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ABSTRACT
Wearable sensors are revolutionizing the health monitoring

and medical diagnostics arena. Algorithms and software
platforms that can convert the sensor data streams into use-
ful/actionable knowledge are central to this emerging domain,
with machine learning and signal processing tools dominating
this space. While serving important ends, these tools are not
designed to provide functional relationships between vital signs
and measures of physical activity. This paper investigates the
application of the metamodeling paradigm to health data to
unearth important relationships between vital signs and physical
activity. To this end, we leverage neural networks and a recently
developed metamodeling framework that automatically selects
and trains the metamodel that best represents the data set. A
publicly available data set is used that provides the ECG data
and the IMU data from three sensors (ankle/arm/chest) for ten
volunteers, each performing various activities over one-minute
time periods. We consider three activities, namely running,
climbing stairs, and the baseline resting activity. For the follow-
ing three extracted ECG features – heart rate, QRS time, and
QR ratio in each heartbeat period – models with median error
of <25% are obtained. Fourier amplitude sensitivity testing, fa-
cilitated by the metamodels, provides further important insights
into the impact of the different physical activity parameters on
the ECG features, and the variation across the ten volunteers.
Keywords: Metamodel, Neural Networks, PEMF, health IoT,
ECG.
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INTRODUCTION
Smart and Connected Health

Internet of things (IoT) is revolutionizing healthcare within
and beyond the walls of hospitals and care facilities, e.g., with the
promise of unique smart-and-connected health ecosystems in ar-
eas such as telemedicine, emergency medicine, sports medicine,
smart rehabilitation, and on-field diagnostics. Wearable sensors
form an important part of this health IoT ecosystem. In order to
produce useful information and actionable knowledge from the
data collected by these sensors, machine learning and signal pro-
cessing tools are typically used. A majority of these tools do not
however provide any direct mathematical relationship between
different health and activity parameters measured by different
sensors. Such relationships could be highly valuable for appli-
cations such as: 1) detecting anomalies, 2) fitness assessment,
3) exploring the impact of mobility or different activity (through
sensitivity analysis), and 4) compressed storage and communi-
cation of data streams (in resource scarce IoT environment). It
is important to note that although regression based correlation
methods can capture some of these abstractions, the high non-
linearity and stochasticity of dynamic health parameters are often
not well capture by smooth parametric regression models.

This gap is analyzing health sensor data can be filled by the
metamodeling paradigm, especially by interpolating metamodels
that can represent highly nonlinear and noisy relationships, and
are typically used in the engineering design arena. In this pa-
per, we adopt this metamodeling paradigm, and go a step further
in leveraging a recently developed approach that automatically
selects the best metamodel type and composition from multiple
choices such as Kriging and RBF models (with various kernel
options). An introduction to metamodeling and model evalua-
tion strategies is provided next.
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METAMODELING OF ACTIVITY-BASED HEALTH DATA
The overarching objective of this research is to investigate

the use of metamodels to mathematically map critical features of
a persons heart activity onto measures of physical activity. The
research framework in this study is illustrated in Figure 1. Key
steps in this framework are as follows:

• Extract pertinent ECG features (i.e., heart rate, QRS time,
and QR ratio in each heartbeat period) from low sampling
rate (50 Hz) ECG data through a combination of specialized
filtering and template matching.

• Train global metamodels to define the ECG features as func-
tions of time-based physical activity parameters (e.g., num-
ber of steps taken during running/climbing, distance trav-
eled, height climbed, peak arm/leg acceleration during each
step, and time since start of activity). In this process the
suitability of various metamodels (Kriging, RBFs) will be
tested.

• Perform sensitivity analysis to determine and visualize the
impact of the physical activity parameters on the heartbeat
features.

Metamodeling: Universal Function Approximators
In the era of complex engineering systems, computational

models play a central role in systems design and analysis [1, 2].
A popular class of stochastic computational models are surro-
gate models, which are also often known as metamodels [3] or
response surfaces (depending on the research community and
the interpretation). Surrogate models are purely mathematical
models (i.e., not derived from the system physics) that are used
to provide a tractable and inexpensive approximation of the ac-
tual system behavior. They are commonly used as an alternative
to expensive computational simulations (e.g., CFD [4]) or to the
lack of a physical model in the case of experiment-derived data
(e.g., creation and testing of new metallic alloys [5]).

Evaluating and Selecting Metamodels
The construction and use of metamodels is almost always

plagued with one or both of the following practical concerns: (i)
scarcity of data, since high fidelity data is expensive, and (ii) lack
of knowledge of the underlying functional form of the system
behavior being modeled. As a result, metamodels are generally
expected to provide a low fidelity representation of the actual
system behavior [6]. Owing to this typical low-fidelity of meta-
models [7] and the availability of diverse types of metamodel
forms, the selection of a suitable model for a given experimental
or simulation data set becomes critical for effective and reliable
usage of metamodels in any application.

In the literature, error measures have been used to separately
select model type and kernel functions. Popular error measures
used for model type selection include [8]: (i) split sample, (ii)
cross-validation, (iii) bootstrapping, (iv) Schwarz’s Bayesian In-
formation Criterion (BIC) [9], and (v) Akaike’s Information Cri-

FIGURE 1. Framework and modeling flowchart

terion (AIC) [10, 9]. In addition to the model type and basis (or
correlation) function selection, error measures can also be ap-
plied in hyper-parameter optimization to select the parameter that
minimizes metamodel errors. This hyper-parameter optimization
is highly sensitive to the basis functions and the data distribu-
tion [11]. Viana et al. [12] applied the cross-validation method
to select the best predictor function and weights for different
metamodels to construct a hybrid weighted metamodels. Martin
and Simpson used Maximum Likelihood Estimation (MLE) and
cross-validation methods to find the optimum hyper-parameter
value for the Gaussian correlation function in Kriging. The like-
lihood function in that case defines probability of observing the
training data for a particular set of parameters. Gorissen et al.
provided the leave-one-out cross-validation and AIC error mea-
sures in the SUrrogate MOdeling (SUMO) Toolbox to automati-
cally select the best model type for a given problem.

Activity-based Data: Description and Characterization
In this study, the available public data set Mhealth [13] is

used. This data set contains data collected from 10 individuals
using wearable sensors with a sampling rate of 50 Hz performing
twelve different physical daily activities (e.g., jogging, running,
sitting, etc.). Three of these activities: (i) sitting and relaxing, (ii)
running, and (iii) climbing stairs are considered in this study. As
illustrated in Fig. 2 and defined in Table 1, sensors are located on
individual’s right lower arm, left ankle, and chest to monitor the
acceleration, the rate of turn and the magnetic field orientation of
the body, while also collecting ECG (electrocardiogram) signals.

To prepare the training data, different types of ECG features
can be extracted from the intervals and amplitudes of ECG waves
in different activities. The statistical ECG features of interest ex-
tracted in this study include (i) heart rate (HR) per sec., (ii) QRS
time in sec., and (iii) QR ratio in each heartbeat period. In this
study, we utilize a set of measures of physical activity, extracted
from wearable sensor (illustrated in Fig. 2) in each heartbeat pe-
riod, to define input features. The input features are illustrated in
Table. 2. To extract the ECG features, the FTT analysis is used
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FIGURE 2. Locations to be monitored on the human body during data
collection and the selected activities in this study.

TABLE 1. Sensor Description

Sensor Sensed Attribute

SCH
x,y,z Chest motion in m/s2 in x, y, and z axises

SLA
x,y,z Left ankle motion in m/s2 in x, y, and z axises

SRA
x,y,z Right lower arm motion in m/s2 in x, y, and z axises

SGLA
x,y,z Left ankle angular rate in deg/s in x, y, and z axises

SGRA
x,y,z Right lower arm angular rate in deg/s in x, y, and z axises

SMLA
x,y,z Magnetic field of left ankle in x, y, and z axises

SMRA
x,y,z Magnetic field of right lower arm in x, y, and z axises
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FIGURE 3. Statistical ECG features of interest extracted from the
sensor ECG signal

to removing bias variation (low frequency noises) from raw data
set. Then, the signal is normalized using the Min-Max scaling,
i.e., yn = (y−ymin)/(ymax−ymin). As the last step of preprocess-
ing, the normalized signal is subtracted from the average value
of signal, it plays important role in the final stage to obtain Q
and S locations. Next, the R-peak is estimated using an efficient
R-peak detection method (Kathirvel et. al. [14]). Finally, the pre-
dicted location of R is tunned by finding the largest value at the
local range of R-peak. The features Q and S are then extracted
as the smallest negative value before and after the location of the
R-peak.

TABLE 2. Description of measures of physical activity in each heart-
beat period

Input variable Description

X1 Number of steps taken based on chest motion

X2 Number of steps taken based on left ankle motion

X3 Horizontal distance moved based on chest motion

X4 Horizontal distance moved based on left ankle motion

X5 Maximum acceleration measured of the legs

X6 Maximum acceleration measured of the arms

X7 Heartbeat period’s center (in [sec])

X8 height accomplished (only in Climbing Stains)

Candidate Metamodels
The effectiveness of the model selection framework

(COSMOS) is investigated by considering a pool of models
comprised of the following three popular model types: (i) Krig-
ing, (ii) and Radial Basis Function (RBF). The different forms
of the kernel/basis/correlation functions currently considered in
COSMOS are given in Table 5 under Appendix A. It could be
said that COSMOS is seeking to be a comprehensive metamodel
selection framework both in methodology (3-level selection) and
implementation (i.e., in terms of the pool of candidate model-
kernels considered). Brief descriptions of the candidate meta-
models and the different forms of the kernel/basis/correlation
functions currently considered in COSMOS are also provided
in A.

In this study, we also investigate the effectiveness of the mul-
tiple input-single output (MISO) feed-forward Neural Network
model (see Appendix A) in representing the ECG features as
functions of time-based physical activity parameters. This model
is configured with a single hidden layer with hyperbolic tangent
sigmoid transfer function, and a single output layer with the pure
linear transfer function. In NN, to avoid over-fitting, the data set
is randomly divided into the training set (80% of the available
data set) and the testing sets.

TABLE 3. Range of hyper-parameters

Model Hyper-parameter Lower bound Upper bound

RBF shape parameter, σ 0.1 3

Kriging correlation parameter, θ 0.1 20

Predictive Estimation of Model Fidelity (PEMF)
In the COSMOS framework, the PEMF method ( [15]) is ap-

plied to estimate the model selection criteria that represents the
(predicted) modal values of the median error for any given candi-
date metamodel. PEMF has already been successfully employed
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to quantify the fidelity of metamodels that participate in a multi-
fidelity optimization approach involving adaptive model switch-
ing (Mehmani and Chowdhury et al. [16]). In concept, PEMF
can be perceived as a novel sequential implementation of k-fold
cross-validation, with carefully constructed error measures that
are in general significantly less sensitive to outliers and the De-
sign of Experiments compared to mean or Root Mean Square er-
ror measures. The PEMF method predicts the error by capturing
the variation of the metamodel error with an increasing density
of training points.

In the PEMF method, for a set of N sample points, interme-
diate metamodels are constructed at each iteration, t, using Mt

heuristic subsets of nt training points (called intermediate train-
ing points). These intermediate metamodels are then tested over
the corresponding remaining N − nt points (called intermediate
test points). The median error is then estimated for each of the
Mt intermediate metamodels at that iteration, and a parametric
probability distribution is fitted to yield the modal value, Emo,t

med .
The use of the modal value of the median error promotes a mono-
tonic variation of error with sample point density, unlike mean or
root mean squared error which are highly susceptible to outliers.
This approach gives PEMF an important advantage over con-
ventional cross-validation-based error measures, as illustrated by
Mehmani et al. ( [15]). A similar approach is used to estimate
the modal value of the maximum error (Emo,t

max ) at any tth itera-
tion. In the original PEMF method, the probability distribution
to be fitted over the median and the maximum errors at each iter-
ation were selected using the chi-square goodness-of-fit criterion
( [17]). However, in order to reduce the computational expense
of PEMF (that is called to evaluate multiple candidate models
within COSMOS), only the lognormal distribution is used. This
distribution has been previously observed (from numerical ex-
periments) to be generally effective within PEMF.

In PEMF, once we have the history of the median and the
maximum errors at different sample size (< N), the variation of
the modal values of these error measures with sample density are
then represented using the multiplicative (E = a0na1 ) or the ex-
ponential (E = a0ea1n) regression functions. The choice of these
regression functions leverage the monotonically decreasing trend
of the modal error values with respect to the training point den-
sity. The root mean squared error metric is used to select the
best-fit regression function. These regression functions are then
used to predict the modal values and the variance of the median
and the maximum errors in the final metamodel, where the final
metamodel is trained using all the N sample points.

APPLICATION TO ACTIVITY MONITORING: RESULTS
AND DISCUSSION
Metamodeling: Evaluation

The PEMF errors of the best fit metamodels discovered by
COSMOS, and their variation across the volunteers, are shown
as a box-plot in Fig. 4. It is interesting to note that although
the average error for QR ratio and QRS time are smaller (with
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FIGURE 4. Relative prediction error, estimated using PEMF in dif-
ferent metamodels, representing the output ECG features in different
activities, selected using COSMOS for 10 individuals .

less variation) in the case of running activity models, compared
to the climbing stairs activity models, the ECG heart rate feature
exhibits the higher level of error in the former.

Figure 5 illustrates the performance of three NN models,
trained to represent the ECG features as functions of time-based
physical activity parameters using the sensed attributes in all in-
dividuals. The performance reported based on Median Relative
Absolute Error (MdRAE) and it is observed that, the error of NN
models in predicting QRS heart rate and QRS time in activity 2
are respectively 3% and 1%, while that is 14% in predicting QR
ratio. The performance of the NN models across all ten individ-
uals are presented as a box-plot in Fig. 6.

Activity Impact Analysis with Metamodels
In this section, we investigate the sensitivity of ex-

tracted features of the ECG to measures of physical activity,
Xi, i = 1,2, ...,15, where the features are predicted using the
best-fit metamodels selected by COSMOS. To perform the sensi-
tivity analysis (SA), the Fourier amplitude sensitivity test (FAST)
method is used to determine the first-order index that represents
the variance of the model output due to each of the input parame-
ters. In Fast, the input variables are transformed into a frequency
domain using Fourier transformation. Thus, a multidimensional
model is reduced into a model with a single dimension [18]. As-
suming a model with n input variables, X = [X1,X2, . . . ,Xn], the
output of the model, Y , is expressed as Y = f (x1,x2, . . . ,xn). In
FAST, a search function is defined to allow the input parameter
to oscillate periodically in the input space, by assigning a char-
acteristic frequency ωi, expressed as

xi = Gi(sinωis), i = 1,2, . . . ,n (1)

Here Gi is a transform function, and s∈ (−∞,+∞) is a scalar. By
applying the properties of Fourier series, E(Y ) can be expressed

4 Copyright c⃝ 2017 by ASME



0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

Train Data, medErrrel =0.038641

Actual
MLP

0 10 20 30 40 50 60
0

0.02

0.04

0.06

Test Data, medErrrel =0.041488

Actual
MLP

(a) ANN1: output (b) ANN1: relative error

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

Train Data, medErrrel =0.0098882

Actual
MLP

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

Test Data, medErrrel =0.021822

Actual
MLP

(c) ANN2: output (d) ANN2: relative error

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

Train Data, medErrrel =0.09972

Actual
MLP

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8
Test Data, medErrrel =0.35108

Actual
MLP

(e) ANN3: output (f) ANN3: relative error

FIGURE 5. The performance of the NN in representing ECG features as functions of time-based physical activity parameters; ANN1, ANN2, and
ANN3 are corresponded with the models that are estimating the ECG heart rate per sec., ECG QRS time, and ECG QR ratio, respectively.

as

Y = f (s) = A0 +
+∞

∑
k=1

[Ak cos(ks)+Bk sin(ks)] (2)

where f (s) = f (x1(s),x2(s), . . . ,xn(s)), and i = 1,2, . . . ,n; A0,
Ak, and Bk are the Fourier coefficients, defined as

A0 =
1

2π

π∫
−π

f (s)ds, and

Ak =
1
π

π∫
−π

f (s)cos(ks)ds, Bk =
1
π

π∫
−π

f (s)sin(ks)ds

(3)

For practical problems, k must be limited to a reasonable
value of the integer N, which indicates the sample size of the
input data. The variance of the model output, s2

Y , can therefore
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FIGURE 6. Accuracy of the ANN models based on Median Relative Absolute Error (MdRAE) for two activities, running (Activity 2) and climbing
stairs (Activity 3), in 10 different individuals: (a) the ECG heart rate per sec, (b) the ECG QRS Time, (c) the ECG QR ratio

be approximated as

s2
Y = E(Y 2)− [E(Y )]2 ≈ 1

2π

(N-1)/2

∑
k=1

(
A2

k +B2
k
)

where

Ak =
1
π

N

∑
j=1

f (s j)cos(s jk), Bk =
1
π

N

∑
j=1

f (s j)sin(s jk)

(4)

In the variance-based sensitivity analysis, the first-order sen-
sitivity index of an input parameter, xi, is defined as the condi-
tional variance of the model output, s2

E(Y/xi)
, with respect to the

unconditional variance of the model output (s2
Y ). The conditional

variance in FAST is approximated by summing up the spectrum
values for the basic frequency ωi and its higher harmonics, as
shown below.

s2
E(Y/xi)

≈ 1
2

m

∑
p=1

(A2
pωi

+B2
pωi

) (5)

In Eq.(5), p ∈ Z and pωi ≤ (N − 1)/2; and m indicates the
order of higher harmonics that are considered [19].

Therefore, the first-order index can be formulated by com-
bining Eq.(5) and Eq.(4), which is expressed as

Si =
s2

E(Y/xi)

s2
Y

(6)

Figure 7 illustrates the sensitivity analysis exploring the af-
fect of each measures of physical activity to the selected ECG
features, for climbing stairs and running activities.

From the boxplot of sensitivity indices, it can be sen that
time has a significant impact on the ECG parameters and also
registers higher variation across individuals.

To show the sensitivity of ECG heart rate and QRS time to
sensed attributes (e.g., x1,2,...,7), when the climbing stairs and run-
ning activities are considered, the ECG heart rate and QRS time
interval metamodel, selected by COSMOS, is used to generate
filled contour plots by varying the input variables (e.g., measures
of physical activity) pairwise and keeping the remaining vari-
ables at the baseline value. The results for individuals No. 1 and
No. 8 are illustrated in Fig. 8 and 9, respectively.

CONCLUSION
This paper provides a preliminary investigation into the use

of global approximation models, or metamodels, to interpret
health sensor data, more specifically, to represent vital signs pa-
rameters (i.e., heartbeat (ECG)) as functions of physical activ-
ity parameters. We use a publicly available data set, containing
the ECG data and gyro/accelerometer/magnetometer data from
three sensors (ankle/arm/chest) for ten volunteers, each perform-
ing various activities over one-minute time periods. ECG fea-
tures, including heart rate, QRS time, and QR ratio in each heart-
beat period, are extracted as output features and represented as
functions of the measures of physical activity such as number of
steps taken during running or climbing and distance traveled. We
train both Neural Network models and best-fit metamodels that
are chosen for use by the COSMOS framework from among var-
ious types of candidate Kriging and RBF models. These meta-
models facilitate sensitivity analysis, which is performed using
the Fourier amplitude sensitivity test method. The results pro-
vide insightful visualization of the differing impacts of the ac-
tivity/movement parameters on the ECG features as well as their
variation across the ten individuals. Future work will focus on the
use of metamodels that relate heart behavior to physical activity
measures to provide unique insights for (i) rehabilitation plan-
ning and progress estimation, (ii) detection of cardiac anomalies,
and (iii) the creation of activity-referenced individual baselines
to serve as part of their health record.
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FIGURE 7. SA of the extracted ECG features to all measures of physical activities in 10 different individuals : (a) the ECG heart rate per sec in
running activity, (b) the ECG heart rate per sec in climbing stairs activity, (c) the ECG QRS Time in running activity, (d) the ECG QRS Time in climbing
stairs activity, (e) the ECG QR ratio in running activity, and (f) the ECG QR ratio in climbing stairs activity
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A Metamodel Candidates
Radial Basis Function (RBF)

The idea of using Radial Basis Functions (RBF) as approx-
imation functions was conceived by [20]. The RBF approxima-
tion is a linear combination of the basis functions (Ψ) computed
with respect to each sample point, as given by

F̄(x) =W T Ψ =
np

∑
i=1

wiψ
(
∥x− xi∥

)
(7)

In Eq. 7, np denotes the number of selected sample points;
wi’s are the weights estimated using the pseudo inverse method,
based on the training data; and ψ is the basis function that is
expressed in terms of the Euclidean distance, r = ∥x− xi∥, of a
point x from a given sample point, xi. The most effective forms
of the basis functions are listed in Table 5 where σ represents the
shape parameter of the basis function. The shape parameter in a
basis function has a strong impact on the accuracy of the trained
RBF. A smaller shape parameter often corresponds to a wider
basis function, and the shape parameter, σ = 0, corresponds to a
constant basis function ( [21]). The different RBFs considered in
this paper are listed in Table 5.

Kriging
Kriging ( [22]) is an approach to approximate irregular data.

The kriging approximation function consists of two components:
(i) a global trend function, and (ii) a deviation function repre-
senting the departure from the trend function. The trend function
is generally a polynomial (e.g., constant, linear, or quadratic).
The general form of the kriging metamodel is given by ( [23])):

F̄(x) = f̂ (x,φ)+Z(x) (8)

where F̄(x) is the unknown function of interest, Z(x) is the real-
ization of a stochastic process with the mean equal to zero, and a
nonzero covariance, and f̂ is the known approximation function

f̂ (x,φ) = f (x)T φ (9)

where φ is the regression parameter matrix.
The i, j− th element of the covariance matrix, Z(x), is given

by

COV [Z(xi),Z(x j)] = σ2
z Ri j (10)

where Ri j is the correlation function between the ith and the jth

data points; and σ2
z is the process variance, which scales the spa-

tial correlation function. The popular types of correlation func-
tions are listed in Table 5. The correlation function controls the

smoothness of the Kriging model estimation, based on the in-
fluence of other nearby points on the point of intrest. In Kriging,
the regression function coefficients, the process variance, and the
correlation function parameters, {φ,σ2

z ,θ}, each can be prede-
fined or estimated using parameter estimation methods such as
Maximum Likelihood Estimation (MLE). In this paper, the re-
gression function coefficients and the process variance are esti-
mated using MLE, as given by

φ = (F t R−1F)−1 FT R−1Y (11)

σ2
z =

1
n
(Y −Fφ̃)T R−1 (Y −Fφ̃)

where Y = [y1 y2 ...] represents the vector of the actual output
at the training points; R is a correlation matrix; and F is a ma-
trix of f (x) evaluated by Kriging at each training point ( [24]).
The hyper-parameter, θ , in the correlation function is determined
by solving the nonlinear hyper-parameter optimization problem.
To estimate the regression function coefficients and the process
variance in Kriging, the DACE (design and analysis of computer
experiments) package, developed by [25], is used in this paper.

ANN
Artificial Neural Network (ANN) is a set of powerful tools

for modeling complex nonlinear systems. Multi-Layer Percep-
tion (MLP) [26] is a feed-forward ANN that includes multiple
layers with multiple nodes per layer and is also known as a
universal metamodel. Hidden Layer Transfer Function (HLTF),
Output Layer Transfer Function (OLTF), and Hidden Layer Size
(HLS) are three parameters that should be determined in this
model.

In this paper, the NN models are trained using scaled conju-
gate gradient back propagation method three MISO NN models
for each output and each activity. The hyper-parameters and ob-
tained results of each model are reported in Table 4.

TABLE 4. Parameters of the trained ANN models

Output Activity HLS MdRAE

ANN11 Y1 2 8 0.01

ANN12 Y1 3 8 0.01

ANN21 Y2 2 60 0.03

ANN22 Y2 3 60 0.10

ANN31 Y3 2 60 0.14

ANN32 Y3 3 60 0.20

Appendix B: Expressions for Candidate Metamodel-
Kernels in COSMOS
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TABLE 5. Basis or Kernel functions and their hyper-parameters in the candidate metamodels

Type of model Type of basis/correlation/kernel function Hyper parameter

RBF Linear: r

shape parameter, σ

Cubic: r3

Thin plate spline: r2ln(r)

Gaussian: e(−r2/2σ)

Multiquadric: (r2 +σ2)1/2

Kriging Linear: max(1−θr,1)

correlation function parameter, θ

Exponential: e(−θr)

Gaussian: e(−θr)2

Cubic: 1−0.5ξ +0.5ξ 2; ξ = max(1−θr,1)

Spherical: 1−3ξ 2 +2ξ 3; ξ = max(1−θr,1)
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