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1 Abstract

The Riemann Zeta function is defined as the Analytic Continuation
of the Dirichlet series,

C(s) =22n21 1/n%, Re(s)>1

The Riemann Zeta function is holomorphic in the complex plane except for a
stmple pole at s =1

The non trivial zeroes(i.e those not at negative even integers) of the

Riemann Zeta function lie in the critical strip

0 < Re(s) <1

Riemann’s Xi function is defined as [4, p.1],

e(s) = s(s—1)7/?I'(s/2)((s)/2

The zeroof (s—1) cancels the pole of ((s) ,and the real zeroes of s ((s) are cancelled by the
simple poles of T'(s/2) which never vanishes.

Thus, €(s) is an entire function whose zeroes are the non trivial zeroes of ((s)

Further, €(s) satisfies the functional equation

e(l1—15) = €(s)



2 Statement of the Riemann Hypothesis

The Riemann Hypothesis states that all the non trivial zeroes of the

Riemann Zeta function lie on the critical line Re(s)=1/2

3 Proof

The Riemann Xi function
defined as a Hadamard Product [2,p.37, Theorem 2.11] is, for all

s€C we have,

€(s) =e(0) IT,(1 = %)

where if we combine the factors (1—2) and (1— T

), the product
converges absolutely and uni formly on compact subsets of C

Also, €(0) =1/2

Claim: Let, €(s) # 0, for Im(s) €R*, (where R* denotes
the set of all non zero real numbers), then Re(s) # 1/2.
The functional equation of Riemann Xi function is
€(l1—3s) = €(s)

Since, €(s) # 0
Thus,

e(1—s)/e(s) =1.



= e(l—=s)[*/ | e(s) P=1

| €(s) P=| () I, (1 = %)
[ e(1—s) =] (0) TT,(1 = *52)

= el —s) [/ ]els) P=IT, | A=) P /TI, [ (1= 5) P=1

Let, s= o +it, 0 < Re(s) < 1, Im(s) €R*(where R* denotes
the set of all non zero real numbers)
and p=a+1ib, 0 < Re(p) <1, Im(p) ER*(where R* denotes
the set of all non zero real numbers)
[ e(l—=s) "/ | e(s) [*=
[e(0) PTI, 1 1= S5 P/l e(0) P TT, 11— 2 2= 1
= e(1—s) "/ | e(s) I’=
[T, 11— PO, 1 = 5 P=1
= e(l=s)* /| e(s) |’=

o—1 zb o b
[, |l thosbt] 2T | Lot 2

=|e(l—s) /[ e(s) [’=

a+o a— 0'2
H (ot a12+b2b+t /H ( 622+b2 )_1 <*)

Since,
0 < Re(s) <1



= a?+0*#0Vae(0,1).
=[1,(@®+0%) #0

So, (x) gives,

[(a—a)2+(b—t)2+(2a—1)(2@—1)+4bt]/Hp[(a—a)2—|—(b—t)2]: 1
[(a—0)?+(b—1)?+ (20 —1)(2a—1) +4bt]/[(a—0)?+ (b—1)}]=1
I1,1+ —(?&j})@j{;jg;‘;’t =1 .. (1

Since, t €R* we discuss 2 cases :

t e (—00,0) U (1/2,00) and t € (0,1/2]

Case 1: Let, t € (—o0,0) U (1/2,00)

Define a set,

H={s = o + it : Im(s) € (—o0,0) U (1/2,00)}

Since, €(s) # 0V Im(s) eR*



Therefore, €(s) 20V s € H.

Since, €(s) = €(0) [],(1—-2)

e(p)=0 . (2)

Claim A:0<Im(p) <1/20or 0<b<1/2.
We prove the claim by contradiction.

Let us assume, that Im(p) ¢ [0,1/2]

= Im(p) € (—o0,0) U (1/2,00)

=pef.
Now since €(s) #0 Vs € H.
= €(p) # 0.
which is a contradiction since e(p) =0 (from (2)).
Thus, our assumption that Im(p) € (—o0,0)U(1/2,00) is wrong.
Thus,0 < Im(p) <1/2. .. (3)
which proves Claim A
But, Im(p) eR*
= Im(p) # 0
Thus, 0 <Im(p) <1/20r0<b<1/2. .. (4)
Claim B : If €(s) #0, Im(s) € (—o0,0) U (1/2,00) then o # 1/2.

We prove the claim by contradiction.



Let us assume, that o =1/2.

Then, by (1)

(20—1)(2a—1)+4bt __ .
L1+ oy =1 = ()

Putting o =1/2 in (5),

[+ g =1 - (6)

Now t € (—00,0) U (1/2,00), so we have two sub cases
,t € (—00,0) ort e (1/2,00)

Case 1(a) : t € (—00,0)

Then, by (6)

4bt _
I, 1+ o = 1

4bt (a—1/2)2+(b—t)2+4bt

LBl (v e ) Ry e ) o e

" (=124 (b
=1+ oo = ez

4bt .
=1+ m Z 0. .. (7)

Since, by (4) 0<b<1/2andt <0
Thus, 4bt < 0.

4b .
L+ e <1 - ()

From (7) and (8),

4bt
0= 1+ mpprea <1

4bt
Thus, OSle+m<l



which contradicts (6) since by (6), [],1+ W =1
Case 1(b) : t € (1/2,00)

t>1/2and 0 <b<1/2

= 4bt > 0.

= 1+ ey > |

=11+ Wbi(b—t)ﬂ > 1

which contradicts (6) since by (6), [],1+ m =1
So, in both the cases we get a contradiction .Hence , our assumption that
o =1/2is wrong

Thus , o # 1/2.

We proved above that if e(s) # 0

and if Im(s) € (—o0,0) U (1/2,00) ,then

Re(s) # 1/2 Hence, Claim B is proved.

Case 2:
0<Im(s)<1/20or0<t<1/2

Define a set
L ={s=o +it: Im(s) € (0,1/2]}
Since, €(s) #0 Y Im(s) €ER*

Therefore, €(s) A0V s € L.



Since, €(s) = €(0) [[,(1—2)

e(p)=0 . 9)

Claim C : Im(p) € (—o0,0] U (1/2, c0).

We prove the claim by contradiction.

Let us assume, that Im(p) ¢ (—oo,0] U (1/2, 00)

=0<Im(p) <1/2

=p€L.
Now since €(s) #0 Vs € L.
= €(p) # 0.
which is a contradiction since €(p) =0 (from (9)).
Thus, our assumption that Im(p) ¢ (—o0,0] U (1/2,00) is wrong.
Thus, Im(p) € (—o0,0] U (1/2,00)
But, we had Im(p) €R*
Thus, Im(p) € (—o00,0) U (1/2,00) .. (10)
which proves Claim C' .
Claim D : I1f e(s) #0,Im(s) € (0,1/2] then o # 1/2.
We prove the claim by contradiction.

Let us assume, that o =1/2.



Then, by (1),

[1,1+ G0t =1 (1)
Putting o = 1/2 in (11),

L1+ oamrgmy =1 - (12)

Since ,by (10) Im(p) = b € (—00,0)U(1/2,00) so we have 2 subcases
be (—00,0)and b e (1/2,00). Also ,0 <t <1/2

Case 2(a) : b€ (—00,0)0 <t <1/2

Then, by (12)

4bt .
I, 1+ == = 1

1+ 4bt _ (a—1/2)24-(b—t)2+4bt
((a=1/2)2+(b-1)%] = (a—1/2)2+(b—1)?]
=14+ 4bt _ (a—1/2)24(b+t)?

[(a=1/2)2+(—1)] — (a—1/2)*+(b-1)?]

4b )
:>1+Wi(b—t)2] >0. .. (13)

Since, b€ (—00,0), 0 <t <1/2
Thus, 4bt < 0.

4b .
L+ oo <1 (14)

From (13) and (14),
4bt
0=1+ Gamrreay <1

4bt
ThUS, 0§Hp1+m<l



which contradicts (12) since by (12), [],1+ W =1

Case 2(b) : b€ (1/2,00), 0 <t <1/2

= 4bt > 0.

=1+ W > 1

= 11,1+ o= > 1

which contradicts (12) since by (12), I, 1+ m =1
So, in both the cases we get a contradiction .Hence , our assumption that
o=1/2is wrong

Thus , o # 1/2.

We proved above that if €(s) # 0 and if Im(s) € (0,1/2] ,then
Re(s) # 1/2 Hence, Claim D is proved.

Combining Claim B and Claim D we see that €(s) # 0,

Im(s) € (—00,0) U (1/2,00) implies Re(s) # 1/2

and €(s) # 0,Im(s) € (0,1/2] implies Re(s) # 1/2

Thus ,€(s) # 0,Im(s) €R*

But, by Riemann Hypothesis we assumed that

€(s) =0 for 0 < Re(s) <1ande(s) #0 = Re(s) #1/2.

thus, €(s) = 0, must imply Re(s) = 1/2. So, Riemann Hypothesis is true¥ Im(s) eR*
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