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 Consider the function C(n) = {
3𝑛 + 1,   𝑛 ≡ 1 𝑚𝑜𝑑 2.
𝑛

2
,              𝑛 ≡ 0 𝑚𝑜𝑑 2.

   The 3x + 1 problem or Collatz conjecture 5 

asks if all trajectories iterating recursively contain one.  This holds empirically but eludes theoretical 6 

proof.  Remove even entries to obtain the Syracuse function, T(u), mapping odd numbers u ,        T(u) = 7 

(3u +1)/2r, where r maximal for T(u) odd.  Here we show by expressing u as 4x ±1, a fractal regularity 8 

given by the amplitude of a periodic function passing through the x axis in the curves defined 𝑦 =9 

ℕcos (
𝜋𝑥

2ℕ
)  ≡  ℕ mod(

𝑥+2ℕ−1

2ℕ
, 1), with ℕ the natural numbers. The expression describes the length of 10 

ascending segments R and with translation, r the number of divisions in T(u).  Algebraic analysis reveals 11 

the Syracuse function’s image neatly partitions onto arithmetic progressions 6k ± 1, as a function of r.  12 

This confirms that all natural trajectories in the 3x + 1 problem contain one..   13 

Introduction: Here, we use 𝕌 to denote the odd natural numbers, and ℕ without zero by default.    14 

Though current trends see this as a random process [1], we find it useful in order to see the 15 

patterns in the trajectories to arrange them with T(0) an odd multiple of three, i.e. u = 3k + 6 and proceeding 16 

until redundancy with earlier trajectories.  This gives the generic form 3 + 6𝑘 ↦17 

 6𝑘 ±  1 ⟺  6𝑘 ± 1 ↦  1    Figure 0 illustrates the first few such trajectories with color coded points 18 

of convergence and an example of self-similarity <Figure 0>. 19 

 The 3x +1 problem has a well-documented, storied, history, and is expressed in many distinct 20 

forms showing it from a variety of perspectives [2].  Despite the remarkable interest and attention, the 21 

search for formal structure underlying its’ controlling mechanisms has long been abandoned, the 22 

canonical pedagogy being that it is a pseudo-random process [3].  Lacking a macroscopic order, despite 23 

validation well beyond the point of hand computation, reasonable uncertainty persists in relation to the 24 
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conjecture that iterative application of the 3x + 1 protocols ultimately admit exactly one fixed point 25 

attractor at 1 with the complete set of natural numbers as the basin of attraction.  The infinitude of natural 26 

numbers precludes strictly empirical evidence from completely dispelling uncertainty in principle, 27 

demanding conceptual analysis of the structure of the problem itself for any hope of resolution.  28 

We complete the work initiated in [1] proving the existence of finite descent characteristics by 29 

showing the fractal structure underlying all ascents and descents.  In the odd number domain 𝕌, we 30 

present formula from writing u in terms of 4k – 1, 8k + 1, and 8k + 5 that reveal, r the extent of descent 31 

from u to T(u), and R the consecutive mappings u → T(u) with T(u) > u. from elementary algorithmic 32 

operations.  The results manifest precisely as the interleaving of arithmetic progressions, describeable 33 

with a family of periodic functions. 34 

𝒚 =  𝑵 𝒄𝒐 𝒔 (
𝝅𝒙

𝟐𝑵
 ) ≡   𝑵 𝒎𝒐𝒅(

𝒙 + 𝟐𝑵−𝟏

𝟐𝑵
 ).                                   (𝟏)    35 

Numbers from 4x – 1 map to 6x  +  5 = (3x + 1)/2 accounting for half of cases.  The 8k + 1 map 36 

to 6x + 1 = (3x + 1)/4 for a fourth of cases, completing the set of proximal pre-images.  The remainnig 37 

quarter, 8k + 5 are the distal preimages, mapping 8x + 5 to both 6k  ± 1 = (3x + 1)/2r ≥ 3.    This allows 38 

the visualization of precise trajectory turning points and see the scale free structure, permitting direct 39 

confirmation that all natural number trajectories contain one.   40 

Syracuse Function’s Fractal1 Algebraic Image:  The image T(u) is the well-ordered interleaving of 6k 41 

± 1 progressions.  Our equations are proper equations: when u is in the form indicated on the right of an 42 

equals sign, T(u) is given by the expression on the left by substituting the same value for x.  This partitions 43 

𝕌, such that T(u) is calculable without evaluating 
3𝑥+1

2𝑟
 by  identifying the unique arithmetic progression 44 

to which u belongs.  We will see by the form of their controlling expressions that these progressions 45 

                                                      
1 The fractal organization permits a direct set theoretic proof of the convergence of all natural Syracuse trajectories 

to least value cycles.    

Proof.   Let A be the function mapping 8k + 5 → 
3𝑥+1

2𝑟
 .  So T ⊆ A by 1.1 RHS, and A ⊆ T by 1.1 LHS.  Hence T = A.  

But since A is the subset of mappings with r ≥ 3, no element in A can diverge.  But since A = T, neither will an 

element in T. ∎.   
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specify trajectories of u uniquely, and cover the entire domain.  The 6k ±1 progressions form the image 46 

of T, while mod eight equivalence classes describe the preimage.   47 

 𝑇(𝑢) =
3𝑥+1

2𝑟
= {

6𝑥 − 1,   𝑢 = 4𝑥 − 1.
3𝑥+1

2𝑟
,   𝑢 ∈ 4𝑥 + 1.

=  {

6𝑥 + 5, 𝑢 = 4𝑥 + 3.  ≡ 𝑟(𝑢) = 1.
6𝑥 + 1, 𝑢 = 8𝑥 + 1.  ≡ 𝑟(𝑢) = 2
3𝑥+1

2𝑟
, 𝑢 ∈ 8𝑥 + 5,   ≡ 𝑟(𝑢) ≥ 3:…  

       (1.1)                          48 

…𝑇(𝑢), 𝑢 ∈ 8𝑥 + 5:

{
 

 6𝑥 + 5,   𝑢 = 4(2+𝑛)𝑥 + (13 +∑ 10(4𝑘)
𝑛

𝑘=1

6𝑥 + 1,   𝑢 = 2(5+2𝑛)𝑥 + (5 +∑ (23+𝑘)
𝑛

𝑘=1

                        (1.2) 53 

   Table 1.  Exemplars showing the first four entries in the arithmetic progressions produced by 1.2.  This 49 

reveals their orderly partitioning of the image onto 6k ±1 arithmetic progressions, from 1.1.  By increasing n as 50 

required, all odd numbers are captured in exactly one progression corresponding to u with T(u) such that r is at least 51 

three.   52 

 54 

When a domain and codomain are subsets of the natural numbers, algebraic proof suffices to 55 

remove all reasonable uncertainties of a given assertion.  For example, if we are reluctant to believe that 56 

n² - 1 is divisible by 8 for all odd n, we can prove this is true by algebra.  Any persisting doubt is 57 

unreasonable when the domain and codomain are subsets of the natural numbers, even if a typically 58 

n 
4(2+𝑛)𝑥 + (13 +∑ 10(4𝑘)

𝑛

𝑘=1
 2(5+2𝑛)𝑥 + (5 +∑ (23+𝑘)

𝑛

𝑘=1
 

0 x 0 1 2 3 4 

U=16x+13 13 29 45 61 77 

T(u) r = 3 5 11 17 23 29 

      
 

x 0 1 2 3 4 

u=32x+5 5 37 69 101 133 

T(u) r = 4 1 7 13 19 25 
 

1 x 0 1 2 3 4 

u=64x+53 53 117 181 245 309 

T(u) r = 5 5 11 17 23 29 

      
 

x 0 1 2 3 4 

u=128x+21 21 149 277 405 533 

T(u) r = 6 1 7 13 19 25 
 

2 x 0 1 2 3 4 

u=256x+213 213 469 725 981 1237 

T(u) r = 7 5 11 17 23 29 
 

x 0 1 2 3 4 

u=512x+85 85 597 1109 1621 2133 

T(u) r = 8 1 7 13 19 25 
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trustworthy authority is the voice of skepticism.  With respect to 59 

the Syracuse function, proofs of (1.1) are all variants of its’ 60 

algebraic application.  61 

Proof.  3(4x + 3) + 1 = 12x +9 + 1 = 12x  + 10 = 2(6x + 5) ∎.   62 

Proof.  3(8x + 1) + 1 = 24x +3 + 1 = 24x  + 4 = 4(6x + 1) ∎. 63 

Proof.  3(8x + 5) + 1 = 24x + 15 + 1 = 24x  + 16 = 8(3x + 2): 64 

Then partitioning odds and evens: 65 

 x = 2n → 8(6n + 2) = 16(3n + 1); x = 2n + 1 → 8(6n + 3+2) = 66 

8(6n + 5), where the even underlined term will continue to split 67 

ad infinitum producing the fractal dynamics. ∎.    68 

The only uncertainty remaining about T(u) after 69 

expressing u modulo eight is the specification of how much more 70 

than four 3u + 1 will be divided by to obtain T(u).  That is, what 71 

is r(u)?  Uncertainty also exists in how high the rising maps can 72 

rise.  Let R(u) denote the length of the trajectory segment beginning with u such that T(u) is greater than 73 

u and counting all T(u) for which this remains the case.  To discuss both r and R together we shall write 74 

the double-struck, “ℝ.”   75 

Discovering order in ℝ can resolve the remaining reasonable uncertainties in the Syracuse 

function.  If the mean and mean average (the indicated statistic describing full data) deviation of R 

positively accelerates, this could allow rising trajectories to grow arbitrarily with increasing arguments; 

paired with r negatively accelerating, and there is justification not to rule out exotic arguments 

diverging.  On the other hand, if R negatively accelerates ior r positively accelerates, exotic fixed point 

attractors, i.e. cycles other than 1 →1 could reasonably appear.  But, if ℝ is stable asymptotically, we 

Table 2  Examples of R(u) trajectory 

sub-sets 6k ± 1 ↔ 6k ±1 

 

R(u) =  log
2

3𝑢+1

𝑑(3𝑢+1)
. 

(1) u = 7. ∴ R(u) = log2
8

1
=

log28 = 3.  
{7 → 11→ 17}. 
 

(2) u = 15, ∴ R(u) = log2
16

1
=

log216 = 4.   
{15 → 23 → 35 → 53}. 

 

(3) u = 27, ∴ R(u) =log2
28

4
=

log24 = 2.   
{27→ 41 }. 

(4) u = 47, ∴ R(u) =log2
48

3
=

log216 = 4. 
{47 → 71 → 107 → 161} 
 

(5) u = 167, ∴ R(u) 

=log2
168

21
= log28 = 3. 

{167 → 251 → 377 } 
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need not examine exotic regions of the domain to be certain that the present observations will persist 

and all trajectories include one. 

Table 3.  R(u) and d(u+1).  Here we see that R(u) is predictable as a function of u.  More importantly, it is scale 

free.  The last two columns show that removing the highest frequency elements and subtracting 1 from the list of 

R(u) returns the original list. 

 76 

 77 

Computing ℝ from u requires identifying 78 

the greatest odd number that divides a 79 

quantity without remainder; let d(n) denote 80 

this function.  The quotient after the division 81 

will always be a power of two when n is even 82 

since prime factors are either odd or two.   83 

We have,   84 

                                            𝑑(𝑛) = max(𝕌 ⌊1 −𝑚𝑜𝑑 (
𝑛

𝕌
, 1)⌋),                                       (2.1) 88 

where the modulo (mod 1) function returns zero if and only if the odd number u in 𝕌 causes no 85 

remainder in dividing n;  otherwise, the floor function (parenthetical brackets) prevents the 86 

maximization function from considering that instance of u.   87 

 From this we establish, 89 

u u+1 d(u+1) 
R(u) : u 
4x±1   

R(u) : u 
4x+3 R-1 

1 2 1 1  2 1 

 3 4 1 2  3 2 

5 6 3 1  2 1 

7 8 1 3  4 3 

9 10 5 1  2 1 

11 12 3 2  3 2 

13 14 7 1  2 1 

15 16 1 4  5 4 

17 18 9 1  2 1 

19 20 5 2  3 2 

21 22 11 1  

 

23 24 3 3  

25 26 13 1  

27 28 7 2  

29 30 15 1  

31 32 1 5  

33 34 17 1  

35 36 9 3  

37 38 19 1  

39 40 5 3  
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𝑅(𝑢) = 𝑙𝑜𝑔2
𝑢 + 1

𝑑(𝑢 + 1)
, 𝑟(𝑢) = 𝑙𝑜𝑔2

3𝑢 + 1

𝑑(3𝑢 + 1)
.                                                 (2.2)  90 

 91 

Since r(u) is familiar from the Syracuse function, we provide explicit examples demonstrating R(u) only 92 

in table 2.  <Tables 3 and 4 > contain data for the first 20 u.   93 

Beside 2.2 ℝ(u) are also obtainable from the expressions,  94 

𝑦 = ℕ cos (
𝜋𝑥

2ℕ
) , 𝑎𝑛𝑑 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦, 𝑦 = ℕ 𝑚𝑜𝑑 (

𝑥 + 2ℕ−1

2ℕ
, 1).       (3.0) 95 

Figure 1.  Continuous graph of R(u) and (3.1) 96 

with ℕ up to six. 97 

 98 
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 Figure 2  Discrete graph of r(u) and (3.23) 99 

with ℕ up to nine. 100 

Alongside the cosine governed expression, we present the governing expression using the modulo 101 

function to induce periodicity.  This is in the interest of computation without pi.  Interestingly, this 102 

suggests a tie between offset powers of two and pi.  Now where ℕ is the set of natural numbers, the values 103 

of ℝ(u) are periodic governed by ℕcos (
𝜋𝑥

2ℕ
) continuously, and ℕ 𝑚𝑜𝑑 (

𝑥+2ℕ−1

2ℕ
, 1) discretely.  Let Y 104 

denote the set of curves determined by the relevant expression.  Let Amp( Y x ) return the amplitude of 105 

the curve with y value zero at x.  The x value is obtained from the desired u expressed as 4x ±1.  To equate 106 

Amp( Y, x ) and ℝ(u) we subtract one from ℝ.  Subtracting one from R precisely matches the pattern given 107 

by (3.0) as (3.1).  For r we must remove the 4x – 1 elements, now subtracting one from r becomes 108 

equivalent to (3.2) by including the translation b (3.3).  Now we concisely describe the discussed variability 109 

observed in trajectories obtained by iterating the 3x + 1 over 𝕌, ,  110 

𝑅(𝑢) − 1 = 𝐴𝑚𝑝(ℕcos (
𝜋𝑥

2ℕ
)) , 𝑅(𝑢) − 1 = 𝐴𝑚𝑝(ℕ𝑚𝑜𝑑 (

𝑥 + 2ℕ−1

2ℕ
, 1)).                          (3.1) 111 

𝑟(𝑢) − 1 = 𝐴𝑚𝑝(ℕ cos (
𝜋𝑥 − 𝑏

2ℕ
)) , 𝑟(𝑢) − 1 = 𝐴𝑚𝑝(ℕ𝑚𝑜𝑑 (

𝑥 + 2ℕ−1 − 𝑏

2ℕ
, 1)),            (3.2) 112 

𝑤ℎ𝑒𝑟𝑒, 𝑏 =

(

 𝑚𝑜𝑑(ℕ, 2)∑ 4𝑖

ℕ−1
2

𝑖=0

+ (1 − 𝑚𝑜𝑑(ℕ, 2))∑ 4𝑖

ℕ−1
2

𝑖=0
)

 .                                                       (3.3) 
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      Table 4.  Since dividing 3u+1 by d(u) produces T(u) we report this data as it is.  Notice the orderly periodic 
organization. 

 113 

 The form of (3.3) ultimately interleaves the 6k ± 1 arithmetic 114 

progressions (Table 1) of T (u) as a function of the parity of r as 115 

encoded by the modular term prefixing the summation.  We can 116 

see by the form of (3) that every x is accompanied by exactly one 117 

Y.  If no curve passes through x, extending ℕ will resolve this.  The 118 

result is that ℝ is a multilevel fractal interleaving of ℕ, where one 119 

occurs twice as often as two, occurring twice as often as three, etc., 120 

with the caveat being that in r, but not R, this pattern is 121 

increasingly offset from the origin.  In other words, larger numbers 122 

appear prior to smaller numbers of divisions, but not consecutive 123 

increasing iterates, demanding that all trajectories descend.  124 

Moreover, with the scale-free nature of the rising segments, their 125 

diversity is predictable.  It is clear without needing calculations 126 

that the dynamics of ℝ are constant from the governing equations (3).  The self-symmetry of R, and nested 127 

appearances of T when unpacked algebraically imply that observing the descending trajectories suffices 128 

to understand the full range of possible outcomes.  .   129 

Conclusion We opine that all the disorderly conduct in Syracuse function trajectories is due to the 130 

linear mapping constraints imposed by the nonlinear expansion of the domain as the elements increase in 131 

size.  The relative impact, or disturbance relative to an untranslated but scaled by three image, of the unit 132 

translation is constantly decreasing.  It begins at a maximum of 1 + 1/3 at u equals 1, and goes 133 

asymptotically to 1 with large arguments.  But the relative impact of the translation to the division step 134 

is constant, the change is always 0.5.  This discrepancy may prevent a transparent emergence of self-135 

similar trajectories even though the protocol is perfectly static and well defined.  All of the disorderly 136 

conduct occurs from the squeezing of the domain by the mapping to fit into the codomain, itself arranged 137 

r(u) T(u) 3u + 1 u 

2 1 4 1 

1 5 10 3 

4 1 16 5 

1 11 22 7 

2 7 28 9 

1 17 34 11 

3 5 40 13 

1 23 46 15 

2 13 52 17 

1 29 58 19 

6 1 64 21 

1 35 70 23 

2 19 76 25 

1 41 82 27 

3 11 88 29 

1 47 94 31 

2 25 100 33 

1 53 106 35 

4 7 112 37 

1 59 118 39 
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in an orderly fashion.  Despite the overall descent, some elements are not allowed a direct path as per the 138 

interaction between the properties of natural numbers and the constraints of the problem.  This is similar 139 

to planes required to remain in holding patterns above their destination airport when there is a lot of air 140 

traffic.  We have demonstrated that the uncertainties caused by these chaotic holding patterns retain no 141 

merit against the conjecture that all trajectories among natural numbers contain 1 in light of the constant 142 

dynamics observed in ℝ(u).  143 
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3 5                  

9 7 11 17 13 5              

15 23 35 53 5               
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21                   

121 103 155 233 175 263 395 593 445 167 

33 25 19 29 11             

39 59 89 67 101 19             

45 17                

51 77 29               

57 43 65 49 37 7            

63 95 143 215 323 485 91           

69 13                

75 113 85               

81 61                

87 131 197 37               2429 

93 35                 

99 149 7                

105 79 119 179 269 101             

111 167                 

117 11                 577 

123 185 139 209 157 59             433 

129 97 73 55 83 125 47            325 

135 203 305 229 43              61 

141 53   

Figure 0.  Efficient ordering of 3x+1 problem trajectories. 
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