Analyzing two Ramanujan equations: mathematical connections with various parameters of Particle Physics and Cosmology II

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

The purpose of this paper is to show how using certain mathematical values and / or constants from two Ramanujan equations, some important parameters of Particle Physics and Cosmology are obtained.

[^0]
https://apod.nasa.gov/apod/ap170510.html

https://wssrmnn.net/index.php/2017/01/23/man-saw-number-pi-dreams/

From: Manuscript Book 2 of Srinivasa Ramanujan

Page 78

$1 /(1+10 / 9)+1 /\left(1+(10 / 9)^{\wedge} 2\right)+1 /\left(1+(10 / 9)^{\wedge} 3\right)+\ldots$
Input interpretation:
$\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\cdots$

Infinite sum:

$\sum_{n=1}^{\infty} \frac{1}{\left(\frac{10}{9}\right)^{n}+1}=\frac{i \operatorname{Im}\left(\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}+\frac{\operatorname{Re}\left(\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}-\frac{\log (10)}{\log \left(\frac{10}{9}\right)}$
$\log (x)$ is the natural logarithm $\psi_{q}(z)$ gives the q-digamma function

Decimal approximation:

$6.331008692864745537718386879838180649341260412564743295777 \ldots$
$6.331008692 \ldots$
Convergence tests:
By the ratio test, the series converges.

Partial sum formula:

$\sum_{n=1}^{m} \frac{1}{1+\left(\frac{10}{9}\right)^{n}}=\frac{\psi_{\frac{9}{10}}^{(0)}\left(-\frac{i \pi-\log \left(\frac{10}{9}\right)}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}-\frac{\psi_{\frac{9}{10}}^{(0)}\left(-\frac{i \pi-(m+1) \log \left(\frac{10}{9}\right)}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}$

Alternate forms:

$$
-\frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}
$$

$-\frac{\log (10)}{\log \left(\frac{10}{9}\right)}+\frac{\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}$
$-\log (10)+\psi \frac{(0)}{10}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)$

$$
\log (10)-2 \log (3)
$$

Series representations:

$$
\begin{aligned}
& \frac{i \operatorname{Im}\left(\psi_{\frac{9}{10}}^{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}-\frac{\log (10)}{\log \left(\frac{10}{9}\right)}+\frac{\operatorname{Re}\left(\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}= \\
& -\left(\left(2 \pi\left[\frac{\arg (10-x)}{2 \pi}\right]-\operatorname{Im}\left(\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)\right)-\right.\right. \\
& i \log (x)+i \operatorname{Re}\left(\psi^{(0)}\left(10\left(1-\frac{i \pi}{2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)\right)+\right. \\
& \left.i \sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right) / \\
& \left.\left(2 \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right\rfloor-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right)\right) \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{i \operatorname{Im}\left(\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}-\frac{\log (10)}{\log \left(\frac{10}{9}\right)}+\frac{\operatorname{Re}\left(\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}= \\
& -\left(\int 2 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right)-\operatorname{Im}\left(\psi_{\frac{9}{10}}^{(0)}(1-\right.\right. \\
& \left.2 i \pi\left\lfloor\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right\rfloor+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right\rfloor\left.\right|^{-i \log \left(z_{0}\right)+} \\
& i \operatorname{Re}\left(\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right\rfloor+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}}\right)\right)+ \\
& \left.i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) / \\
& \left(2 \pi\left\lfloor\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,-i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{i \operatorname{Im}\left(\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}-\frac{\log (10)}{\log \left(\frac{10}{9}\right)}+\frac{\operatorname{Re}\left(\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}= \\
& \left\{i \operatorname{Im}\left(\psi^{(0)}\left(1-\frac{i \pi}{\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{0}-z_{0}\right)}{2 \pi} \left\lvert\,\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right.}\right)\right)-\right. \\
& \left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)-\log \left(z_{0}\right)-\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+ \\
& \operatorname{Re}\left(\psi_{\frac{0}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)\right)+ \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) / \\
& \left(\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi} \left\lvert\, \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}\right.\right)\right.
\end{aligned}
$$

From the left-hand side of the above infinite sum:
$\sum_{n=1}^{\infty} \frac{1}{\left(\frac{10}{9}\right)^{n}+1}=\frac{i \operatorname{Im}\left(\psi_{\frac{\circ}{10}}^{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}+\frac{\operatorname{Re}\left(\psi_{\frac{\circ}{10}}^{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}-\frac{\log (10)}{\log \left(\frac{10}{9}\right)}$
We obtain:
$\left.\left(\left((\text { sum_(n=1) })^{\wedge} 1 /\left((10 / 9)^{\wedge} n+1\right)\right)\right)\right)$

Infinite sum:

$\sum_{n=1}^{\infty} \frac{1}{\left(\frac{10}{9}\right)^{n}+1}=\frac{-\log (10)+\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}$

Decimal approximation:

6.331008692864745537718386879838180649341260412564743295777...
$6.331008692 \ldots$

Convergence tests:

By the ratio test, the series converges.
Partial sum formula:
$\sum_{n=1}^{m} \frac{1}{\left(\frac{10}{9}\right)^{n}+1}=\frac{\psi_{\frac{9}{10}}^{(0)}\left(-\frac{i \pi-\log \left(\frac{10}{9}\right)}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}-\frac{\psi_{\frac{\circ}{10}}^{(0)}\left(-\frac{i \pi-(m+1) \log \left(\frac{10}{9}\right)}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}$

Alternate forms:

$$
\begin{aligned}
& -\frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)} \\
& -\frac{\log (10)}{\log \left(\frac{10}{9}\right)}+\frac{\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)} \\
& -\frac{\log (10)+\psi_{\frac{\circ}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)}{\log (10)-2 \log (3)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}=-\int\left(\int\left[\frac{\arg (10-x)}{2 \pi}\right\rfloor-i \log (x)+\right. \\
& i \psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left|\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right|+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)+ \\
& \left.i \sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right) / \\
& \left.\left(2 \pi\left\lfloor\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right\rfloor-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right)\right) \text { for } x<0 \\
& \frac{-\log (10)+\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}=-\int 2 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]-i \log \left(z_{0}\right)+ \\
& i \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right.}\right)+ \\
& \left.i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) / \\
& \left(2 \pi\left\lfloor\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,-i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}\right.\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-\log (10)+\psi_{\frac{0}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}= \\
& -\left(\left\{\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\right. \\
& \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) /\left(\left\lvert\, \frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right.\right] \log \left(\frac{1}{z_{0}}\right)+ \\
& \left.\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) \mid
\end{aligned}
$$

from which, raising to the cube, we obtain:
$\left.\left(\left((\text { sum_(n=1) })^{\wedge} \infty 1 /\left((10 / 9)^{\wedge} \mathrm{n}+1\right)\right)\right)\right)^{\wedge} 3$

Input interpretation:

$$
\left(\sum_{n=1}^{\infty} \frac{1}{\left(\frac{10}{9}\right)^{n}+1}\right)^{3}
$$

Result:

$$
\frac{\left(-\log (10)+\psi \frac{(0)}{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)} \approx 253.757-1.05499 \times 10^{-12} i
$$

Input interpretation:

253.757-1.05499 $\times 10^{-12}{ }_{i}$

Result:

253.757...
$1.05499 \ldots \times 10^{-12} i$

Polar coordinates:

$r=253.757$ (radius), $\quad \theta=-2.38206 \times 10^{-13}$ 。 (angle)
253.757
$\log (x)$ is the natural logarithm $\psi_{q}(z)$ gives the q-digamma function

Alternate forms:

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi \frac{\psi_{\frac{0}{10}}^{10}}{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)} \\
& \frac{\left(-\log (10)+\psi_{\frac{\circ}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)\right)^{3}}{(\log (10)-2 \log (3))^{3}} \\
& -\frac{3 \log (10) \psi_{\frac{9}{(0)}}^{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{2}}{\log ^{3}\left(\frac{10}{9}\right)}+ \\
& \frac{\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log ^{3}\left(\frac{10}{9}\right)}\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}+\frac{3 \log ^{2}(10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log ^{3}\left(\frac{10}{9}\right)}-\frac{\log ^{3}(10)}{\log ^{3}\left(\frac{10}{9}\right)}
\end{aligned}
$$

Also from the following alternate form

$$
-\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}
$$

We obtain:
-($\log (10)$ - $\mathrm{QPolyGamma}(0,1-(i \pi) / \log (10 / 9), 9 / 10))^{\wedge} 3 /\left(\log ^{\wedge} 3(10 / 9)\right)$

Input:

$$
-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}
$$

Decimal approximation:

$253.7574079632009128064137486425258441728755422819488870181 \ldots$
253.7574079...

Alternate forms:

$\frac{\left(-\log (10)+\psi_{\frac{2}{2}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)\right)^{3}}{}$
$(\log (10)-2 \log (3))^{3}$
$-\frac{3 \log (10) \psi_{\frac{0}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{2}}{\log ^{3}\left(\frac{10}{9}\right)}+$
$\frac{\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}+\frac{3 \log ^{2}(10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log ^{3}\left(\frac{10}{9}\right)}-\frac{\log ^{3}(10)}{\log ^{3}\left(\frac{10}{9}\right)}$

$$
-\frac{\left(-\psi_{\frac{0}{(0)}}^{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)+\log (2)+\log (5)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}
$$

Alternative representations:

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}=-\frac{\left(\log _{e}(10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log _{e}\left(\frac{10}{9}\right)}\right)\right)^{3}}{\log _{e}^{3}\left(\frac{10}{9}\right)} \\
& -\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}=-\frac{\left(\log (a) \log _{a}(10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log (a) \log a\left(\frac{10}{9}\right)}\right)\right)^{3}}{\left(\log (a) \log _{a}\left(\frac{10}{9}\right)\right)^{3}} \\
& -\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}=-\frac{\left(-\mathrm{Li}_{1}(-9)-\psi_{\frac{\rho}{10}}^{(0)}\left(1--\frac{i \pi}{\mathrm{Li}_{1}\left(1-\frac{10}{9}\right)}\right)\right)^{3}}{\left(-\mathrm{Li}_{1}\left(1-\frac{10}{9}\right)\right)^{3}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}=-\left(2 \pi \left\lvert\, \frac{\arg (10-x)}{2 \pi}\right.\right\rfloor-i \log (x)+ \\
& i \psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]^{3}+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)+ \\
& \left.i \sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right)^{3} /
\end{aligned}
$$

$$
\left.\left(2 \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right)^{3}\right) \text { for } x<0
$$

$$
-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}=-\left(2 \pi\left|\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right|-i \log \left(z_{0}\right)+\right.
$$

$$
i \psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right.}\right)+
$$

$$
\left.i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3} /
$$

$$
\left.\left(2 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]-i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3}\right)
$$

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}= \\
& -\left(\left\{\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\psi_{\frac{0}{10}}^{(0)}(1-\right.\right. \\
& i \pi \\
& \left.\log \left(z_{0}\right)+\left[\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3} /\left(\left[\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right) \log \left(\frac{1}{z_{0}}\right)+\right. \\
& \left.\left.\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3}\right]
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{\rho}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}=-\frac{\left(\int_{1}^{10} \frac{1}{t} d t-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\int_{1}^{\frac{10}{9}} \frac{1}{t} d t}\right)\right)^{3}}{\left(\int_{1}^{\frac{10}{9}} \frac{1}{t} d t\right)^{3}} \\
& -\frac{\left(\log (10)-\psi_{\frac{0}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}= \\
& -\frac{\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\rho^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s-2 i \pi \psi^{(0)}\left(1+\frac{2 \pi^{2}}{10}\left(1+\frac{\pi^{2}}{\int_{-i \infty+\gamma}^{i \infty}+\frac{9^{5}\left((-s)^{2} \Gamma(1+s)\right.}{\Gamma(1-s)} d s}\right)\right)^{3}\right.}{\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{o^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)^{3}} \text { for }-1<\gamma<0
\end{aligned}
$$

Multiplying by $1 / 2$ and subtracting the value of the golden ratio, we obtain:
1/2((-(log(10) - QPolyGamma(0, $\left.\left.1-(i \pi) / \log (10 / 9), 9 / 10))^{\wedge} 3 /\left(\log ^{\wedge} 3(10 / 9)\right)\right)\right)$-golden ratio

Input:

$\frac{1}{2}\left(-\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}\right)-\phi$
$\log (x)$ is the natural logarithm $\psi_{q}(z)$ gives the q-digamma function
i is the imaginary unit
ϕ is the golden ratio

Exact result:

$-\phi-\frac{\left(\log (10)-\psi_{\frac{0}{10}}^{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}$

Decimal approximation:

125.2606699928505615550022874868972839687174619611686806469...
125.26066999.... result very near to the Higgs boson mass 125.18 GeV

Alternate forms:

$$
\begin{aligned}
& -\phi+\frac{\left(-\log (10)+\psi^{\frac{(0)}{10}}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)} \\
& \frac{1}{2}(-1-\sqrt{5})-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)} \\
& -\phi+\frac{\left(-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)\right)^{3}}{2(\log (10)-2 \log (3))^{3}}
\end{aligned}
$$

Alternative representations:

$$
-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right) 2}-\phi=-\phi-\frac{\left(\log _{e}(10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log _{e}\left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log _{e}^{3}\left(\frac{10}{9}\right)}
$$

$$
-\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right) 2}-\phi=-\phi-\frac{\left(\log (a) \log _{a}(10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log (a) \log a\left(\frac{10}{9}\right)}\right)\right)^{3}}{2\left(\log (a) \log _{a}\left(\frac{10}{9}\right)\right)^{3}}
$$

$$
-\frac{\left(\log (10)-\psi_{\frac{0}{0}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right) 2}-\phi=-\phi-\frac{\left(-\operatorname{Li}_{1}(-9)-\psi_{\frac{0}{10}}^{(0)}\left(1--\frac{i \pi}{\mathrm{Li}_{1}\left(1-\frac{10}{9}\right)}\right)\right)^{3}}{2\left(-\mathrm{Li}_{1}\left(1-\frac{10}{9}\right)\right)^{3}}
$$

Series representations:

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right) 2}-\phi=-\phi-\left(2 i \pi\left\lfloor\frac{\arg (10-x)}{2 \pi}\right\rfloor+\log (x)-\right. \\
& \psi_{\frac{0}{10}}^{(0)}\left(1-\frac{i \pi}{\left.2 i \pi \left\lvert\, \frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right.\right]^{3}+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right)^{3} / \\
& \left(2\left(2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right)+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right)^{3}\right) \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{(0)}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right) 2}-\phi= \\
& -\phi-\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\psi_{\frac{9}{10}}^{(0)}(\right. \\
& \left.1-\frac{i \pi}{\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3} / \\
& \left(2\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3}\right) \\
& -\frac{\left(\log (10)-\psi_{\frac{(0)}{10}}^{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right) 2}-\phi= \\
& -\phi-\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\psi_{\frac{\mathrm{o}}{(0)}}^{10}(1-\right. \\
& i \pi \\
& \left.2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right]- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3} / \\
& \left.\left(2\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)^{3}\right)
\end{aligned}
$$

Multiplying the previous exspression by $1 / 2$ and adding 11 , that is a Lucas number (and also the dimensions number of the M-theory) and the value of the golden ratio, we obtain:

1/2((-($\log (10)-\mathrm{QPolyGamma}(0,1-(\mathrm{i} \pi) / \log (10 / 9)$,
$\left.\left.9 / 10))^{\wedge} 3 /\left(\log ^{\wedge} 3(10 / 9)\right)\right)\right)+11+$ golden ratio

Input:

$\frac{1}{2}\left(-\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}\right)+11+\phi$
$\log (x)$ is the natural logarithm $\psi_{q}(z)$ gives the q-digamma function i is the imaginary unit ϕ is the golden ratio

Exact result:

$$
-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}+\phi+11
$$

Decimal approximation:

139.4967379703503512514114611556285602041580803207802063712...
139.49673797.... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$\frac{\left(-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}+\phi+11$
$\frac{1}{2}(23+\sqrt{5})-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}$

$$
\begin{gathered}
\frac{1}{2 \log ^{3}\left(\frac{10}{9}\right)}\left(3 \log ^{2}(10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)-3 \log (10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{2}+\right. \\
\left.\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{3}+23 \log ^{3}\left(\frac{10}{9}\right)+\sqrt{5} \log ^{3}\left(\frac{10}{9}\right)-\log ^{3}(10)\right)
\end{gathered}
$$

Alternative representations:

$-\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right) 2}+11+\phi=11+\phi-\frac{\left(\log _{e}(10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log e\left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log _{e}^{3}\left(\frac{10}{9}\right)}$
$-\frac{\left(\log (10)-\psi_{\frac{0}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)^{2}}+11+\phi=$
$11+\phi-\frac{\left(\log (a) \log _{a}(10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log (a) \log a\left(\frac{10}{9}\right)}\right)\right)^{3}}{2\left(\log (a) \log _{a}\left(\frac{10}{9}\right)\right)^{3}}$

$$
-\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right) 2}+11+\phi=11+\phi-\frac{\left(-\operatorname{Li}_{1}(-9)-\psi_{\frac{\circ}{10}}^{(0)}\left(1--\frac{i \pi}{\mathrm{Li}_{1}\left(1-\frac{10}{9}\right)}\right)\right)^{3}}{2\left(-\operatorname{Li}_{1}\left(1-\frac{10}{9}\right)\right)^{3}}
$$

Series representations:

$$
\begin{gathered}
-\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right) 2}+11+\phi=11+\phi-\left(2 i \pi \left\lvert\, \frac{\arg (10-x)}{2 \pi}\right.\right]+\log (x)- \\
\psi_{\frac{\circ}{10}(0)}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]^{3}+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)- \\
\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right)^{3} / \\
\left(2\left(2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right)+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right)^{3}\right) \text { for } x<0
\end{gathered}
$$

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{9}{0}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right) 2}+11+\phi= \\
& 11+\phi-\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\psi_{\frac{\rho}{10}}^{(0)}(\right. \\
& \left.1-\frac{i \pi}{\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3} / \\
& \left(2\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3}\right) \\
& -\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right) 2}+11+\phi= \\
& 11+\phi-\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\right. \\
& \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3} / \\
& \left(2\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3}\right)
\end{aligned}
$$

Adding 11, that is a Lucas number and subtracting the value of the conjugate of the golden ratio, we obtain from the previous expression:
$\left.1 / 2\left((-(\log (10)-\text { QPolyGamma(} 0,1-(\mathrm{i} \pi) / \log (10 / 9), 9 / 10))^{\wedge} 3 /\left(\log ^{\wedge} 3(10 / 9)\right)\right)\right)^{+11-}$ $1 /$ golden ratio

Input:

$\frac{1}{2}\left(-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}\right)+11-\frac{1}{\phi}$

Exact result:

$-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}-\frac{1}{\phi}+11$

Decimal approximation:

137.2606699928505615550022874868972839687174619611686806469...
137.2606699928....

This result is very near to the inverse of fine-structure constant 137,035

Alternate forms:

$\frac{1}{2}(23-\sqrt{5})-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}$

$$
\begin{aligned}
& -\frac{3 \log (10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{2}}{2 \log ^{3}\left(\frac{10}{9}\right)}+\frac{\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}+ \\
& \left.\frac{3 \log ^{2}(10) \psi^{(0)}\left(1-\frac{i \pi}{10}\left(1-\frac{10}{9}\right)\right.}{\log }\right) \\
& 2 \log ^{3}\left(\frac{10}{9}\right)
\end{aligned}+11-\frac{2}{1+\sqrt{5}}-\frac{\log ^{3}(10)}{2 \log ^{3}\left(\frac{10}{9}\right)} .
$$

Alternative representations:

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right) 2}+11-\frac{1}{\phi}=11-\frac{1}{\phi}-\frac{\left(\log _{e}(10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log _{e}\left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log _{e}^{3}\left(\frac{10}{9}\right)} \\
& -\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right) 2}+11-\frac{1}{\phi}= \\
& 11-\frac{1}{\phi}-\frac{\left(\log _{(a)} \log _{a}(10)-\psi_{\frac{\rho}{10}}^{(0)}\left(1-\frac{i \pi}{\left.\log _{(a)}\right) \log _{a}\left(\frac{10}{9}\right)}\right)\right)^{3}}{2\left(\log (a) \log _{a}\left(\frac{10}{9}\right)\right)^{3}} \\
& -\frac{\left(\log (10)-\psi_{\frac{\rho}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right) 2}+11-\frac{1}{\phi}=11-\frac{1}{\phi}-\frac{\left(-\mathrm{Li}_{1}(-9)-\psi_{\frac{\rho}{10}}^{(0)}\left(1--\frac{i \pi}{\mathrm{Li}_{1}\left(1-\frac{10}{9}\right)}\right)\right)^{3}}{2\left(-\mathrm{Li}_{1}\left(1-\frac{10}{9}\right)\right)^{3}}
\end{aligned}
$$

Series representations:

$$
-\frac{\left(\log (10)-\psi \frac{(0)}{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)^{2}}+11-\frac{1}{\phi}=
$$

$$
11-\frac{1}{\phi}-\left\{\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\psi_{\frac{9}{10}}^{(0)}(\right.
$$

$$
\begin{gathered}
\left.1-\frac{i \pi}{\log \left(z_{0}\right)+\left[\frac{\arg \left(\frac{10}{0}-z_{0}\right)}{2 \pi} \left\lvert\,\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{0}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right.}\right)- \\
\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right]^{3} / \\
\left(2\left(\log \left(z_{0}\right)+\left[\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3}\right)
\end{gathered}
$$

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right) 2}+11-\frac{1}{\phi}=11-\frac{1}{\phi}-\left(2 i \pi\left[\frac{\arg (10-x)}{2 \pi}\right]+\log (x)-\right. \\
& \psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right)^{3} / \\
& \left(2\left(2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right)^{3}\right) \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)^{2}}+11-\frac{1}{\phi}= \\
& 11-\frac{1}{\phi}-\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\right. \\
& \psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right.}\right)- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3} / \\
& \left(2\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}\right)^{3}\right)
\end{aligned}
$$

From the previous expression, (multiplying by $1 / 2$, adding 2 and subtracting the value of the golden ratio) multiplying for $27 * 1 / 2$ ad adding 11 , we obtain:
$27 * 1 / 2 *(((1 / 2((-(\log (10)-$ QPolyGamma($0,1-(i \pi) / \log (10 / 9)$, $\left.\left.9 / 10))^{\wedge} 3 /\left(\log ^{\wedge} 3(10 / 9)\right)\right)\right)+2$-golden ratio $\left.\left.)\right)\right)+11$

Input:

$27 \times \frac{1}{2}\left(\frac{1}{2}\left(-\frac{\left(\log (10)-\psi \frac{\psi^{(0)}}{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}\right)+2-\phi\right)+11$
$\log (x)$ is the natural logarithm

Exact result:

$11+\frac{27}{2}\left(-\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}-\phi+2\right)$

Decimal approximation:

1729.019044903482580992530881073113333577685736475777188733...
1729.0190449...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Alternate forms:

$11+\frac{27}{2}\left(\frac{\left(-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}-\phi+2\right)$
$11+\frac{27}{2}\left(\frac{1}{2}(3-\sqrt{5})-\frac{\left(\log (10)-\psi_{\frac{0}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}\right)$
$-\frac{1}{4 \log ^{3}\left(\frac{10}{9}\right)}\left(-81 \log ^{2}(10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)+81 \log (10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{2}-\right.$

$$
\left.27 \psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{3}-125 \log ^{3}\left(\frac{10}{9}\right)+27 \sqrt{5} \log ^{3}\left(\frac{10}{9}\right)+27 \log ^{3}(10)\right)
$$

Alternative representations:

$$
\begin{aligned}
& \frac{27}{2}\left(-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}+2-\phi\right)+11= \\
& 11+\frac{27}{2}\left(2-\phi-\frac{\left(\log _{e}(10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log _{e}\left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log _{e}^{3}\left(\frac{10}{9}\right)}\right) \\
& \frac{27}{2}\left(-\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}+2-\phi\right)+11= \\
& 11+\frac{27}{2}\left(2-\phi-\frac{\left(\log (a) \log _{a}(10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log (a) \log a\left(\frac{10}{9}\right)}\right)\right)^{3}}{2\left(\log (a) \log _{a}\left(\frac{10}{9}\right)\right)^{3}}\right) \\
& \frac{27}{2}\left(-\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}+2-\phi\right)+11= \\
& 11+\frac{27}{2}\left(2-\phi-\frac{\left(-\mathrm{Li}_{1}(-9)-\psi_{\frac{9}{10}}^{(0)}\left(1--\frac{i \pi}{\mathrm{Li}_{1}\left(1-\frac{10}{9}\right)}\right)\right)^{3}}{2\left(-\mathrm{Li}_{1}\left(1-\frac{10}{9}\right)\right)^{3}}\right)
\end{aligned}
$$

Series representations:

$$
\frac{27}{2}\left(-\frac{\left(\log (10)-\psi_{\frac{0}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}+2-\phi\right)+11=
$$

$$
11+\frac{27}{2}\left(2-\phi-\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right.\right.
$$

$$
\psi_{\frac{9}{10}}^{(0)}\left(1-(i \pi) /\left(\log \left(z_{0}\right)+\left[\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right)\left\lfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right.\right.\right.
$$

$$
\left.\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{k}}{k}\right)^{3} /
$$

$$
\left.\left(2\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}\right)^{3}\right)\right)
$$

$$
\begin{aligned}
& \frac{27}{2}\left(-\frac{\left(\log (10)-\psi_{\frac{0}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}+2-\phi\right)+11= \\
& 11+\frac{27}{2}\left(2-\phi-\left(2 i \pi\left[\frac{\arg (10-x)}{2 \pi}\right]+\log (x)-\right.\right. \\
& \psi_{\frac{0}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right)^{3} / \\
& \left(2\left(2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right)\right) \text {) for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{27}{2}\left(\left.-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}+2-\phi \right\rvert\,+11=\right. \\
& 11+\frac{27}{2}\left[2-\phi-\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\right.\right. \\
& \left.\psi_{\frac{9}{10}}^{(0)}\left[1-\frac{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right)}{2}\right)^{3}\right) \\
& \left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{2}\right) \\
& \left(2\left(2 i \pi\left(\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right)+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3}\right)
\end{aligned}
$$

Performing the $15^{\text {th }}$ root, we obtain, from the above expression:
$\left(\left(\left(\left(27^{*} 1 / 2 *(((1 / 2((-(\log (10)-\mathrm{QPolyGamma}(0,1-(\mathrm{i} \pi) / \log (10 / 9)\right.\right.\right.\right.$,
$\left.\left.9 / 10))^{\wedge} 3 /\left(\log ^{\wedge} 3(10 / 9)\right)\right)\right)+2$-golden ratio $\left.\left.\left.\left.\left.\left.)\right)\right)+11\right)\right)\right)\right)^{\wedge} 1 / 15$

Input:

$1502\left(\frac{1}{2}\left(-\frac{1}{2}\left(\log (10)-\psi^{(0)} \frac{9}{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}\right)+2-\phi\right)+11$

Exact result:

$\left.\sqrt[15]{11+\frac{27}{2}\left(-\frac{\left(\log (10)-\psi^{(0)}(10\right.}{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}} \underset{2 \log ^{3}\left(\frac{10}{9}\right)}{ }-\phi+2\right)$

Decimal approximation:

1.643816435848841926428094398783167607786769365141734047364...
$1.643816435 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Alternate forms:

$$
\begin{aligned}
& \frac{1}{2^{2 / 15} \sqrt[5]{\log \left(\frac{10}{9}\right)}}\left(\left(81 \log ^{2}(10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)-\right.\right. \\
& 81 \log (10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{2}+27 \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{3}+ \\
& \left.\left.125 \log ^{3}\left(\frac{10}{9}\right)-27 \sqrt{5} \log ^{3}\left(\frac{10}{9}\right)-27 \log ^{3}(10)\right) \wedge(1 / 15)\right)
\end{aligned}
$$

$$
\left(-\frac{81 \log (10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{2}}{4 \log ^{3}\left(\frac{10}{9}\right)}+\frac{27 \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{3}}{4 \log ^{3}\left(\frac{10}{9}\right)}+\frac{81 \log ^{2}(10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{4 \log ^{3}\left(\frac{10}{9}\right)}+\right.
$$

$$
\left(\left(81 \log ^{2}(10) \psi_{\frac{\circ}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)-81 \log (10) \psi_{\frac{9}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)^{2}+\right.\right.
$$

$$
27 \psi_{\frac{\circ}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)^{3}-54 \phi(\log (10)-2 \log (3))^{3}+
$$

$$
125 \log ^{3}(2)-1216 \log ^{3}(3)+125 \log ^{3}(5)-
$$

$$
3 \log ^{2}(2)(304 \log (3)-125 \log (5))+1824 \log ^{2}(3) \log (5)-912 \log (3) \log ^{2}(5)+
$$

$$
\left.3 \log (2)\left(608 \log ^{2}(3)+125 \log ^{2}(5)-608 \log (3) \log (5)\right)\right) \wedge
$$

$$
(1 / 15)) /\left(2^{2 / 15} \sqrt[5]{\log (10)-2 \log (3)}\right)
$$

Expanded form:

$$
\left.\sqrt[15]{11+\frac{27}{2}\left(-\frac{\left(\log (10)-\psi^{(0)}\left(1-\frac{i \pi}{10}\left(1-\frac{10}{9}\right)\right.\right.}{\left.\log \left(\frac{10}{9}\right)\right)^{3}}\right.} 2+2+\frac{1}{2}(-1-\sqrt{5})\right)
$$

and subtracting (29-4+1/2)/10 ${ }^{3}$, we obtain:
((($\left(27^{*} 1 / 2 *(((1 / 2((-(\log (10)-\right.$ QPolyGamma(0, $1-(i \pi) / \log (10 / 9)$,

Input:

$\sqrt[15]{27} \times \frac{1}{2}\left(\frac{1}{2}\left(-\frac{\left(\log (10)-\psi^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}\right)+2-\phi\right)+11-\left(29-4+\frac{1}{2}\right) \times \frac{1}{10^{3}}$

$\log (x)$ is the natural logarithm

 $\psi_{q}(z)$ gives the q-digamma function
Exact result:

$-\frac{51}{2000}+\sqrt[15]{11+\frac{27}{2}\left(-\frac{\left(\log (10)-\psi \frac{(0)}{\frac{0}{10}}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}-\phi+2\right)}$

Decimal approximation:

$1.618316435848841926428094398783167607786769365141734047364 \ldots$
1.618316435 . \qquad result that is a very good approximation to the value of the golden ratio 1,618033988749...

Alternate forms:

$$
\begin{aligned}
& -\frac{51}{2000}+ \\
& \frac{1}{2^{2 / 15} \sqrt[5]{\log \left(\frac{10}{9}\right)}}\left(\left(81 \log ^{2}(10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)-81 \log (10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{2}+\right.\right. \\
& 27 \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{3}+125 \log ^{3}\left(\frac{10}{9}\right)- \\
& \left.\left.27 \sqrt{5} \log ^{3}\left(\frac{10}{9}\right)-27 \log ^{3}(10)\right) \wedge(1 / 15)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2000 \sqrt[5]{\log \left(\frac{10}{9}\right)}} \\
& \left(-51 \sqrt[5]{\log \left(\frac{10}{9}\right)}+1000 \times 2^{13 / 15}\left(81 \log ^{2}(10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)-81 \log (10)\right.\right. \\
& \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{2}+27 \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{3}+ \\
& \left.\left.125 \log ^{3}\left(\frac{10}{9}\right)-27 \sqrt{5} \log ^{3}\left(\frac{10}{9}\right)-27 \log ^{3}(10)\right) \wedge(1 / 15)\right) \\
& -\frac{51}{2000}+\left(\left(81 \log ^{2}(10) \psi_{\frac{9}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)-\right.\right. \\
& 81 \log (10) \psi_{\frac{9}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)^{2}+ \\
& 27 \psi_{\frac{\rho}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)^{3}-54 \phi(\log (10)-2 \log (3))^{3}+125 \log ^{3}(2)- \\
& 1216 \log ^{3}(3)+125 \log ^{3}(5)-3 \log ^{2}(2)(304 \log (3)-125 \log (5))+ \\
& 1824 \log ^{2}(3) \log (5)-912 \log (3) \log ^{2}(5)+ \\
& \left.3 \log (2)\left(608 \log ^{2}(3)+125 \log ^{2}(5)-608 \log (3) \log (5)\right)\right) \wedge \\
& (1 / 15)) /\left(2^{2 / 15} \sqrt[5]{\log (10)-2 \log (3)}\right)
\end{aligned}
$$

Expanded form:

$-\frac{51}{2000}+\sqrt[15]{11+\frac{27}{2}\left(-\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}+2+\frac{1}{2}(-1-\sqrt{5})\right)}$

Alternative representations:

$$
\begin{aligned}
& \sqrt[15]{\frac{27}{2}\left(-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}+2-\phi\right)+11-\frac{29-4+\frac{1}{2}}{10^{3}}}= \\
& -\frac{51}{2 \times 10^{3}}+\sqrt{11+\frac{27}{2}\left(2-\phi-\frac{\left(\log _{e}(10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log _{e}\left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log _{e}^{3}\left(\frac{10}{9}\right)}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[15]{\frac{27}{2}\left(-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}+2-\phi\right)+11-\frac{29-4+\frac{1}{2}}{10^{3}}=} \\
& -\frac{51}{2 \times 10^{3}}+\sqrt[15]{11+\frac{27}{2}\left(2-\phi-\frac{\left(\log (a) \log _{a}(10)-\psi_{\frac{0}{10}}^{10}\left(1-\frac{i \pi}{\log (a) \log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2\left(\log (a) \log _{a}\left(\frac{10}{9}\right)\right)^{3}}\right)}
\end{aligned}
$$

$$
\sqrt{\sqrt[15]{\frac{27}{2}\left(-\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}+2-\phi\right)+11-\frac{29-4+\frac{1}{2}}{10^{3}}=}} \begin{aligned}
& -\frac{51}{2 \times 10^{3}}+\sqrt[15]{11+\frac{27}{2}\left(2-\phi-\frac{\left(-\operatorname{Li}_{1}(-9)-\psi_{\frac{\circ}{10}}^{(0)}\left(1--\frac{i \pi}{\mathrm{Li}_{1}\left(1-\frac{10}{9}\right)}\right)\right)^{3}}{2\left(-\mathrm{Li}_{1}\left(1-\frac{10}{9}\right)\right)^{3}}\right)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \left.\sqrt[15]{\frac{27}{2}\left(-\frac{\left(\log (10)-\psi^{(0)}\left(1-\frac{i \pi}{10}\left(1-\frac{10}{9}\right)\right.\right.}{\log \left(\frac{10}{9}\right)}\right.} 2 \log ^{3}\left(\frac{10}{9}\right) \quad+2-\phi\right)+11-\frac{29-4+\frac{1}{2}}{10^{3}}= \\
& -\frac{51}{2000}+\left(11+\frac{27}{2}\left(2+\frac{1}{2}(-1-\sqrt{5})-\left(2 i \pi \left\lfloor\left.\frac{\arg (10-x)}{2 \pi} \right\rvert\,+\log (x)-\right.\right.\right.\right. \\
& \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\left.\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right|_{3}+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right.}\right)- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right)^{3} /\left(2 \left(2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right)+\log (x)-\right.\right. \\
& \left.\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right)^{3}\right)\right) \wedge(1 / 15) \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& \left.\sqrt[15]{\frac{27}{2}\left(-\frac{\left(\log (10)-\psi^{(0)}\right.}{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}} \underset{2 \log ^{3}\left(\frac{10}{9}\right)}{ }+2-\phi\right)+11-\frac{29-4+\frac{1}{2}}{10^{3}}= \\
& -\frac{51}{2000}+\left(11+\frac{27}{2}\left(2+\frac{1}{2}(-1-\sqrt{5})-\left(\log \left(z_{0}\right)+\left[\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right.\right.\right. \\
& \psi_{\frac{0}{0}}^{(0)}\left(1-(i \pi) /\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right)\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right.\right. \\
& \left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3} / \\
& \left(2 \left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right.\right. \\
& \left.\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}\right)\right)\right) \wedge(1 / 15)
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[15]{\frac{27}{2}\left(-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}+2-\phi\right)+11-\frac{29-4+\frac{1}{2}}{10^{3}}=} \\
& -\frac{51}{2000}+\left(11+\frac{27}{2}\left(2+\frac{1}{2}(-1-\sqrt{5})-\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right)+\right.\right.\right. \\
& \log \left(z_{0}\right)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left\lfloor\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right.}\right)- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3} / 2\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right)+\right. \\
& \left.\left.\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)\left(\wedge_{(1 / 15)}^{3}\right.
\end{aligned}
$$

From the previous expression:

$$
\left.\left.\sqrt[15]{27 \times \frac{1}{2}\left(\frac{1}{2}\left(-\frac{\left(\log (10)-\psi^{(0)}\right.}{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}\right.}\right)+2-\phi\right)+11
$$

Adding (29-2+ golden ratio) $/ 10^{3}$, we obtain:
$1 / 10^{\wedge} 27\left(\left(()\left(\left(() 27^{*} 1 / 2^{*}(((1 / 2((-(\log (10)-\mathrm{QPolyGamma}(0,1-(i \operatorname{i}) / \log (10 / 9)\right.\right.\right.\right.$, $\left.\left.9 / 10))^{\wedge} 3 /\left(\log ^{\wedge} 3(10 / 9)\right)\right)\right)+2$-golden ratio $\left.\left.\left.\left.\left.\left.)\right)\right)+11\right)\right)\right)\right)^{\wedge} 1 / 15+(29-2+$ golden ratio)* $\left.1 / 10^{\wedge} 3\right)$)))

Input:

$\frac{1}{10^{27}}\left(\sqrt[15]{\left.27 \times \frac{1}{2}\left(\frac{1}{2}\left(-\frac{\left(\log (10)-\psi \frac{\psi^{(0)}}{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{\log ^{3}\left(\frac{10}{9}\right)}\right)+2-\phi\right)+11+(29-2+\phi) \times \frac{1}{10^{3}}\right)}\right.$
$\log (x)$ is the natural logarithm
$\psi_{q}(z)$ gives the q-digamma function
i is the imaginary unit
ϕ is the golden ratio

Exact result:

$\frac{\phi+27}{1000}+\sqrt[15]{11+\frac{27}{2}\left(-\frac{\left(\log (10)-\phi \frac{(0)}{\frac{9}{10}}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}-\phi+2\right)}$
1000000000000000000000000000

Decimal approximation:

$1.6724344698375918212762989856175332459044896743215398 \ldots \times 10^{-27}$
$1.6724344698 \ldots * 10^{-27}$ result practically equal to the proton mass

Alternate forms:

$$
\frac{55+\sqrt{5}}{2000}+\sqrt[15]{11+\frac{27}{2}\left(\frac{1}{2}(3-\sqrt{5})-\frac{\left.\left(\log (10)-\phi \frac{\dot{2}}{10}\left(1-\frac{i \pi}{10}\right)\right)^{3}\right)}{2 \log ^{3}\left(\frac{10}{9}\right)}\right)}
$$

1000000000000000000000000000

$$
\begin{aligned}
& \frac{27+\frac{1}{2}(1+\sqrt{5})}{1000000000000000000000000000000}+ \\
& \int\left(81 \log ^{2}(10) \psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)-81 \log (10) \psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{2}+\right.
\end{aligned}
$$

$$
\left.27 \psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{3}+125 \log ^{3}\left(\frac{10}{9}\right)-27 \sqrt{5} \log ^{3}\left(\frac{10}{9}\right)-27 \log ^{3}(10)\right) \wedge
$$

$(1 / 15)) /\left(1000000000000000000000000000 \times 2 / \sqrt[5]{\log \left(\frac{10}{9}\right)}\right)$

$$
\begin{aligned}
& \left(1000 \times 2^{13 / 15}\left(81 \log ^{2}(10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)-81 \log (10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{2}+27\right.\right. \\
& \left.\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)^{3}+125 \log ^{3}\left(\frac{10}{9}\right)-27 \sqrt{5} \log ^{3}\left(\frac{10}{9}\right)-27 \log ^{3}(10)\right) \\
& \left.(1 / 15)+55 \sqrt[5]{\log \left(\frac{10}{9}\right)}+\sqrt{5} \sqrt[5]{\log \left(\frac{10}{9}\right)}\right) / \\
& \left(2000000000000000000000000000000 \sqrt[5]{\log \left(\frac{10}{9}\right)}\right)
\end{aligned}
$$

Expanded form:

$$
\frac{\sqrt{15} \frac{11+\frac{27}{2}\left(-\frac{\left(\log (10)-\psi \frac{(0)}{\frac{0}{10}}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log ^{3}\left(\frac{10}{9}\right)}+2+\frac{1}{2}(-1-\sqrt{5})\right)}{\frac{1000000000000000000000000000}{11}+}+}{\frac{400000000000000000000000000000}{1}+}+
$$

Alternative representations:

$$
\frac{\left.\sqrt[15]{\frac{27}{2}\left(-\frac{(\log (10)-\psi(0)}{\left.\frac{9}{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)^{3}}\right.} \frac{2 \log ^{3}\left(\frac{10}{9}\right)}{}+2-\phi\right)+11+\frac{29-2+\phi}{10^{3}}}{10^{27}}=
$$

$$
\frac{\frac{27+\phi}{10^{3}}+\sqrt[15]{11+\frac{27}{2}\left(2-\phi-\frac{\left(\log _{e}(10)-\phi \frac{9}{10}\left(1-\frac{i \pi}{\log e\left(\frac{10}{9}\right)}\right)\right)^{3}}{2 \log _{e}^{3(}\left(\frac{10}{9}\right)}\right)}}{10^{27}}
$$

From the first expression, multiplying by $1 / 6$ and adding $5 / 10^{2}$ and $5 / 10^{4}$, and again multiplying all the expression by $1 / 10^{52}$, we obtain:
$1 / 10^{\wedge} 52(((1 / 6(((-(\log (10)-\mathrm{QPolyGamma}(0,1-(\mathrm{i} \pi) / \log (10 / 9)$, $\left.\left.\left.\left.9 / 10)) / \log (10 / 9))))+5 / 10^{\wedge} 2+5 / 10^{\wedge} 4\right)\right)\right)\right)$

Input:

$\frac{1}{10^{52}}\left(\frac{1}{6}\left(-\frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}\right)+\frac{5}{10^{2}}+\frac{5}{10^{4}}\right)$

Exact result:

100

Decimal approximation:

$1.1056681154774575896197311466396967748902100687607905 \ldots \times 10^{-52}$
1.1056681154...*10 0^{-52} result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

Alternate forms:

$\frac{1000 \psi_{\frac{9}{10}(0)}^{(10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)+303 \log \left(\frac{10}{9}\right)-1000 \log (10)}{6000 \log \left(\frac{10}{9}\right)}$

$$
\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)
$$

$600 \log \left(\frac{10}{9}\right)+$

$\frac{101}{20000000000000000000000000$| 000000000000000000000000000000 |
| :---: |
| $\log (10)$ |}$-$

$\frac{303 \log \left(\frac{10}{9}\right)-1000 \log (10)}{6000 \log \left(\frac{10}{9}\right)}$

$$
\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)
$$

$600 \log \left(\frac{10}{9}\right)$

Alternative representations:

$\frac{-\frac{\log (10)-\frac{(0)}{\frac{9}{10}}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{6 \log \left(\frac{10}{9}\right)}+\frac{5}{10^{2}}+\frac{5}{10^{4}}}{10^{52}}=\frac{\frac{5}{10^{2}}+\frac{5}{10^{4}}+\frac{-\log (a) \log _{a}(10)+\phi \frac{(0)}{9}\left(1-\frac{i \pi}{\log (a) \log a\left(\frac{10}{9}\right)}\right)}{6\left(\log (a) \log a\left(\frac{10}{9}\right)\right)}}{10^{52}}$
$\left.\frac{-\frac{\log (10)-\psi^{(0)}}{\frac{9}{10}}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{6 \log \left(\frac{10}{9}\right)}+\frac{5}{10^{2}}+\frac{5}{10^{4}}\right)=\frac{\frac{5}{10^{2}}+\frac{5}{10^{4}}+\frac{-\log _{e}(10)+\psi^{(0)} \frac{9}{10}\left(1-\frac{i \pi}{\log _{e}\left(\frac{10}{9}\right)}\right)}{10^{52}}}{6 \log _{e}\left(\frac{10}{9}\right)}$
$\frac{-\frac{\log (10)-\phi \frac{(0)}{9}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{6 \log \left(\frac{10}{9}\right)}+\frac{5}{10^{2}}+\frac{5}{10^{4}}}{10^{52}}=\frac{\frac{5}{10^{2}}+\frac{5}{10^{4}}+\frac{\operatorname{Li}_{1}(-9)+\frac{(0)}{9}(10)}{10}\left(1-\frac{i \pi}{\operatorname{Li}_{1}\left(1-\frac{10}{9}\right)}\right)}{6\left(-\operatorname{Li}_{1}\left(1-\frac{10}{9}\right)\right)}$

Series representations:

$$
\begin{aligned}
& \frac{-\frac{\log (10)-\phi \frac{(0)}{\frac{9}{10}}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{6 \log \left(\frac{10}{9}\right)}+\frac{5}{10^{2}}+\frac{5}{10^{4}}}{10^{52}}= \\
& -\left(\int-606 \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]+2000 \pi\left\lfloor\frac{\arg (10-x)}{2 \pi}\right]-697 i \log (x)+\right. \\
& 1000 i \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)- \\
& \left.303 i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}+1000 i \sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right)
\end{aligned}
$$

$(600$:

$$
\left.\left.000\left(2 \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right)\right)\right)
$$

$$
\begin{aligned}
& \left.-\frac{\log (10)-\psi^{(0)}\left(1-\frac{i \pi}{\frac{9}{10}}\left(\log \left(\frac{10}{9}\right)\right.\right.}{10}+\frac{5}{10^{2}}+\frac{5}{10^{4}}\right)= \\
& -\left(\left\{1394 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]-697 i \log \left(z_{0}\right)+1000 i\right.\right. \\
& \left.\psi^{(0)} \frac{9}{10}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right.}\right\rfloor+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)- \\
& \left.303 i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}+1000 i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) /
\end{aligned}
$$

$(6000$

$$
\begin{aligned}
& \left(2 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]-\right. \\
& \left.\left.i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)
\end{aligned}
$$

$$
\begin{gathered}
\frac{-\frac{\log (10)-\psi \frac{(0)}{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{6 \log \left(\frac{10}{9}\right)}+\frac{5}{10^{2}}+\frac{5}{10^{4}}}{10^{52}}= \\
-\left(\int-303\left|\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right| \log \left(\frac{1}{z_{0}}\right)+1000\left|\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right| \log \left(\frac{1}{z_{0}}\right)+697 \log \left(z_{0}\right)-\right. \\
303\left|\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right| \log \left(z_{0}\right)+1000\left|\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right| \log \left(z_{0}\right)-1000 \psi^{(0)} \\
10 \\
\left.1-\frac{\log \left(z_{0}\right)+\left[\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right.}{2 \pi} \left\lvert\,\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right)+ \\
\left.303 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}-1000 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) /
\end{gathered}
$$

6000

$$
\begin{aligned}
& \left(\left[\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right] \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\right. \\
& \left.\left(\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi} \left\lvert\, \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right)\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{-\frac{\log (10)-\phi \frac{(0)}{\frac{9}{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}}{6 \log \left(\frac{10}{9}\right)}+\frac{5}{10^{2}}+\frac{5}{10^{4}}}{10^{52}}= \\
& \left(303 \int_{1}^{\frac{10}{9}} \frac{1}{t} d t-1000 \int_{1}^{10} \frac{1}{t} d t+1000 \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\int_{1}^{\frac{10}{9}} \frac{1}{t} d t}\right)\right) / \\
& (6000 \\
& \left.\int_{1}^{\frac{10}{9}} \frac{1}{t} d t\right) \\
& -\frac{\log (10)-\phi \frac{(0)}{\frac{9}{10}}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{6 \log \left(\frac{10}{9}\right)}+\frac{5}{10^{2}}+\frac{5}{10^{4}} \\
& -\left(\left(1000 \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{9^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s-303 \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{9^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s-\right.\right. \\
& \left.2000 i \pi \psi_{\frac{9}{10}}^{(0)}\left(1+\frac{2 \pi^{2}}{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\rho^{5} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s}\right)\right) /
\end{aligned}
$$

(6000 :

$$
\left.\left.000 \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{9^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)\right) \text { for }-1<\gamma<0
$$

Now, we have that:

From the right-hand side, we obtain:

$$
\begin{aligned}
& 3 /\left(16 \mathrm{Pi}^{\wedge} 2\right) *(((1 /(1 \mathrm{sqrt1})+1 /(4 \mathrm{sqrt2} 2)+1 /(9 \mathrm{sqrt} 3)+1 /(16 \mathrm{sqrt4})+1 /(25 \mathrm{sqrt} 5)+ \\
& 1 /(36 \mathrm{sqrt6})+1 /(49 \mathrm{sqrt} 7)+1 /(64 \mathrm{sqrt} 8))))
\end{aligned}
$$

Input:

$$
\frac{3}{16 \pi^{2}}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)
$$

Result:

$$
\frac{3\left(\frac{33}{32}+\frac{33}{128 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}\right)}{16 \pi^{2}}
$$

Decimal approximation:

$0.024975228456987917321331718174344522231879005710200746494 \ldots$
0.0249752284...

Property:

$\frac{3\left(\frac{33}{32}+\frac{33}{128 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}\right)}{16 \pi^{2}}$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{1}{1580544000 \pi^{2}}(305613000+38201625 \sqrt{2}+ \\
& 10976000 \sqrt{3}+2370816 \sqrt{5}+1372000 \sqrt{6}+864000 \sqrt{7})
\end{aligned}
$$

$\frac{3}{400 \sqrt{5} \pi^{2}}+\frac{3}{784 \sqrt{7} \pi^{2}}+\frac{(8+\sqrt{2})(891+32 \sqrt{3})}{36864 \pi^{2}}$
$\frac{\frac{99}{512}+\frac{9}{2048 \sqrt{2}}+\frac{1}{48 \sqrt{3}}+\frac{3}{400 \sqrt{5}}+\frac{1}{192 \sqrt{6}}+\frac{3}{784 \sqrt{7}}}{\pi^{2}}$

Series representations:

$$
\begin{aligned}
& \frac{\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right) 3}{16 \pi^{2}}= \\
& \frac{3}{16 \pi^{2} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\frac{3}{64 \pi^{2} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{1}{48 \pi^{2} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0} k^{k} z_{0}^{k}\right.}{k!}}+\frac{3}{256 \pi^{2} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{3}{400 \pi^{2} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\frac{1}{192 \pi^{2} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& 784 \pi^{2} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0}\right)^{k} z_{0}^{-k}}{k!}+\overline{1024 \pi^{2} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!}} \\
& \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right) \\
& \frac{\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right) 3}{16 \pi^{2}}= \\
& 3^{16 \pi^{2}} \\
& 16 \pi^{2} \exp \left(i \pi\left\lfloor\frac{\arg (1-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(1-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 64 \pi^{2} \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 48 \pi^{2} \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 256 \pi^{2} \exp \left(i \pi\left\lfloor\frac{\arg (4-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(4-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 3 \\
& 400 \pi^{2} \exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& 1 \\
& 192 \pi^{2} \exp \left(i \pi\left\lfloor\frac{\arg (6-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(6-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 3 \\
& 784 \pi^{2} \exp \left(i \pi\left\lfloor\frac{\arg (7-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(7-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& \frac{3}{1024 \pi^{2} \exp \left(i \pi\left\lfloor\frac{\arg (8-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(8-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right) 3}{16 \pi^{2}}= \\
& \frac{3\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\arg \left(1-z_{0}\right.\right.}}{16 \pi^{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{-k}}{k!}} \\
& \underline{3\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)}}+ \\
& 64 \pi^{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
& 48 \pi^{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& 3\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor\right)}+ \\
& 256 \pi^{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \frac{3\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor\right)}}{400 \pi^{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor\right)}} \\
& 192 \pi^{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& 3\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(7-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(7-z_{0}\right) /(2 \pi)\right\rfloor\right)}+ \\
& 784 \pi^{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& 3\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
& 1024 \pi^{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!}
\end{aligned}
$$

From which, performing the inversion of the formula, we obtain:
$1 /\left(\left(\left(\left(3 /\left(16 \mathrm{Pi}^{\wedge} 2\right) *(((1 /(1 \mathrm{sqrt} 1)+1 /(4 \mathrm{sqrt} 2)+1 /(9 \mathrm{sqrt} 3)+1 /(16 \mathrm{sqrt} 4)+1 /(25 \mathrm{sqrt} 5)+\right.\right.\right.\right.$ $1 /(36$ sqrt6) $+1 /(49$ sqrt 7$)+1 /(64$ sqrt8) $)))))))$

Input:

1

$\frac{3}{16 \pi^{2}}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)$

Exact result:

$$
\frac{16 \pi^{2}}{3\left(\frac{33}{32}+\frac{33}{128 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}\right)}
$$

Decimal approximation:

40.03967378004929000166651667508307590182193045584426481180...
40.03967378...

Property:

$\frac{16 \pi^{2}}{3\left(\frac{33}{32}+\frac{33}{128 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}\right)}$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \left(1580544000 \pi^{2}\right) /(305613000+38201625 \sqrt{2}+ \\
& \quad 10976000 \sqrt{3}+2370816 \sqrt{5}+1372000 \sqrt{6}+864000 \sqrt{7})
\end{aligned}
$$

$$
\frac{1580544000 \pi^{2}}{864000 \sqrt{7}+343(6912 \sqrt{5}+125(8+\sqrt{2})(891+32 \sqrt{3}))}
$$

$$
\left(45158400 \sqrt{35} \pi^{2}\right) /(1091475 \sqrt{70}+4 \sqrt{2}(39200 \sqrt{210}+
$$

$$
\sqrt{3}(14112 \sqrt{42}+25 \sqrt{5}(392 \sqrt{7}+9 \sqrt{6}(32+1617 \sqrt{7})))))
$$

Series representations:

$$
\begin{aligned}
& \frac{\frac{1}{\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)^{3}}}{16 \pi^{2}}= \\
& \left(16 \pi^{2}\right) / 3\left(\frac{1}{\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\frac{1}{4 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{25 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\frac{1}{36 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \left.\frac{1}{49 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\frac{1}{\left.64 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)}\right)
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

$$
\begin{aligned}
& \frac{\frac{1}{\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)^{3}}}{}= \\
& \left(16 \pi^{2}\right) /\left(3 \left(\frac{1}{\exp \left(i \pi\left\lfloor\frac{\arg (1-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{1}^{\infty} \frac{(-1)^{k}(1-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+\right.\right. \\
& 4 \exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 9 \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& \frac{1}{16 \exp \left(i \pi\left\lfloor\frac{\arg (4-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(4-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+ \\
& \frac{1}{25 \exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+ \\
& \frac{1}{36 \exp \left(i \pi\left\lfloor\frac{\arg (6-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(6-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+ \\
& 49 \exp \left(i \pi\left\lfloor\frac{\arg (7-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(7-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& \left.\frac{1}{\left.64 \exp \left(i \pi\left\lfloor\frac{\arg (8-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(8-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}\right)
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0)$
$\frac{1}{\frac{\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)^{3}}{16 \pi^{2}}}=$ $\left(16 \pi^{2}\right) / 3\left(\frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{\left.\left.1 / 2\left(-1-\arg \left(1-z_{0}\right)\right)(2 \pi)\right\rfloor\right)}}{\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}^{\left(1-z_{0}\right)^{k} z_{0}^{-k}}}{k!}}+\right.$

$$
\underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)}}+
$$

$4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0} k^{k} z_{0}^{-k}\right.}{k!}$

$$
\frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right]} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right]\right)}}{l}
$$

$$
9 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}^{\left(3-z_{0}\right)^{k} z_{0}^{k}}}{k!}
$$

$$
\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{\substack{1 / 2\left(-1-\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right)\right.}}
$$

$$
\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right]\right)}
$$

$$
36 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!}
$$

$$
\frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(7-z_{0}\right)((2 \pi)]\right.} z_{0}^{\left.1 / 2\left(-1-\arg \left(7-z_{0}\right) /(2 \pi)\right\rfloor\right)}}{49 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+
$$

$$
\left.\left.\frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right]} z_{0}^{\left.1 / 2\left(-1-\arg \left(8-z_{0}\right) /(2 \pi)\right)\right]}}{64 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right)\right)
$$

and multiplying for π, and subtracting for the golden ratio conjugate, we obtain:
$\mathrm{Pi}^{*} 1 /\left(\left(\left(\left(3 /\left(16 \mathrm{Pi}^{\wedge} 2\right) *(((1 /(1 \mathrm{sqrt} 1)+1 /(4 \mathrm{sqrt} 2)+1 /(9 \mathrm{sqrt} 3)+\right.\right.\right.\right.$
$1 /(16 \mathrm{sqrt4})+1 /(25 \mathrm{sqrt} 5)+1 /(36 \mathrm{sqrt6})+1 /(49 \mathrm{sqrt} 7)+1 /(64 \mathrm{sqrt} 8))))))))$ - 1 /golden ratio

Input:

$\pi \times \frac{1}{\frac{3}{16 \pi^{2}}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)}-\frac{1}{\phi}$

Exact result:

$\frac{16 \pi^{3}}{3\left(\frac{33}{32}+\frac{33}{128 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}\right)}-\frac{1}{\phi}$

Decimal approximation:

125.1703110107848214646203604008708673030196876700788405088...
$125.170311 \ldots$ result very near to the Higgs boson mass 125.18 GeV

Property:

$$
-\frac{1}{\phi}+\frac{16 \pi^{3}}{3\left(\frac{33}{32}+\frac{33}{128 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}\right)} \text { is a transcendental number }
$$

Alternate forms:

$$
\frac{1580544000 \pi^{3}}{864000 \sqrt{7}+343(6912 \sqrt{5}+125(8+\sqrt{2})(891+32 \sqrt{3}))}-\frac{1}{\phi}
$$

$$
\left(45158400 \sqrt{35} \pi^{3}\right) /(1091475 \sqrt{70}+4 \sqrt{2}(39200 \sqrt{210}+
$$

$$
\sqrt{3}(14112 \sqrt{42}+25 \sqrt{5}(392 \sqrt{7}+9 \sqrt{6}(32+1617 \sqrt{7})))))-\frac{1}{\phi}
$$

$(2(-305613000-38201625 \sqrt{2}-10976000 \sqrt{3}-2370816 \sqrt{5}-$
$\left.\left.1372000 \sqrt{6}-864000 \sqrt{7}+790272000 \pi^{3}+790272000 \sqrt{5} \pi^{3}\right)\right) /$
$((1+\sqrt{5})(305613000+38201625 \sqrt{2}+10976000 \sqrt{3}+$ $2370816 \sqrt{5}+1372000 \sqrt{6}+864000 \sqrt{7}))$

Series representations:

$$
\begin{aligned}
& \frac{\pi}{\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)}{16 \pi^{2}}}-\frac{1}{\phi}=-\frac{1}{\phi}+ \\
& \left(16 \pi^{3}\right) /\left(3 \left(\frac{1}{\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{k}}{k!}}+\frac{1}{4 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\right.\right. \\
& \frac{1}{9 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\frac{1}{16 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{1}{25 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{1}{36 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{1}{49 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \left.\left.\frac{1}{64 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right)\right)
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

$$
\begin{aligned}
& \frac{\pi}{\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)}{16 \pi^{2}}}-\frac{1}{\phi}= \\
& -\frac{1}{\phi}+\left(16 \pi^{3}\right) / / 3\left(\frac{1}{\exp \left(i \pi\left\lfloor\frac{\arg (1-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(1-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+\right. \\
& \frac{1}{4 \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+ \\
& \frac{1}{9 \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{1}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+ \\
& 16 \exp \left(i \pi\left\lfloor\frac{\arg (4-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(4-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 25 \exp \left(i \pi\left[\frac{\arg (5-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 36 \exp \left(i \pi\left[\frac{\arg (6-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(6-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 49 \exp \left(i \pi\left[\frac{\arg (7-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(7-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& \left.\frac{1}{\left.64 \exp \left(i \pi\left\lfloor\frac{\arg (8-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(8-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi}{\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)}{16 \pi^{2}}-\frac{1}{\phi}=}= \\
& -\frac{1}{\phi}+\left(16 \pi^{3}\right) / 3\left(\frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor\right)}}{\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}^{\left(1-z_{0}\right)^{k} z_{0}^{-k}}}{k!}}+\right. \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)}}+ \\
& 4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
& 9 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}^{\left(3-z_{0}\right)^{k} z_{0}^{-k}}}{k!} \\
& \left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
& 16 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
& 25 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
& 36 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(7-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(7-z_{0}\right) /(2 \pi)\right\rfloor\right)}} \\
& 49 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
& 64 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!}
\end{aligned}
$$

Multiplying for π and adding $13+1 /$ golden ratio, we obtain:
$\mathrm{Pi} * 1 /\left(\left(\left(\left(3 /\left(16 \mathrm{Pi}^{\wedge} 2\right) *(((1 /(1 \mathrm{sqrt} 1)+1 /(4 \mathrm{sqrt} 2)+1 /(9 \mathrm{sqrt} 3)+\right.\right.\right.\right.$
$1 /(16$ sqrt4) $+1 /(25$ sqrt5 $)+1 /(36$ sqrt6 $)+1 /(49$ sqrt 7$)+1 /(64$ sqrt 8$))))))))+13+1 /$ golden ratio

Input:

$\pi \times \frac{1}{\frac{3}{16 \pi^{2}}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)}+13+\frac{1}{\phi}$

Exact result:

$\frac{1}{\phi}+13+\frac{16 \pi^{3}}{3\left(\frac{33}{32}+\frac{33}{128 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}\right)}$

Decimal approximation:

139.4063789882846111610295340696021435384603060296903662330...
139.406378988... result practically equal to the rest mass of Pion meson 139.57 MeV

Property:

$13+\frac{1}{\phi}+\frac{16 \pi^{3}}{3\left(\frac{33}{32}+\frac{33}{128 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}\right)}$ is a transcendental number

Alternate forms:

$\frac{1}{\phi}+13+\frac{1580544000 \pi^{3}}{864000 \sqrt{7}+343(6912 \sqrt{5}+125(8+\sqrt{2})(891+32 \sqrt{3}))}$

$$
\begin{array}{r}
\frac{1}{\phi}+13+\left(45158400 \sqrt{35} \pi^{3}\right) /(1091475 \sqrt{70}+4 \sqrt{2}(39200 \sqrt{210}+ \\
\sqrt{3}(14112 \sqrt{42}+25 \sqrt{5}(392 \sqrt{7}+9 \sqrt{6}(32+1617 \sqrt{7})))))
\end{array}
$$

$(5(947659608+114604875 \sqrt{2}+32928000 \sqrt{3}+801706248 \sqrt{5}+$

$$
4116000 \sqrt{6}+2592000 \sqrt{7}+99324225 \sqrt{10}+28537600 \sqrt{15}+
$$

$$
\left.\left.3567200 \sqrt{30}+2246400 \sqrt{35}+316108800 \pi^{3}+316108800 \sqrt{5} \pi^{3}\right)\right) /
$$

$$
((1+\sqrt{5})(305613000+38201625 \sqrt{2}+10976000 \sqrt{3}+
$$

$$
2370816 \sqrt{5}+1372000 \sqrt{6}+864000 \sqrt{7}))
$$

Series representations:

$$
\begin{aligned}
& \frac{\pi}{\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)}{16 \pi^{2}}}+13+\frac{1}{\phi}=13+\frac{1}{\phi}+ \\
& \left(16 \pi^{3}\right) /\left(3 \left(\frac{1}{\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{k}}{k!}}+\frac{1}{4 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\right.\right. \\
& \frac{1}{9 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\frac{1}{16 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{1}{25 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{1}{36 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{1}{49 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \left.\frac{1}{64 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right)
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

$$
\begin{aligned}
& \frac{\pi}{\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)}{16 \pi^{2}}}+13+\frac{1}{\phi}= \\
& 13+\frac{1}{\phi}+\left(16 \pi^{3}\right) / 3\left(\frac{1}{\exp \left(i \pi\left[\frac{\arg (1-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(1-x)^{k} x^{-k}\left(-\frac{1}{2}\right.}{k!}} \underset{4 \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}{ }+\right. \\
& 9 \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 16 \exp \left(i \pi\left[\frac{\arg (4-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{1}^{\infty} \frac{(-1)^{k}(4-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 25 \exp \left(i \pi\left[\frac{\arg (5-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 36 \exp \left(i \pi\left\lfloor\frac{\arg (6-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(6-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 49 \exp \left(i \pi\left\lfloor\frac{\arg (7-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(7-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& \frac{1}{\left.64 \exp \left(i \pi\left[\frac{\arg (8-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(8-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0)$

$$
\begin{aligned}
& \frac{\pi}{\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)}{16 \pi^{2}}}+13+\frac{1}{\phi}= \\
& 13+\frac{1}{\phi}+\left(16 \pi^{3}\right) / \int 3\left(\frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor\right)}}{\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{k}}{k!}}+\right. \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)}}+ \\
& 4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k!} \\
& \left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
& 9 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
& 16 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor\right)}} \\
& 25 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor\right)}} \\
& 36 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(7-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(7-z_{0}\right) /(2 \pi)\right\rfloor\right)}} \\
& 49 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor\right)}} \\
& \left.64 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!} \quad\right)
\end{aligned}
$$

Multiplying the expression by $27^{*} 1 / 2$, and adding $29+2$, we obtain
$29+2+27^{*} 1 / 2\left(\left(\left(\mathrm{Pi}^{*} 1 /\left(\left(\left(\left(3 /\left(16 \mathrm{Pi}^{\wedge} 2\right) *(((1 /(1 \mathrm{sqrt} 1)+1 /(4 \mathrm{sqrt} 2)+1 /(9 \mathrm{sqrt} 3)+\right.\right.\right.\right.\right.\right.\right.$ $1 /(16 \mathrm{sqrt} 4)+1 /(25 \mathrm{sqrt} 5)+1 /(36 \mathrm{sqrt} 6)+1 /(49 \mathrm{sqrt} 7)+1 /(64 \mathrm{sqrt} 8)))))))))))$

Input:

$29+2+$

$$
27 \times \frac{1}{2}\left(\pi \times \frac{1}{\frac{3}{16 \pi^{2}}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)}\right)
$$

Exact result:

$31+\frac{72 \pi^{3}}{\frac{33}{32}+\frac{33}{128 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}}$

Decimal approximation:

1729.142657493718670223136787675692823179989957473442145507...
1729.14265749...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j -invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Property:

$31+\frac{72 \pi^{3}}{\frac{33}{32}+\frac{33}{128 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}}$ is a transcendental number

Alternate forms:

$31+\frac{21337344000 \pi^{3}}{864000 \sqrt{7}+343(6912 \sqrt{5}+125(8+\sqrt{2})(891+32 \sqrt{3}))}$
$(9474003000+1184250375 \sqrt{2}+340256000 \sqrt{3}+$ $\left.73495296 \sqrt{5}+42532000 \sqrt{6}+26784000 \sqrt{7}+21337344000 \pi^{3}\right) /$
$(305613000+38201625 \sqrt{2}+10976000 \sqrt{3}+$
$2370816 \sqrt{5}+1372000 \sqrt{6}+864000 \sqrt{7})$

$$
\begin{aligned}
& 31+\left(609638400 \sqrt{35} \pi^{3}\right) /(1091475 \sqrt{70}+4 \sqrt{2}(39200 \sqrt{210}+ \\
& \sqrt{3}(14112 \sqrt{42}+25 \sqrt{5}(392 \sqrt{7}+9 \sqrt{6}(32+1617 \sqrt{7})))))
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 29+2+\frac{27 \pi}{\frac{\left(3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)\right)^{2}}{16 \pi^{2}}}= \\
& 31+\left(72 \pi^{3}\right) /\left(\frac{1}{\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{k}}{k!}}+\frac{1}{4 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\right. \\
& \frac{1}{9 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\frac{1}{16 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{k}}{k!}}+ \\
& \frac{1}{25 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{k}}{k!}}+\frac{1}{36 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \left.\frac{1}{49 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\frac{1}{64 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right)
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

$$
29+2+\frac{27 \pi}{\frac{\left(3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)\right)^{2}}{16 \pi^{2}}}=
$$

$$
31+\left(72 \pi^{3}\right) /\left(\frac{1}{\exp \left(i \pi\left\lfloor\frac{\operatorname{agg}(1-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{1}^{\infty} \frac{(-1)^{k}(1-x)^{k} x^{-k}\left(-\frac{1}{2}\right) k}{k!}}+\right.
$$

$$
\frac{1}{4 \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+
$$

$$
\underbrace{2 \pi}_{1}]) \times \sum_{k=0}^{k!}+
$$

$9 \exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+$
$16 \exp \left(i \pi\left\lfloor\frac{\operatorname{agg}(4-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(4-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+$
$25 \exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)\right)_{k}}{k!}+$
$36 \exp \left(i \pi\left\lfloor\frac{\arg (6-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}(6-x)^{k} x^{-k}\left(-\frac{1}{2}\right)\right)_{k}}{k!}+$
$49 \exp \left(i \pi\left\lfloor\frac{\arg (7-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(7-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+$
$\left.\frac{1}{64 \exp \left(i \pi\left\lfloor\frac{\arg (8-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(8-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)$ for $(x \in \mathbb{R}$ and $x<0)$

$$
\begin{aligned}
& 29+2+\frac{27 \pi}{\frac{\left(3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)\right)^{2}}{2}}= \\
& 31+\left(72 \pi^{3}\right) /\left(\frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor\right)}}{\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\right. \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)}}+ \\
& 4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor\right)}}+ \\
& 9 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
& 16 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor\right)}}+ \\
& 25 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
& 36 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(7-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(7-z_{0}\right) /(2 \pi)\right\rfloor\right)}} \\
& 49 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor\right)}} \\
& \left.64 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

Multiplying the expression by $27 * 1 / 2$, and adding $29+47+11$ we obtain:
$29+47+11+27^{*} 1 / 2\left(\left(\left(\mathrm{Pi}^{*} 1 /\left(\left(() /\left(16 \mathrm{Pi}^{\wedge} 2\right) *(((1 /(1 \mathrm{sqrt1})+1 /(4 \mathrm{sqrt} 2)+1 /(9 \mathrm{sqrt3})+\right.\right.\right.\right.\right.$ $1 /(16 \mathrm{sqrt4})+1 /(25 \mathrm{sqrt5})+1 /(36 \mathrm{sqrt6})+1 /(49 \mathrm{sqrt} 7)+1 /(64 \mathrm{sqrt8})))))))))))$

Input:

$29+47+11+$
$27 \times \frac{1}{2}\left(\pi \times \frac{1}{\frac{3}{16 \pi^{2}}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)}\right)$

Exact result:

$87+\frac{72 \pi^{3}}{\frac{33}{32}+\frac{33}{128 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}}$

Decimal approximation:

1785.142657493718670223136787675692823179989957473442145507...
$1785.14265749 \ldots$ result in the range of the hypothetical mass of Gluino (gluino $=$ $1785.16 \mathrm{GeV})$.

Property:

$87+\frac{72 \pi^{3}}{\frac{33}{32}+\frac{33}{128 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}}$ is a transcendental number

Alternate forms:

$87+\frac{21337344000 \pi^{3}}{864000 \sqrt{7}+343(6912 \sqrt{5}+125(8+\sqrt{2})(891+32 \sqrt{3}))}$
$(3(8862777000+1107847125 \sqrt{2}+318304000 \sqrt{3}+68753664 \sqrt{5}+$ $\left.\left.39788000 \sqrt{6}+25056000 \sqrt{7}+7112448000 \pi^{3}\right)\right) /$
$(305613000+38201625 \sqrt{2}+10976000 \sqrt{3}+2370816 \sqrt{5}+$ $1372000 \sqrt{6}+864000 \sqrt{7}$)
$87+\left(609638400 \sqrt{35} \pi^{3}\right) /(1091475 \sqrt{70}+4 \sqrt{2}(39200 \sqrt{210}+$ $\sqrt{3}(14112 \sqrt{42}+25 \sqrt{5}(392 \sqrt{7}+9 \sqrt{6}(32+1617 \sqrt{7})))))$

Series representations:

$$
\begin{aligned}
& 29+47+11+\frac{27 \pi}{\frac{\left(3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)\right)^{2}}{2}}= \\
& 87+\left(72 \pi^{3}\right) /\left(\frac{1}{\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{k}}{k!}}+\frac{1}{4 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\right. \\
& \frac{1}{9 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\frac{1}{16 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{k}}{k!}}+ \\
& \frac{1}{25 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{k}}{k!}}+\frac{1}{36 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \left.\frac{1}{49 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\frac{1}{64 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right)
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

$$
29+47+11+\frac{27 \pi}{\frac{\left(3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{16 \pi^{2}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)\right)^{2}}{1}}=
$$

$$
87+\left(72 \pi^{3}\right) / \int_{1}^{\exp \left(i \pi\left\lfloor\frac{\arg (1-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{1}{(-1)^{k}(1-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}} k!
$$

$$
\frac{1}{4 \exp \left(i \pi\left\lfloor\frac{\operatorname{agg}(2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+
$$

$9 \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+$
$16 \exp \left(i \pi\left[\frac{\arg (4-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(4-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+$
$25 \exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+$
$36 \exp \left(i \pi\left[\frac{\arg (6-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(6-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+$
$\frac{1}{49 \exp \left(i \pi\left\lfloor\frac{\arg (7-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(7-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+$
$\left.\frac{1}{64 \exp \left(i \pi\left\lfloor\frac{\arg (8-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(8-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)$ for $(x \in \mathbb{R}$ and $x<0)$

$$
\begin{aligned}
& 29+47+11+\frac{27 \pi}{\frac{\left(3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{16 \pi^{2}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)\right)^{2}}{10}}= \\
& 87+\left(72 \pi^{3}\right) /\left(\frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor\right)}}{\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\right. \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)}}+ \\
& 4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor\right)}}+ \\
& 9 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor\right)}} \\
& 16 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor\right)}}+ \\
& 25 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
& 36 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(7-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(7-z_{0}\right) /(2 \pi)\right\rfloor\right)}} \\
& 49 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor\right)}} \\
& \left.64 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!} \quad\right)
\end{aligned}
$$

Performing the $8^{\text {th }}$ root of the first expression, adding $1,(34+8) / 10^{3}$ and multiplying all by $1 / 10^{27}$, we obtain:
$1 / 10^{\wedge} 27\left(\left(\left(1+\left(\left(() /\left(16 \mathrm{Pi}^{\wedge} 2\right) *(((1 /(1 \mathrm{sqrt1})+1 /(4 \mathrm{sqrt2})+1 /(9 \mathrm{sqr} 3))+\right.\right.\right.\right.\right.$ $1 /(16 \mathrm{sqrt4})+1 /(25 \mathrm{sqrt5})+1 /(36 \mathrm{sqrt6})+1 /(49 \mathrm{sqrt7})+$ $1 /(64 \mathrm{sqr} 88)))))$))) $\left.\left.\left.)^{\wedge} 1 / 8+(34+8)^{*} 1 / 10^{\wedge} 3\right)\right)\right)$

Input:

$$
\begin{aligned}
& \frac{1}{10^{27}}\left(1+\left(\frac { 3 } { 1 6 \pi ^ { 2 } } \left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\right.\right.\right. \\
&\left.\left.\left.\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)\right) \wedge(1 / 8)+(34+8) \times \frac{1}{10^{3}}\right)
\end{aligned}
$$

Exact result:

```
\(\frac{\frac{521}{500}+\frac{\sqrt[8]{3\left(\frac{33}{32}+\frac{33}{128 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}\right)}}{\sqrt{2} \sqrt[4]{\pi}}}{1000000000000000000000000000}\)
```


Decimal approximation:

$1.6725052159553696438702675233907258281335553068508382 \ldots \times 10^{-27}$
$1.6725052159 \ldots * 10^{-27}$ result practically equal to the proton mass

Property:

Alternate forms:

```
    5 2 1
500000000000000000000000000000}
    ((305613000 + 38201625\sqrt{}{2}+10976000\sqrt{}{3}+
        2370816\sqrt{}{5}+1372000\sqrt{}{6}+864000\sqrt{}{7})^(1/8))/
        (2000000000000000000000000000\sqrt{}{2}3\mp@subsup{5}{}{3/8}\sqrt{4}{3\pi})
```

$\frac{\frac{521}{500}+\frac{\sqrt[8]{\frac{99}{32}+\frac{99}{128 \sqrt{2}}+\frac{1}{3 \sqrt{3}}+\frac{3}{25 \sqrt{5}}+\frac{1}{12 \sqrt{6}}+\frac{3}{49 \sqrt{7}}}}{\sqrt{2} \sqrt[4]{\pi}}}{10000000000000000000000}$
1000000000000000000000000000
$\frac{521}{500000000000000000000000000000}+$
$\underline{\left.\sqrt[8]{3\left(\frac{33}{32}+\frac{33}{128 \sqrt{2}}\right.}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}\right)}$
$1000000000000000000000000000 \sqrt{2} \sqrt[4]{\pi}$

Series representations:

$$
\begin{aligned}
& \frac{1+\sqrt[8]{\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)}{16 \pi^{2}}+\frac{34+8}{10^{3}}}}{10^{27}}= \\
& \frac{521}{500000000000000000000000000000}+ \\
& \left(\sqrt [8] { 3 } \left(\frac { 1 } { \pi ^ { 2 } } \left(\frac{1}{\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}\left(-\frac{1}{2}\right)\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\frac{1}{4 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\right.\right.\right. \\
& \frac{1}{9 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{k}}{k!}}+ \\
& \frac{1}{16 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{1}{25 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{1}{36 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{1}{49 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \left.\left.\left.\frac{1}{64 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right)\right) \wedge(1 / 8)\right) / \\
& (1000000000000000000000000000 \sqrt{2}) \\
& \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1+\sqrt[8]{\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)}{16 \pi^{2}}+\frac{34+8}{10^{3}}}}{10^{27}}= \\
& \left(\sqrt [8] { 3 } \left(\frac { 1 } { \pi ^ { 2 } } \left(\frac{1}{\exp \left(i \pi\left\lfloor\frac{\arg (1-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(1-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+\right.\right.\right. \\
& 1 \\
& 4 \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 1 \\
& 9 \exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 1 \\
& 16 \exp \left(i \pi\left\lfloor\frac{\arg (4-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(4-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 1 \\
& 25 \exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 36 \exp \left(i \pi\left\lfloor\frac{\arg (6-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(6-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 1 \\
& 49 \exp \left(i \pi\left\lfloor\frac{\arg (7-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(7-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& \left.\frac{1}{\left.64 \exp \left(i \pi\left\lfloor\frac{\arg (8-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(8-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}\right) \wedge(1 / 8) / \\
& (1000000000000000000000000000 \sqrt{2}) \text { for }(x \in \\
& \mathbb{R} \text { and } x< \\
& 0 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1+\sqrt[8]{\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)}{16 \pi^{2}}+\frac{34+8}{10^{3}}}}{10^{27}}= \\
& 500000000000000000000000000000+ \\
& \int \sqrt[8]{3}\left(\frac{1}{\pi^{2}} \frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor}}{\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\right. \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}} \\
& 4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor}} \\
& 9 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor}} \\
& 16 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor}} \\
& 25 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor}} \\
& 36 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(7-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(7-z_{0}\right) /(2 \pi)\right\rfloor}} \\
& 49 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \left.\left.\left.\frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor}}{64 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right)\right) \wedge(1 / 8)\right) / \\
& (1000000000000000000000000000 \sqrt{2})
\end{aligned}
$$

Performing the $8^{\text {th }}$ root of the first expression, adding 1 and subtracting $(21+3) / 2 * 1 / 10^{3}$, we obtain:
$\left(\left(\left(1+\left(\left(\left(\left(3 /\left(16 \mathrm{Pi}^{\wedge} 2\right) *(((1 /(1 \mathrm{sqrt} 1)+1 /(4 \mathrm{sqrt} 2)+1 /(9 \mathrm{sqrt} 3)+1 /(16 \mathrm{sqrt} 4)+1 /(25 \mathrm{sqrt} 5)\right.\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.+1 /(36 \mathrm{sqrt6})+1 /(49 \mathrm{sqrt} 7)+1 /(64 \mathrm{sqrt} 8))))))))^{\wedge} 1 / 8-((21+3) / 2)^{*} 1 / 10^{\wedge} 3\right)\right)\right)$

Input:

$1+$

$$
\begin{aligned}
& \sqrt[8]{\frac{3}{16 \pi^{2}}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right)} \\
& -\frac{21+3}{2} \times \frac{1}{10^{3}}
\end{aligned}
$$

Exact result:

$\frac{247}{250}+\frac{\sqrt[8]{3\left(\frac{33}{32}+\frac{33}{128 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}\right)}}{\sqrt{2} \sqrt[4]{\pi}}$

Decimal approximation:

1.618505215955369643870267523390725828133555306850838234565...
$1.618505215955 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...

Property:

$\frac{247}{250}+\frac{\sqrt[8]{3\left(\frac{33}{32}+\frac{33}{128 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}\right)}}{\sqrt{2} \sqrt[4]{\pi}}$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{247}{250}+\frac{\sqrt[8]{\frac{99}{32}+\frac{99}{128 \sqrt{2}}+\frac{1}{3 \sqrt{3}}+\frac{3}{25 \sqrt{5}}+\frac{1}{12 \sqrt{6}}+\frac{3}{49 \sqrt{7}}}}{\sqrt{2} \sqrt[4]{\pi}} \\
& \frac{247}{250}+\frac{1}{2 \sqrt{2} 35^{3 / 8} \sqrt[4]{3 \pi}} \\
& \quad((305613000+38201625 \sqrt{2}+10976000 \sqrt{3}+2370816 \sqrt{5}+ \\
& \left.1372000 \sqrt{6}+864000 \sqrt{7})^{\wedge}(1 / 8)\right)
\end{aligned}
$$

```
\(\frac{1}{10500 \sqrt[4]{\pi}}\)
\(\left(25 \sqrt{2} 3^{3 / 4} \times 35^{5 / 8}(305613000+38201625 \sqrt{2}+10976000 \sqrt{3}+2370816 \sqrt{5}+\right.\)
\(1372000 \sqrt{6}+864000 \sqrt{7}) \wedge(1 / 8)+10374 \sqrt[4]{\pi})\)
```


Series representations:

$$
\begin{aligned}
& 1+\sqrt[8]{\frac{\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right) 3}{16 \pi^{2}}-\frac{21+3}{10^{3} \times 2}=} \\
& \frac{247}{250}+ \\
& \frac{1}{\sqrt{2}} \sqrt[8]{3}\left(\frac { 1 } { \pi ^ { 2 } } \left(\frac{1}{\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{k}}{k!}}+\frac{1}{4 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\right.\right. \\
& \frac{1}{9 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\frac{1}{16 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{1}{25 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{1}{36 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{1}{49 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0} k^{k} z_{0}^{-k}\right.}{k!}}+ \\
& \left.\frac{1}{\left.64 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)}\right) \wedge(1 / 8)
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$
$1+\sqrt[8]{\frac{\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right) 3}{16 \pi^{2}}}-\frac{21+3}{10^{3} \times 2}=$

$$
\frac{247}{250}+\frac{1}{\sqrt{2}} \sqrt[8]{3}\left(\frac { 1 } { \pi ^ { 2 } } \left(\frac{1}{\exp \left(i \pi\left\lfloor\frac{\arg (1-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}(1-x)^{k} x^{-k}\left(-\frac{1}{2}\right)\right)_{k}}{k!}}+\right.\right.
$$

$$
\frac{1}{4 \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+
$$

$$
\frac{1}{9 \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+
$$

1
$\overline{16 \exp \left(i \pi\left\lfloor\frac{\arg (4-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(4-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+$
1
$25 \exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+$
1
$36 \exp \left(i \pi\left\lfloor\frac{\arg (6-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(6-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+$ 1
$49 \exp \left(i \pi\left[\frac{\arg (7-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(7-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+$ $\left.\frac{1}{\left.64 \exp \left(i \pi\left\lfloor\frac{\arg (8-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(8-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}\right)$ (1/8) for ($x \in \mathbb{R}$ and $x<0$)
$1+\sqrt[8]{\frac{\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}+\frac{1}{25 \sqrt{5}}+\frac{1}{36 \sqrt{6}}+\frac{1}{49 \sqrt{7}}+\frac{1}{64 \sqrt{8}}\right) 3}{16 \pi^{2}}-\frac{21+3}{10^{3} \times 2}}=$
$\frac{247}{250}+\frac{1}{\sqrt{2}} \sqrt[8]{3}\left(\frac{1}{\pi^{2}}\left(\frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor}}{\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{*}}{k!}}+\right.\right.$

$$
\begin{aligned}
& \frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right]} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right]}}{4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k!}}+ \\
& \left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right]} \\
& 9 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor}+} \\
& 16 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right]} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor}} \\
& 25 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor}} \\
& 36 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(6-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(7-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(7-z_{0}\right) /(2 \pi)\right\rfloor} \\
& 49 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \left.\left.\frac{\left(\frac{1}{z_{0}}\right)^{\left.-1 / 2 \arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor}}{64 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right)\right) \wedge(1 / 8)
\end{aligned}
$$

Conclusions

We highlight as in the development of this equation we have always utilized the constants $\pi, \phi, 1 / \phi$, the Fibonacci and Lucas numbers, linked to the golden ratio, that play a fundamental role to obtain the final results of the analyzed expression.

Furthermore, the Fibonacci and Lucas numbers are fundamental values that can be considered "constants", such as π and the golden ratio , that is, recurring numbers in various contexts: in the spiral arms of galaxies, as well as in Nature in general. This means that in the universe there is a mathematical order that has such constants as its foundation. Mathematics is therefore language, that is, as it was defined by philosophers, the "Logos" of the universe and all its laws that govern it. In other words, the universe, in addition to an observable physical reality, is also a mathematical and geometric entity.

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

