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Abstract

In this paper, we will show that in addition to measuring annual and diurnal stellar aberration it is also possible

directly to measure the angle of secular aberration caused by the motion of the solar system relative to other stars.

In the manuscript [1] we dealt with this problem and gave a short description of a special telescope. Using such a

telescope we would be able to measure the exact position of the cosmic objects and thus eliminate errors that occur

due to the stellar aberration. Assuming that the tube of the telescope is filled with some optical medium [2], we

will show that this does not significantly affect the measurement of the stellar aberration angle, but also that these

differences are still large enough to enable us to determine the velocity at which the solar system moves relative to

the other stars.
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1. Introduction

Suppose we observe an arbitrarily chosen star, which we denote by (Z). Starlight moves in straight line and will

remain in the same direction regarding to the ecliptic plane. Photons enter in a perpendicular direction to the top

plane of the telescope.

The starlight represents an inertial frame of reference marked by (K) and the telescope represents a moving frame of

reference that is marked by (T ). We are assuming that [1] :

P1- speed of light in vacuum c is constant and equal in all inertial frames (K)

P2 - there is a one common time for the all frames (K) and the moving frame (T )

P3- frame (T ) is moving uniformly in a straight line regarding the frame (K)

Suppose we have a telescope whose tube is filled with some matter whose index of refraction is denoted by n. The

center of the upper surface of the telescope is indicated by the point S, and the center of its lower surface is indicated

by the point S′ [Figure 1].
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Figure 1: The telescope is stationary regarding the starlight

Let suppose the telescope moves relative to the starlight. At some instant t0 photon hits the upper surface of the

telescope at the point S and at some instant t1, due to stellar aberration, it does not hit the lower surface of the

telescope at point S’ but rather at the point A [Figure 2].
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Figure 2: The telescope is moving regarding the starlight

Velocity at which the telescope moves relative to the starlight is decomposed to the two components. The first

component noted by v is perpendicular to the starlight and the second one noted by u is parallel to starlight.

We will first find the distance that the photon has traveled in the direction of u, regarding the (K). Referring to the

[Figure 2] we can write that:
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d = SS′ (1)

k =
1

n
(2)

∆t = t1 − t0 (3)

(k ∗ c) ∗∆t = d+ u ∗∆t (the total distance traveled by a photon) (4)

∆t =
d

k ∗ c− u
(5)

After that we are going to find the distance that the photon has traveled in the direction of v, regarding the (K). In

order to simplify the calculations, we assume that u = 0. Let S′(t0) denotes the position of the point S′ in the instant

t0, and S′(t1) denotes the position of the point S′ in the instant t1, regarding the (K).

S′(t0)S′(t1) = v ∗∆t (the total distance traveled by the point S’, regarding the (K) ) (6)

S′(t0)A =
n− 1

n
∗ v ∗∆t (the photon is dragged by the medium in the moving telescope - our hypothesis) (7)

S′A = S′(t1)A = S′(t1)S′(t0) + S′(t0)A = −v ∗∆t+
n− 1

n
∗ v ∗∆t =

= −∆t ∗ v
n

= −d ∗ (v ∗ k)

k ∗ c− u
= − v

c− n ∗ u
∗ d

(8)

From the Equation (8) it follows that angle of the total stellar aberration [1] denoted by θ is equal to:

tan(θ) =

∣∣∣∣S′Ad
∣∣∣∣ =

d ∗ v
c− n ∗ u

∗ 1

d
=

v

c− n ∗ u
(9)

v

c− n ∗ u
=
v

c
∗
(

1 +
nu

c
+
n2u2

c2
+ ...

)
=
v

c
+
nuv

c2
+
n2u2v

c3
+ ... (10)

θ = atan2

(
v

c− n ∗ u

)
(11)

θ ≈ v

c
+
nuv

c2
(where u << c , v << c) (12)

2. Coordinate Systems

In this section are given the descriptions of the four Coordinate Systems that will be used in a further discussion.

Let the (P ) represents ”The Heliocentric-Ecliptic Coordinate System” [Figure 3]. Its origin Op is centered on the cen-

ter of mass of the solar system, and the fundamental plane coincides with the ecliptic plane of the Earth’s revolution

about the sun. The line of intersection of the ecliptic plane and the earth’s equatorial plane defines the xp − axis.
On the first day of Spring a line joining the center of the Earth and the center of the sun points in the direction of

positive xp − axis [1].

Suppose that the point Ok represents the position of the center of mass of the solar system (regarding the distant

objects) at some point T0 and byOp is marked the position of the center of mass of the solar system at the ”present time”
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T1. We will assume that the Coordinate Systems (K) and (P ) are defined as ”The Heliocentric-Ecliptic Coordinate

System” except that their origins Ok and Op are different. We assume that the Coordinate System (P ) is moving

with a uniform, rectilinear space motion u relative to the Coordinate System (K).

Ok

(K)

xk

yk

zk

Op

(P )

E

xp

yp

zp

u

v(t)

Figure 3: The Ecliptic Coordinate System (P ) moves uniformly regarding the Stationary Ecliptic Coordinate System

(K)

Let a (Q) represents ”The Geocentric-Equatorial Coordinate System” Figure[4]. Its origin Oq is at the center of the

Earth, the fundamental plane is the equator and the positive xq points in the vernal equinox direction . The zp points

in the direction of the north pole. By the definition the Coordinate System (Q) is non-rotating with the respect to

the stars [1].

Let ϕ = 23.43693 ∗Π/180 denotes Earth’s axial tilt Figure[4]
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Q
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Figure 4: Ecliptic Coordinate System (P) and Equatorial Coordinate System (Q)

The position of the star is determined by two angles called right ascension and declination Figure[5]. The right

ascension α is measured eastward in the plane of equator from the vernal equinox direction. The declination δ is
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measured northward from the equator to the line of sight, we would say that is an angle between the plane of equator

and the direction of the starlight [1].
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xq yq

zq
(Q)
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Ot ≡ S′

Sxtyt

zt

?
Z(α, δ)

α

δ

Figure 5: Equatorial Coordinate System (Q) and Telescope Coordinate System (T)

We will assume that the center line SS′ of the telescope lies in the plane defined by the Earth’s axis of rotation

marked by zq and the star Z(α, δ) Figure[5]. In addition, we will assume that SS′ is parallel to the light rays coming

from the star. We will define a right-handed Telescope Coordinate System (T ) system as follows. The origin of the

Coordinate System (T ) is point S′. The bottom plane of the telescope represents the (xtyt) plane of the Coordinate

System (T ) . The positive zt − axis lies in the S′S direction and the xt − axis is parallel to the equatorial plane

Figure[5].

3. Coordinate Transformations

In the previous paper [1], we have already derived transformation matrices that map Cartesian coordinates from one

Coordinate System to another, but we will do it again in a different way.

We will first find simple formulas for transforming the arbitrarily chosen unit vector a = a(α, δ) from a spherical to a

Cartesian Coordinate System.

x

z

y
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Ay

Ax

Axy

A
S
α
δ

Figure 6: Transformation from Spherical to Cartesian coordinates
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As can be seen from the Figure[6] we have

a = a(α, δ) = [ax, ay, az] (13)

ax = cos(α) ∗ cos(δ) (14)

ay = sin(α) ∗ cos(δ) (15)

az = sin(δ) (16)

Where δ measures elevation from the xy − plane.

Referring to the Figure[6] we have the following definitions and equations

θx = 6 AxSA (17)

θx = 6 AySA (18)

θz = 6 AzSA (19)

δ =
π

2
− θz (20)

cos(θx) = ax = cos(α) ∗ cos(δ) (21)

cos(θy) = ay = sin(α) ∗ cos(δ) (22)

tan(α) =
ay
ax

=
cos(θy)

cos(θx)
(23)

α = atan2

(
cos(θy)

cos(θx)

)
(24)

Let the triplets [̂ik, ĵk ,k̂k] r [̂ip, ĵp ,k̂p] , [̂iq, ĵq ,k̂q] and [̂it, ĵt ,k̂t] represent the orthonormal bases for the Coordinate

Systems (K), (P ), (Q) and (T ) , respectively.

It is obvious that the unit matrix I3 is transformation matrix from the basis [̂ik, ĵk ,k̂k] to the basis [̂ip ,̂jp,k̂p], which

means that we have following equality:

[̂ik, ĵk, k̂k] = [̂ip, ĵp, k̂p] (25)

Let the unit vectors îq, ĵq and k̂q are expressed in spherical coordinates regarding the Ecliptic Coordinate System (P).

Now using the Equations (13)-(16) we can transform them to the Cartesian Coordinates regarding the orthonormal

basis [̂ip, ĵp ,k̂p].

Referring to the Figure[4] we have:
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îq = îq(0, 0) = [cos(0) ∗ cos(0), sin(0) ∗ cos(0), sin(0)] = [1, 0, 0] (26)

ĵq = ĵq

(
Π

2
,−ϕ

)
=

[
cos

(
Π

2

)
∗ cos(−ϕ), sin

(
Π

2

)
∗ cos(−ϕ), sin(−ϕ)

]
= [0, cos(ϕ),−sin(ϕ)] (27)

k̂q = k̂q

(
Π

2
,

Π

2
− ϕ

)
=

[
cos

(
Π

2

)
∗ cos

(
Π

2
− ϕ

)
, sin

(
Π

2

)
∗ cos

(
Π

2
− ϕ

)
, sin

(
Π

2
− ϕ

)]
=

= [0, sin(ϕ), cos(ϕ)]

(28)

In that way we can define the matrix noted by κ(Q,P ) that transforms the basis [̂ip, ĵp ,k̂p]) to the basis [̂iq, ĵq ,k̂q].

κ(Q,P ) =


1 0 0

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) cos(ϕ)

 (29)


îq

ĵq

k̂q

 = κ(Q,P ) ∗


îp

ĵp

k̂p

 (30)

If the [̂i, ĵ ,k̂] represents orthonormal basis , then it is obvious that we have the following equalities:

k̂ = î× ĵ (31)

î = ĵ× k̂ (32)

ĵ = k̂× î (33)

In other words, if two vectors are known then the third can be expressed as a cross product of the other two known

vectors.

Let a matrix noted by κ transforms an orthonormal basis [̂i1, ĵ1 ,k̂1] to an orthonormal basis basis [̂i2 ,̂j2,k̂2]. Then it

is easy to prove the following equation [1].

κ−1 = κT (34)

where κT is transpose of matrix κ
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Now we can find the matrix noted by κ(P,Q) that transforms the basis [̂iq, ĵq ,k̂q] to the basis [̂ip, ĵp ,k̂p].

κ(P,Q) = κ−1(Q,P ) = κT (Q,P ) (35)


îp

ĵp

k̂p

 = κT (Q,P ) ∗


îq

ĵq

k̂q

 (36)

After that we are going to determine a transformation matrix noted by κ(T,Q) that maps

basis [̂iq, ĵq , k̂q] to the basis [̂it, ĵt ,k̂t].

Let the unit vectors ît, ĵt and k̂t be expressed in spherical coordinates regarding the Equatorial Coordinate System

(Q).

Referring to the Figure[5] it follows

ît = ît

(
α+

Π

2
, 0

)
=

[
cos

(
α+

Π

2

)
∗ cos(0), sin

(
α+

Π

2

)
∗ cos(0), sin(0)] = [−sin(α), cos(α), 0

]
(37)

ĵt = ĵt

(
α,

Π

2
+ δ

)
=

[
cos (α) ∗ cos

(
Π

2
+ δ

)
, sin (α) ∗ cos

(
Π

2
+ δ

)
, sin

(
Π

2
+ δ

)]
= [−cos(α) ∗ sin(δ),−sin(α) ∗ sin(δ), cos(δ)]

(38)

k̂t = k̂t(α, δ) = [cos(α) ∗ cos(δ), sin(α) ∗ cos(δ), sin(δ)] (39)

In that way we can define the matrix noted by κ(T,Q) that transforms [̂iq, ĵq, k̂q] to the basis [̂it ,̂jt,k̂t].

κ(T,Q) =


−sin(α) cos(α) 0

−cos(α) ∗ sin(δ) −sin(α) ∗ sin(δ) cos(δ)

cos(α) ∗ cos(δ) sin(α) ∗ cos(δ) sin(δ)

 (40)


ît

ĵt

k̂t

 = κ(T,Q) ∗


îq

ĵq

k̂q

 (41)
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Now we can define the matrix noted by κ(Q,T ) that transforms [̂it, ĵt ,k̂t] to the basis [̂iq, ĵq ,k̂q] .

κ(Q,T ) = κ−1(T,Q) = κT (T,Q) (42)


îq

ĵq

k̂q

 = κT (T,Q) ∗


ît

ĵt

k̂t

 (43)

It is easy to prove following equation:


ît

ĵt

k̂t

 = κ(T,Q) ∗ κ(Q,P ) ∗


îp

ĵp

k̂p

 (44)

Now we can determine the matrix noted by κ(T, P ) that transforms the basis [̂ip ,̂jp ,k̂p] to the basis [̂it ,̂jt,k̂t]

κ(T, P ) = κ(T,Q) ∗ κ(Q,P ) (45)

and the matrix noted by κ(P, T ) that transforms [̂it, ĵt ,k̂t] to the [̂ip, ĵp ,k̂p].

κ(P, T ) = κ−1(T, P ) = κT (Q,P ) ∗ κT (T,Q) (46)


îp

ĵp

k̂p

 = κT (Q,P ) ∗ κT (T,Q) ∗


ît

ĵt

k̂t

 (47)

Let a matrix noted by κ transforms an orthonormal basis [̂i1, ĵ1 ,k̂1] to an orthonormal basis [̂i2 ,̂j2,k̂2] and suppose

that we have some arbitrary vector denoted by v. Then we have the following equations :


î2

ĵ2

k̂2

 = κ ∗


î1

ĵ1

k̂1

 (48)
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v = vx ∗ î1 + vy ∗ ĵ1 + vz ∗ ẑ1 =
[
vx vy vz

]
∗


î1

ĵ1

k̂1

 =
[
vx vy vz

]
∗ κT ∗


î2

ĵ2

k̂2

 (49)

Using the Equation (49), it is easy to map the vector v from one basis to another.

4. Determining the actual position of the star and its total stellar aber-

ration

Suppose there is a telescope (satellite) moving at a velocity w(t) with respect to the Equatorial Coordinate System

(Q), Figure[5] and Figure[7] .

Oq

xq yq

zq
(Q)

(T )

S′

S

X

?
Z(α, δ)

α

δ

Y

A

Figure 7: Determining the actual right ascension α, declination δ and total aberration of the star

We will assume that at point S there is a splitter, so that the light ray emitted from star Z is sent simultaneously in

two directions SX and SY where (SX = SY and SX⊥SY ), Figure[7]. The rays SX and SY are perpendicular to

SS′ which implies that the points Z, S and S′ lie on one line. Now we can measure the angles θx, θy and θz between

S′S and the positive xq, yq and zq axes, respectively. Applying the Equations (23)− (24) it follows that :

δ =
Π

2
− θz (50)

α = atan2

(
cos(θy)

cos(θx)

)
(51)

The angles α and δ are known and using the Equations (37)− (39) we are able to define a basis [̂it ,̂jt,k̂t] regarding the

Telescope Coordinate System (T).

Let the telescope remains in the same position, which means that points Z, S and S′ still lie on the same line. Instead

of sending beam to points X,Y we will let the light signal continue moving toward bottom surface of the telescope.
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Due to stellar aberration instead of point S′, the light signal will hit point A.

Now, knowing the vector S’A our goal is to determine a velocity at which the telescope moves relative to Coordinate

System (K).

5. Determining a velocity at which the telescope moves relative to Co-

ordinate System (K)

The velocity at which the telescope moves with respect to Coordinate System (K) will be denoted by U(t). We have

the following equations:

U(t) = [Ux(t), Uy(t), Uz(t)] (52)

U(t) = u + v(t) + w(t) (53)

Refer to Figure[3] it follows that the Coordinate System (P ) moves at a uniform velocity u relative to the Coordinate

System (K) , which will be noted in the following way.

u = [ux, uy, uz] (54)

Where ux, uy, uz are the coordinates of u over [̂ik, ĵk ,k̂k]. Now we are going to transform the coordinates ux, uy, uz

of the vector u with respect to the basis [̂ik, ĵk ,k̂k] to the coordinates ux[T ], uy[T ], uz[T ] with respect to the basis [̂it,

ĵt ,k̂t].

u = [ux[T ], uy[T ], uz[T ]] = [ux, uy, uz] ∗ κT (Q,P ) ∗ κT (T,Q) (55)

Refer to Figure[4] it follows that the Coordinate System (Q) moves at velocity v(t) relative to the Coordinate System

(P ) , which will be noted in the following way.

v(t) = [vx, vy, vz] (56)

Now we are going to transform the coordinates vx, vy, vz of the vector v(t) with respect to the basis [̂ip ,̂jp,k̂p] to the

coordinates vx[T ], vy[T ], uv[T ] with respect to the basis [̂it, ĵt ,k̂t].

v(t) = [vx[T ], vy[T ], vz[T ]] = [vx, vy, vz] ∗ κT (Q,P ) ∗ κT (T,Q) (57)
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As can be seen from the Figure[5], the Coordinate System (T ) moves at velocity w(t) relative to the Coordinate

System (Q), which will be noted in the following way.

w(t) = [wx, wy, wz] (58)

After that we are going to transform the coordinates wx, wy, wz of the vector w(t) with respect to the basis [̂iq, ĵq ,k̂q]

to the coordinates wx[T ], wy[T ], wz[T ] with respect to the basis [̂it, ĵt ,k̂t].

w(t) = [wx[T ], wy[T ], wz[T ]] = [wx, wy, wz] ∗ κT (T,Q) (59)

And finally, by applying the Equations (55),(57) and (59) we are able to express the coordinates Ux, Uy, Uz of the

vector U(t) with respect to the basis [̂ik, ĵk ,k̂k] to the coordinates noted by Ux[T ], Uy[T ], Uz[T ] with respect to the

basis [̂it, ĵt ,k̂t].

Ux[T ] = ux[T ] + vx[T ] + wx[T ] (60)

Uy[T ] = uy[T ] + vy[T ] + wy[T ] (61)

Uz[T ] = uz[T ] + vz[T ] + wz[T ] (62)

U [T ] = [Ux[T ], Uy[T ], Uz[T ]] (63)

In order to find the vector u we first need to determine the vector U[T].

6. Determining a velocity that solar system moves regarding the Coor-

dinate System (K)

We will first define the Coordinate System (K ′) whose origin is at the point Ok and the axes x′k, y
′
k, z
′
k determined

by the basis [̂it, ĵt ,k̂t]. In other words, the center of the Coordinate System (K ′) coincides with the center Ok of the

Coordinate System (K), and the coordinate axes parallel to the coordinate axes of the Coordinate System (T ).

Referring to the Figure[7 it follows that on the bottom side of the telescope we will have the situation shown in the

Figure[8].
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A

yt

xt
S′

Ax

Ay

Figure 8: Due to the stellar aberration photons hit bottom side of the telescope at point A

The origin of the Telescope Coordinate System (T ) is noted by S′ Figure[8], its axes are marked by xt and yt, A

denotes the point where light hits the bottom plane of the telescope, points Ax and Ay are the projections of point A

on the xt and yt axes.

Suppose we have two telescopes filled with two different materials whose indices of refraction are equal to n0 and n1 re-

spectively. We can actually say that we have one telescope with two tubes. The tube may be located in the primary or

secondary position. When the tube is in the primary position then using that tube it is possible to make measurements.

If |S′A|= 0 we can conclude that the proposed method did not produce the expected results and therefore we can say

that the experiment failed.

Otherwise from the Equation (8) and the Figure[8] we can find that:

S′Ax(n0) =
Ux[T ]

c− n0 ∗ Uz[T ]
∗ d (64)

S′Ax(n1) =
Ux[T ]

c− n1 ∗ Uz[T ]
∗ d (65)

Uz[T ] = c ∗ S′Ax(n0)− S′Ax(n1)

n0 ∗ S′Ax(n0)− n1 ∗ S′Ax(n1)
(66)

Ux[T ] =
S′Ax(n0) ∗ (c− n0 ∗ Uz[T ])

d
(67)

S′Ay(n0) =
Uy[T ]

c− n0 ∗ Uz[T ]
∗ d (68)

S′Ay(n1) =
Uy[T ]

c− n1 ∗ Uz[T ]
∗ d (69)

Uz[T ] = c ∗ S′Ay(n0)− S′Ay(n1)

n0 ∗ S′Ay(n0)− n1 ∗ S′Ay(n1)
(70)

Uy[T ] =
S′Ay(n0) ∗ (c− n0 ∗ Uz[T ])

d
(71)
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If our measurements and calculations are correct then the following identity holds:

S′Ax(n0)− S′Ax(n1)

n0 ∗ S′Ax(n0)− n1 ∗ S′Ax(n1)
=

S′Ay(n0)− S′Ay(n1)

n0 ∗ S′Ay(n0)− n1 ∗ S′Ay(n1)
(72)

From the Equations (60)− (62) it follows that:

ux[T ] = Ux[T ]− vx[T ]− wx[T ] (73)

uy[T ] = Uy[T ]− vy[T ]− wy[T ] (74)

uz[T ] = Uz[T ]− vz[T ]− wz[T ] (75)

And from the Equation (55) we have:

u = [ux, uy, uz] = [ux[T ], uy[T ], uz[T ]] ∗ κ(T,Q) ∗ κ(Q,P ) (76)

In this way we have found the velocity u at which the Coordinate System (P ) moves with respect to Coordinate

System (K).

7. Analysis of the results

It remains to determine what velocity u actually represents.

Suppose we observed n different stars from our Galaxy and performed all the necessary measurements and calculations.

In that way we got a sequence of vectors:

{ui}ni=1

Let uE denotes some expected minimal value of the ‖ui‖, and ε denotes some small positive number.

Based on the obtained values of ui, we will consider three cases:

1. ‖ui‖< uE {i = 1, 2, ..n}

This means that we have a following identity:

u = 0 (77)

In this case, we are not able to detect any movement of the solar system regarding to other stars. Therefore, this

movement has no effect on stellar aberration.

2. ‖ui − uj‖≤ ε {i, j = 1, 2, ..n}

In this case we will define a vector u as follows:

u =

∑n
i=1 ui

n
(78)

Obviously, in this case we can say that velocity u has an absolute value and the motion of the solar system regarding

to other stars affects stellar aberration.
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3. ‖ui − uj‖> ε (for some i, j)

In this case we can say that ui represents the relative velocity at which the solar system moves with respect to the

observed star and that this motion affects stellar aberration.

We can repeat the experiment by observing objects outside our Galaxy and make comparisons between the obtained

results.
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