained tasks in geo-distributed green
clouds,” in 2019 IEEE 16th International Conference on Networking,
Sensing and Control (ICNSC). IEEE, 2019, pp. 287–292.

[6] Z. W. Bhatti, N. R. Miniskar, D. Preuveneers, R. Wuyts, Y. Berbers,
and F. Catthoor, “Memory and communication driven spatio-
temporal scheduling on mpsocs,” in 2012 25th Symposium on
Integrated Circuits and Systems Design (SBCCI). IEEE, 2012, pp.
1–6.

[7] O. Segal, N. Nasiri, M. Margala, and W. Vanderbauwhede, “High
level programming of fpgas for hpc and data centric applica-
tions,” in 2014 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2014, pp. 1–3.

[8] J. Li, M. Qiu, J. Niu, W. Gao, Z. Zong, and X. Qin, “Feedback
dynamic algorithms for preemptable job scheduling in cloud
systems,” in 2010 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology, vol. 1. IEEE, 2010, pp.
561–564.

[9] S. Devipriya and C. Ramesh, “Improved max-min heuristic model
for task scheduling in cloud,” in 2013 International Conference
on Green Computing, Communication and Conservation of Energy
(ICGCE). IEEE, 2013, pp. 883–888.

[10] E. Santos-Neto, W. Cirne, F. Brasileiro, and A. Lima, “Exploiting
replication and data reuse to efficiently schedule data-intensive
applications on grids,” in Workshop on Job Scheduling Strategies for
Parallel Processing. Springer, 2004, pp. 210–232.

[11] R. Cattaneo, R. Bellini, G. Durelli, C. Pilato, M. D. Santambrogio,
and D. Sciuto, “Para-sched: A reconfiguration-aware scheduler for
reconfigurable architectures,” in 2014 IEEE International Parallel &
Distributed Processing Symposium Workshops. IEEE, 2014, pp. 243–
250.

[12] I. Corporations. (2019) Intel R© pci and pci express*. [Online].
Available: https://www.intel.ie/content/dam/doc/case-study/
intel-pci-pci-express-3-case-study.pdf


